A MatNet variants

A.1 Multiple data matrices

A combinatorial optimization problem can be presented with multiple (f) relationship features be-
tween two groups of items. In FFSP, for example, a production cost could be different for each pro-
cess that one has to take into account for scheduling in addition to the processing time for each pair
of the job and the machine. (The optimization goal in this case would be to minimize the weighted
sum of the makespan and the total production cost.) When there are f number of matrices that need
to be encoded (D', D?, ..., Df), MatNet can be easily expended to accommodate such problems
by using the mixed-score attention shown in Figure[A.T|instead of the one in Figure 2(b). “Trainable
element-wise function” block in Figure [A.T]is now an MLP with f 4 1 input nodes and 1 output
node.

MatMul

‘ Trainable

Element-wise Func.

Sext-1 | Sext-2 Sext-f Sint
Scale
D! D2 Df Q K V
Figure A.1: Mixed-score attention with f number of data matrices (D', D2, ..., DY).

A.2 Alternative encoding sequences

Equation (2) in the main text describes the application of ¥4 and Jp in the graph attentional layer
of MatNet that happens in parallel. One can change it to be sequential, meaning that F4 is applied
first and then the application of Fp follows using the updated vector representatlons h’ This is
illustrated in Figure[A.2] The opposite ordering is also valid, in which F5 is applied ﬁrst and then
F 4 follows (not drawn).

Fa Add & Norm Add & Norm Fs
Feed Forward Feed Forward
|_ Add & Norm Add & Norm
X
Multi-Head Multi-Head
— Mixed-Score Mixed-Score |«
Attention Attention
q S k] v] «a
|
a, embedding by em_bedding DT
D a, embedding :
(MxN) 2 : by embedding (NxM)

a,, embedding

Figure A.2: An alternative MatNet structure with the sequential update scheme. The bold line indi-
cates the change from the original.

13

It is not yet clear why, but we have empirically found that the alternative MatNet structure above
leads to better-performing models than the original structure in some experiments (that are not the
ATSP and the FFSP experiments described in the paper).

A.3 Alternatives to one-hot initial node embeddings

For initial node representations of nodes in group B, one only needs mutually distinct-enough Nyax
vectors and they do not need to be of one-hot type. We have chosen to present our model with one-
hot vectors because it is the simplest to implement this way. But for the readers who look for more
generalizability, this may seem too restrictive.

Instead of one-hot vectors, one can use Ny, different vectors made of learnable parameters (just like
the parameters of the neural net). They automatically become mutually-distinct (well-performing)
vectors during the model training. This way, one can use arbitrarily large Ny,,x, without being limited
by the pre-defined length of the embedding vectors.

Ultimately, one can use vectors that are created randomly for each problem instance, which com-
pletely lift the restriction of Np,x. Although this leads to slightly worse performance compared to
the models with one-hot initial node embeddings (See Figure [A.3), initial node embedding with
random vectors can be immensely useful in situations when settling on a fixed value for Ny, is
undesirable.

ATSP20 Training Curves ATSP50 Training Curves ATSP100 Training Curves
- Llo64 1.68 1.74
‘Q —— Random (length 20) = Random (length 20) —— Random (length 20)
g 1.62 —— Random (length 50) 166 —— Random (length 50) 1.72 —— Random (length 50)
L = One-hot (length 20) - One-hot (length 50) . = One-hot (length 100)
f=d
>
@©

1.70
1.64

[y
o
=)

1.68
1.58 1.62

1.66

1.56 1.60

1.64

1.54 1.58

1.62

1'520 1000 2000 3000 4000 5000 1'560 2000 4000 6000 8000 1'600 2000 4000 6000 8000 1000012000

epochs epochs epochs

Figure A.3: Random vector (length 20 and 50) vs. one-hot vector initial node embeddings

A.4 Single update function, F= F4 = I3

Rather than having two separate update functions ¥4 and Fp (Section 3.1), MatNet can be imple-
mented to use a single update function for all nodes, both in A and B, treating them all equally. (In
other words, 34 and Fp will share the same parameter set.) This alternate approach has an advantage
that the model size of MatNet is reduced to almost a half.

Table A.1 compares the original MatNet result on ATSP and FFSP (those presented in the main
text) and the results using the modified MatNet with a single update function. Experiments using the
modified MatNet have been performed under the same training and inference conditions, including
the number of training epochs. It is shown that, especially for CO problems for which item groups
A and B are of the similar type (e.g., ATSP), this change in the model architecture has a relatively
small negative effect on the solver’s performance.

We note, however, that the use of single update function does not reduce the training and inference
speed or the GPU memory usage, the computing resources that are usually considered more valuable
than the (saved) model size. Also, presenting MatNet with two separate update functions as we have
done so in the main text allows it to be modified and expanded more easily for other related CO
problems with two or more groups of items.

14

Table A.1: Experiment results using dual (original) vs. single update function

|| ATSP50 | ATSP100 || FFSP50 | FESP100

Original MatNet 1.580 1.621 51.545 91.529
Original MatNet (x128) 1.561 1.585 49.625 89.701

Single-F MatNet 1.580 1.623 51.574 91.680
Single-JF MatNet (x 128) 1.561 1.587 49.649 89.884

B ATSP definition and baselines

B.1 Tmat class

While one can generate an ATSP instance by simply filling a distance matrix with random num-
bers alone (an “amat” class problem), such problem lacks the correlation between distances and
is uninteresting. In our ATSP experiments, we use “tmat” class ATSP instances [27] that have
the triangle inequality. First, we populate the distance matrix with independent random inte-
gers between 1 and 10°, except for the diagonal elements d(c;, c;) that are set to 0. If we find
d(ci, ¢j) > d(ci, cx) +d(cg, ;) for any (4, j, k), we replace it with d(c;, ¢;) = d(c;, ¢) + d(cx, ;).
This procedure is repeated until no more changes can be made.

Generation speed of tmat class instances can be greatly enhanced using parallel processing on GPUs.
Below is the Python code for the instance generation using Pytorch library.

def generate(batch_size, problem_size, min_val=1, max_val=1000000) :
problems = torch.randint(low=min_val, high=max_val+l, size=(batch_size,
problem_size, problem_size))

problems[:, torch.arange(problem_size), torch.arange(problem_size)] = 0

while True:
0ld_problems = problems.clone()

problems, _ = (problems[:, :, None, :] + problems[:, Nomne, :,
:].transpose(2,3)) .min(dim=3)

if (problems == old_problems).all():
break

return problems

B.2 MIP model

Our MIP model for ATSP is based on Miller-Tucker-Zemlin [30] developed in 1960.

Indices
1,7 City index

Parameters
n Number of Cities

c¢;; Distance from city i to city j

Decision variables
1 if you move from city ¢ to city j
€T 7 .
0 otherwise

u; arbitrary numbers representing the order of city ¢ in the tour

15

Objective:

minimize < Cij asij) (B.3)
i=1 j=1
Subject to:

dwj=1 j=1,2--,n (B.4)

i=1
inj:1 i=1,2,---,n (B.5)

j=1
ui—uj+n—1) -z, <n—2 ,j=2,---,n (B.6)

Constraints and (B.3)) enforce the one-visit-per-city rule. Constraint set (B.6) could look unin-
tuitive, but it is used to prevent subtours so that all cities are contained in a single tour of length n
(commonly known in the OR community as MTZ subtour elimination constraints).

B.3 Heuristics

Greedy-selection heuristics Implementation of Nearest Neighbor (NN) is self-explanatory. On
the other hand, exact procedures for the insertion-type heuristics (NI and FI) can vary when applied
to the ATSP. Our approach is the following: for each city c that is not included in the partially-
completed round-trip tour of k cities, we first determine the insertion point (one of k choices) that
would make the insertion of the city c into the tour increase the tour length the smallest. With the
insertion point designated for each city, every city now has the increment value for the tour length
associated with it. Nearest Insertion (NI) selects the city with the smallest increment value, and
Furthest Insertion (FI) selects the one with the largest increment value.

LKH3 The version of LKH3 that we use is 3.0.6. The source code is downloaded from http://
webhoteld.ruc.dk/~keld/research/LKH-3/LKH-3.0.6.tgz. Parameter MAX_TRIALS is set
to 2 x N, where N is the number of cities. Parameter RUNS is set to 1. All other parameters are
set to the default values.

C Instance augmentation vs. sampling

The instance augmentation technique effectively creates different problem instances from which the
neural net generates solutions of great diversity [8]. In Table C.1, we compare the performance of
the instance augmentation method with that of the sampling method on the ATSP of different sizes.
(The first two data rows of Table C.1 are identical to the last two rows of Table 1 in the main text.)
The instance augmentation method takes a bit more time than the sampling method when the two
use the same number (128) of rollouts because the former requires a new encoding procedure for
each rollout while the latter needs to run the encoder just once and then reuses its output repeatedly.
The table shows that the sampling method clearly suffers from the limited range of solutions it can
create. Even when the number of rollouts used is larger by a factor of 10, the sampling method
cannot outperform the instance augmentation technique in terms of the solution quality.

Table C.1: Experiment results on 10,000 instances of ATSP using different inference methods.

ATSP20 ATSP50 ATSP100
Len. Gap Time |Len. Gap Time|Len. Gap Time

MatNet (single POMO) || 1.55 0.53% (2s) | 1.58 1.34% (8s)| 1.62 3.24% (34s)
MatNet (x 128 inst. aug.) || 1.54 0.01% (4m) | 1.56 0.11% (17m) | 1.59 0.93% (1h)

MatNet (x 128 sampling) || 1.54 0.22% (Im) | 1.57 0.52% (7m) | 1.60 1.89% (37m)
MatNet (x 1280 sampling) || 1.54 0.15% (12m) | 1.57 0.37% (1h) | 1.60 1.58% (6h)

Method

16

http://webhotel4.ruc.dk/~keld/research/LKH-3/LKH-3.0.6.tgz
http://webhotel4.ruc.dk/~keld/research/LKH-3/LKH-3.0.6.tgz

D Euclidean TSP Experiment

Many previous neural approaches on solving TSP assume Euclidean distance and use x, y coordi-
nates of the cities as the input. To compare performance of our MatNet-based (general) TSP solver
with those of the others, we test our model on (symmetric) distance matrices that are created from
the same list of x, y coordinates on Euclidean space used by the other methods. Strictly speaking,
other neural net based TSP solvers have the unfair advantage in this comparison, because they have
the hard-coded prior on the distribution of the the problem instances (i.e., they are all assumed to
have a distance measure that applies uniformly to all pairs of cities). We use exactly the same model
used for the asymmetric TSP experiments presented in the main text, only training it with different
data (symmetric distance matrices) this time. Its performance on TSP50 and TSP100 are presented
in Table D.1.

One of the important baselines included in the table is the AM model trained by POMO algo-
rithm [8]. Similarly to our MatNet-based approach, it is also a construction-type method and has
Transformer-based architecture. (But unlike MatNet, the instance augmentation for the AM is lim-
ited to x 8 and cannot be made larger.) Despite the fact that MatNet is structurally designed to handle
much broader range of TSP problems while the AM specializes in solving only the Euclidean ones,
MatNet-based Euclidean TSP solver shows performance that is still competitive, demonstrating its
wide adaptability.

Table D.1: Experiment results on 10,000 instances of Euclidean TSP

TSP50 TSP100
Method Len. Gap Time | Len. Gap Time
Concorde [36] (Optimal) || 5.69 - (@2m)| 776 - (8m)
GCN-BS [37] 569 001% (18m)| 7.87 1.39% (40m)
2-Opt-DL [38], 2K 570 0.12% (29m) | 7.83 0.87% (41m)
LIH [39], 5K 570 020% (lh)| 7.87 142% (2h)
AM + POMO 570 021% (2s)| 7.80 0.46% (11s)
AM + POMO (x8) 569 0.03% (16s)| 7.77 0.14% (1m)
MatNet 571 030% (8s)| 7.83 0.94% (34s)
MatNet (x8) 569 005% (Im)| 7.79 041% (5m)
MatNet (x 128) 569 001% (16m)| 7.78 0.17% (1h)

E Note on the graph embedding in the QUERY token

Ablation studies show that including “the graph embedding” (the average of the embedding vectors
of all the nodes in the graph) as a part of the QUERY token has a negligible effect in our ATSP solver.
The same is observed when tested with the AM-based TSP solvers [8] as well.

Note that dropping “the graph embedding” from the QUERY token does not necessarily mean that
the view of the solver is now restricted to a local one, or any less than that of the solver equipped
with a QUERY containing “the graph embedding.” The attention mechanism makes a weighted sum
of the “values.” If all the weights are made the same (via constant values used in creating “keys”
and “queries”) and if the “values” become just the copies of the representations of the nodes (via
identity transformation), the output of the attentional layer is the sum of the representations of all the
nodes, which is “the graph embedding.” Therefore, it is possible to contain “the graph embedding”
information in the embedding of any node, if the reinforcement learning process finds it necessary.

17

F Training curves

1.85

1.80 1

1.75 4

length

T T T T T
0 10 20 30 40 50
epochs

1.70 1

1.65 1

1.60 T T T T T 1
0 2000 4000 6000 8000 10000 12000

epochs

Figure F.1: The training curve of the MatNet-based ATSP solver with 100-city instances.

96

fun

o

vl
L

95 A

[

o

o
s

makespan

©
s
s
©o
[
L

makespan
o
w
)
©
o

92 A

91 - T T T T T T T i
0 25 50 75 100 125 150 175 200
epochs

Figure F.2: The training curve of the MatNet-based FFSP solver with 100-job instances.

G FFSP definition and baselines

G.1 Unrelated parallel machines

We choose to generate processing time matrices with random numbers. This makes machines in the
same stage totally unrelated to each other. This is somewhat unrealistic because an easy (short) job
for one machine tends to be easy for the others, and the sames goes for a difficult (long) job, too. The
type of FFSP that is studied most in the OR literature is a simpler version, in which all machines are
identical (“uniform parallel machines” [40]). Solving “unrelated parallel machines” FFSP is more
difficult, but the algorithms designed for this type of FFSP can be adapted to real-world problems
more naturally than those assuming identical machines.

G.2 MIP model

Our MIP model for FFSP is (loosely) based on Asadi-Gangraj [33] but improved to perform better
when directly entered into the CPLEX platform.

18

Indices
] Stage index

j,0 Job index
k Machine index in each stage
n Number of jobs

m Number of stages

Parameters
S; Number of machines in stage ¢

M A very large number
pijr Processing time of job j in stage i on machine £

Decision variables
Ci; Completion time of job j in stage ¢

1 if job j is assigned to machine k in stage %
Xijk .

0 otherwise

V. 1 if job [is processed earlier than job j in stage ¢
i 0 otherwise

Objective:
minimize(‘ ax {ij})
j=1l..n
Subject to:
S; .
1=1,2 m
X,L _1) b)
2 Xt {j:1,2, .
k=1
1=1,2 m
5/1 =0] 3 4)
7 {31,27 1
n n S n
SO Vi =Y max (D (Xigk) — 1, 0) i=1,2,m
j=11=1 k=1 j=1
Y, <max(max {X;;r + Xur} —1 0) t=132""
ijl > k=1..5, ijk ilk) j,l — 1727. ..
- i=1,2,--,m
}/;__ <1 i) 4y)
1=1
" i=1,2,---,m
YV@' <1]) &y)
Z lj_ {]—1,27...’71
1=1
S1
CljZZPUk'lek Jj=12,---,n
k=1
& i=2,3-,m
CijZCi—lj‘F;pijk'Xijk’ {j17,2’,-~:n
o i=1,2,-,m
Cij+ M(1—-Yy;) > Cy +Zpijk - Xijk {j,l :’1:2’”’. n

k=1

(G.7)

(G.8)

(G.9)

(G.10)

(G.11)

(G.12)

(G.13)

(G.14)

(G.15)

(G.16)

Constraint set (G.8) ensures that each job must be assigned to one machine at each stage. Constraint
sets (G.9)—(G.13) define precedence relationship (Y') between jobs within a stage. Constraint set
(G.9) indicates that every job has no precedence relationship (Y = 0) with itself. Constraint set

19

(G.10) indicates that the sum of all precedence relationships (the sum of all Y) in a stage is the
same as n — S; minus the number of machines that no job has been assigned. Constraint set
expresses that only the jobs assigned to the same machine can have precedence relationships (Y = 1)
among themselves. Constraint sets (G.12) and (G.13)) mean that a job can have at most one preceding
job and one following job. Constraint set indicates that completion time of job j in the first
stage is greater than or equal to its processing time in this stage. The relation between completion
times in two consecutive stages for job j can be seen in Constraint set (G.I3). Constraint set
guarantees that no more than one job can run on the same machine at the same time.

G.3 Metaheuristics

Genetic algorithm Genetic algorithm (GA) iteratively updates multiple candidate solutions called
chromosomes. Child chromosomes are generated from two parents using crossover methods, and
mutations are applied on chromosomes for better exploration.

Our implementation of GA is based on chromosomes made of S x N number of real numbers, where
S is the number of stages, and IV is the number of jobs. Each real number within a chromosome
corresponds to the scheduling of one job at one stage. The integer part of the number determines
the index of the assigned machine, and the fractional part determines the priority among the jobs
when there are multiple jobs simultaneously available. The integer and the fractional parts are in-
dependently inherited during crossover. For mutation, we randomly select one from the following
four methods: exchange, inverse, insert, and change. The number of chromosomes we use is 25,
and the crossover ratio and the mutation rate are both 0.3. One of the initial chromosomes is set to
the solution of the SJF heuristic and the best-performing chromosome is conserved throughout each
iteration. We run 1,000 iterations per instance.

Particle swarm optimization Particle swarm optimization (PSO) is a metaheuristic algorithm
that iteratively updates multiple candidate solutions called particles. Particles are updated by the
weighted sum of the inertial value, the local best and the global best at each iteration.

Our PSO solution representation (a particle) has the same form as a chromosome of our GA imple-
mentation. We use 25 number of particles for PSO. The inertial weight is 0.7, and the cognitive and
social constants are set to 1.5. One of the initial particles is made to represent the solution of the SJF
heuristic. We run 1,000 iterations per instance.

H Generalization performance on FFSP

A trained MatNet model can encode a matrix of an arbitrary number of rows (or columns). Such
characteristics of MatNet is most useful for problems like FFSP, in which one of the two groups
of items that the problem deals with is frequently updated. If we imagine a factory that is in need
for an optimization tool for the FFSP-type scheduling problems, it is likely that its schedules are
updated every day (or even every hour) or so, each time with a different (various sizes) set of jobs.
The set of machines in the schedule, on the other hand, is unlikely to change on a daily basis. The
processing time matrices in this case have rows of an unspecified size but a fixed number of columns.
A MatNet-based FFSP solver can naturally handle such data.

In Table H.1, we show the performance of the three MatNet-based FFSP solvers. They are the same
models that are used for the FFSP experiments described in the main text, e.g., in Table 2. Each
model is trained with the FFSP instances of a different number of jobs (Nyan = 20, 50, 100). We
test them with 1,000 instances of the FFSP of different job sizes (Nsx = 20, 50, 100, 1, 000), and the
average makespans are shown in the table. We have used x 128 instance augmentation for inference.
Notice that the MatNet-based models can handle Ny = 1,000 cases reasonably well, even though
they have not encountered such large instances during the training. SFJ results are displayed as a
baseline.

20

Table H.1: Generalization test results on 1,000 instances of FFSP.

Method FESP20 | FESP50 | FESP100 || FESP1000

etho MS MS MS MS
Shortest Job First H 31.3 \ 57.0 \ 99.3 H 847.0
MatNet (Nyain = 20) 25.4 50.3 91.2 814.4
MatNet (N = 50) 25.2 49.6 89.9 803.9
MatNet (Nyain = 100) 25.3 49.6 89.7 803.2

I One-instance FFSP

A scheduling task in a factory does not require solving many different problem instances at once.
Moreover, the runtime is usually allowed quite long for the scheduling. We test each baseline algo-
rithm and our MatNet-based model on a single FFSP instance and see how much each algorithm can
improve its solution quality within a reasonably long time. For each FFSP size (N = 20, 50, 100),
one problem instance is selected manually from 1,000 saved test instances based on the results from
the “fast scheduling” experiments (in Table 2 of the main text). We have chosen instances whose
makespans roughly match the average makespans of all test instances. The processing time matrices
for the selected N = 20, 50 and 100 instances are displayed in Figure 4, Figure[L.1] and Figure[[.2]
respectively.

Table 1.1 shows the result of the one-instance experiments.®For both the MIP and the metaheuristic
approaches, we find that only a relatively small improvement is possible even when they are allowed
to keep searching for many more hours. MatNet approach produces much better solutions in the
order of seconds.%]

Table I.1: One-instance FFSP experiment results.

FFSP20 FFSP50 FFSP100

Method (Fig.4) (Fig.G.1) (Fig.G.2)

MS Time | MS Time | MS Time
CPLEX (10 min timeout) 37 (10m) X X
CPLEX (10 hour timeout) 34 (10h)
Shortest Job First 31)] 58 (=) | 100)
GA (103 iters, 1 run) 30 (@m)| 57 (@m)| 99 (14m)
GA (10° iters, 1 run) 30 (8h)| 57 (13h) | 99 (26h)
GA (103 iters, 128 run) 29 (1h) | 57 (2h) | 99 (4h)
PSO (103 iters, 1 run) 29 (7Tm)| 56 (14m) | 98 (24m)
PSO (107 iters, 1 run) 27 (12h) | 56 (21h) | 98 (40h)
PSO (103 iters, 128 run) 27 (2h) | 55 (4h) | 98 (7h)
MatNet (single POMO) 27 2s) | 51 4s)| 93 (6s)
MatNet (x 128 inst. aug.) 25 5s)y| 50 (10s) | 91 (11s)
MatNet (x 1280 inst. aug.) || 25 8s)| 49 (16s)| 90 (23s)

The runtimes for GA and PSO are divided by 8, following the convention used in the main text, only for
128 run cases. Single-instance single-run programs cannot easily utilize multiprocessing.

“Here, for MatNet approaches, we simply use the instance augmentation technique only. There are, how-
ever, better inference techniques for neural net based approaches that are more suitable for solving “one-
instance CO problems.” See, for example, Hottung et al. [41].

21

#1

#2

#3

#1

#2

#3

#1

#2

#3

Job #1~50

26955954459534377676433485846586355298726786457579
45787298579983353332782337677346834755384697854444
36796976582277756489756997692996388423234747457533
26988748997545276732724865255289775887943686885935

96489573759245456323623457569993796586558657348528
94499795392769357274348973737426543333338843386245
85295844983429467754299222534633338355393742367752
76898973453294596422795868666892235688657272424495

55992555734568727286279435664456233653224373768656
52478333734394894488694877242684954533824834565873
64883544656958595785745559932964837688345552682624
32637594448922699758835585459352698375696526524297

Figure I.1: FFSP50 processing time matrices used for the one-instance experiment.

Job #1~50

35893958682349224978457339869362783778884444674762
54484785897469934752432999856343372282365672933239
73928666933369937434387352366322686896899566229462
82735553582643674355735373742592925322457444654524

52243876853824723392826448433497839777287684639632
39486867225234646425869689733592897392227754755498
44632947987657492247784237469744334738963446464878
84953858743846789986696369274445897434996788568295

55474463326239262622798879355567647682768682687956
72693975792843334256743378562828653628745332965724
28547663828957734744693295397774332888256893497324
97839626489333522754598538627833423566469625278753

Job #51~100

57968693697774995728795958765895447244942396473487
97869686742288976625292463677922233577826996867662
53352569855657758973857287777694559529639784279963
83259239332996975487689867292698726533466288426839

93839787727269264298933673942497535747973966676775
58995499269949854367584634823685987794593972237699
55883378356626997459226367728783479723928332849428
79767276976685237756857657687692739486536368545472

46846288484238448642793645738642286885242446366245
45655527374568529765556754978837744293277766527887
89574954597424762756475997936285246276542287249388
69548642449577924492498436295842389296282256964799

Figure 1.2: FFSP100 processing time matrices used for the one-instance experiment.

22

v~T# N

v~T# N

v~T#IN

J Diagrams for ATSP and FFSP solvers

embgq emby,
emby, emby, I probability (p,)

5(2) S(3) S(N)

; ; index is sampled
embay emby PPy
t

t t t
e [e]
t t t t t t t

s ot ot
I e(1) emb,;, o @ . e(1l) emb eee e(1 by -
D - o) embm 0 o2 b1 | 0 o M -
(NXN) QUERY) QUERY :) QUERY X
* : € : ® 8 ~®
e(i) = embg 5 0 0 : 0
embyy 0 embyy 0 embyy =
k, v mask k, v mask k, v mask

Figure J.1: ATSP solver

Example case t=0 5 10 15 20 25
k=2,t=5

emb,; emby,
emb,, emby,

embgz . ju (t=5)=4 Ju,(t=5)=N+1 Juy(&=5)=N+1 Jju,(E=5)=14
embM ’ index is sampled
emb \‘ \‘ \‘ \‘
LY Pi,P2s - /PN P+ ‘ ‘ P1,P2s - /PN P+ ‘ ‘ Pi,P2 - /Py P+ ‘ ‘ P1,P2 - PN P+ ‘
t o t t t t
Encoder) _
(k) (k) (k) (k)
‘ (MatNet)]“ Decoder]»‘ Decoder]»‘ Decoder!]»‘ Decoder
t t t t t t t t t t t t t
emb,,; = emby, 0 emb,, emby,, @ - emb,z; emby, - embg, emby,, -
D® QUERY e QUERY - QUERY 0 QUERY 0
(4%N) E : B 8 8 : B :
*Fork=1,2,3 embyy 0 embyy *© embyy || =% embypy | -
embpy+y 0 embpyiy O embpyi1 O embpy+1 0
k, v mask k, v mask k, v mask k, v mask
t=t+1

Figure J.2: FFSP solver

23

	MatNet variants
	Multiple data matrices
	Alternative encoding sequences
	Alternatives to one-hot initial node embeddings
	Single update function, F = FA = FB

	ATSP definition and baselines
	Tmat class
	MIP model
	Heuristics

	Instance augmentation vs. sampling
	Euclidean TSP Experiment
	Note on the graph embedding in the QUERY token
	Training curves
	FFSP definition and baselines
	Unrelated parallel machines
	MIP model
	Metaheuristics

	Generalization performance on FFSP
	One-instance FFSP
	Diagrams for ATSP and FFSP solvers

