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1 PROMPTING, PARSING, AND GRADING

Scope. Four model-dataset pairs are evaluated with left-padded batches of 8—16 prompts:

* DeepSeek-R1-Distill-Qwen-7B + GSM8K
* DeepSeek-R1-Distill-Qwen-7B + MMLU
* Llama-3.1-8B-Instruct + GSM8K
* Llama-3.1-8B-Instruct + MMLU

For GSM8K and MMLU, generation uses temperature=0.6, top_p=0.95, and
repetition_penalty=1.1. For long-context tasks, decoding is greedy. @We remark
that baseline attention implementations and SANTA are compared in the scope of a single
model-dataset pair, thus parameter choices do not affect conclusions so long as they are consistent
across attention implementations.

DeepSeek 7B + GSMSK

Aspect Procedure

Prompt Question, blank line, then Please reason step by step,
and put your final numeric answer within
\boxed{}.

Answer extraction Perform a brace-balanced search for the last occurrence of
\boxed{ ...} (robust to nested braces). If none is found, fall back
to the final ~200 characters of the model output.

Grading Numeric equality judged by the MIT-licensed PRM800K grader; every

prompt is counted, and blank or unparsable predictions score 0.

Table S1: Prompting and grading for DeepSeek 7B on GSM8K.

DeepSeek 7B + MMLU
Aspect Procedure
Prompt Question, four labeled choices, then Answer briefly. Put
your final answer as a single letter inside
\boxed{}.
Answer extraction Brace-balanced search for the last occurrence of \boxed{. .. };if

none is found, inspect the final ~300 characters of the output. Scan
this region backwards and take the first occurrence of A-D (case-
insensitive), then convert it to uppercase.

Grading The predicted letter is compared with the gold key (case-insensitive).
If no valid letter is found—or the output is blank—the item scores 0;
otherwise it scores 1 when the letters match.

Table S2: Prompting and grading for DeepSeek 7B on MMLU.
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Llama 8B + GSM8SK
Aspect Procedure
Prompt Meta chat template. System: “You are a precise mathematician. Ex-

plain your reasoning step by step, then output ONLY the final number
on a new line.” User: the GSM8K question.

Answer extraction Inspect the model reply in order: (i) the last non-empty line of the
response; (ii) if that fails, the final 25 whitespace-separated tokens.
From the selected chunk, take the first integer-looking token (commas
allowed, optional leading minus).

Grading Numeric equality judged by the MIT-licensed PRM800K grader; every
question is counted, and blank or unparsable answers score 0.

Table S3: Prompting and grading for Llama 8B on GSMS8K.

Llama 8B + MMLU

Aspect Procedure

Prompt Meta chat template. System: “You are a knowledgeable and concise
subject-matter expert. Work through the problem step by step. Finally,
on a new line, output ONLY the single capital letter (A, B, C, or D)
that corresponds to the correct choice.” User: the question followed
by the four labeled choices A-D.

Answer extraction Take the substring after the last newline and scan it left-to-right for
the first capital A—D (case-insensitive). If none is found, inspect the
final 10 whitespace-separated tokens of the whole response, scanning
them right-to-left for A-D.

Grading Predicted letter (upper-cased) is compared with the gold key. Every
question is counted; if no valid letter is found or it does not match the
gold answer, the item scores 0.

Table S4: Prompting and grading for Llama 8B on MMLU.

Llama 8B + RULER prompts

Aspect Procedure

Prompt Prompts are generated for the following RULER sub-tasks with a
length of 8192 tokens: fwe, niah_multivalue, qa_1, and qa_2. Greedy
decoding is used. The model generates a maximum of 64 new tokens.

Grading fwe: partial credit = (# of gold words present in the model output)
/ 3 (case-insensitive set match). niah_multivalue: take the first four
unique integers from the model output; partial credit = (# of these that
appear in the gold set) / 4. qa_1 and qa_2: correct if the gold answer
string appears as a case-insensitive substring of the model output.

Table S5: Prompting and grading for Llama 8B on RULER prompts.

Licenses.

* Models. deepseek-ai/DeepSeek-R1-Distill-Qwen-7B (MIT) and meta-llama/Meta-Llama-3.1-8B-
Instruct (Llama 3.1 license) on Hugging Face.

» Datasets. GSMS8K openai/gsm8k (MIT) and MMLU cais/mmlu (MIT) on Hugging Face. RULER
prompts (Apache) — https://github.com/nvidia/ruler

* Grader. PRM800K numeric grader MIT) — https://github.com/openai/prm800k.


https://github.com/nvidia/ruler
https://github.com/openai/prm800k
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2 IMPLEMENTATION NOTES

The SANTA and top-k£ routines are concise, self-contained Python scripts meant as reference im-
plementations. They run under stock PyTorch and make no attempt at kernel fusion or memory
tuning.

2.1 STOCHASTIC ADDITIVE NO-MULT ATTENTION (SANTA)

Logical flow. For each attention head the script

(i) reshapes batch, head, and query axes into an (n, X ny) matrix of logits;
(ii) draws S categorical samples from every query’s softmax distribution;
(iii) gathers the S selected rows of V € R™k ¥4k
(iv) accumulates the samples and divides by S to yield an unbiased estimate of AV,

The only arithmetic after softmax is a vector addition per sample and one normalizing divide (a
bit-shift if S is a power of two).

Two-way tiling. A direct call to torch.multinomial or torch.gather allocates large
temporaries: n, X ng and ng, X .S X dy, respectively. For long sequences these buffers exceed GPU
memory, so the script processes

* row tiles of T,. = 1024 queries, and
* sample tiles of T, = 64 samples inside each row tile.

Row-wise tiling spawns several small CUDA kernels and adds one per-tile normalization step. These
are implementation-specific details that do not change the algorithm’s mathematics.

2.2 ToP-k

Top-k is implemented as follows:

(i) compute the full logits QKT € R™a*"*;
(ii) retain the k largest entries of each row, setting the rest to —oo;
(ii1) apply softmax and perform a dense matrix multiply with V.

Although a truly sparse AV multiply is possible, the reference code performs the full product (many
zeros included) to keep the implementation straightforward.

2.3 SCOPE AND LIMITATIONS

* Pure PyTorch. No Triton or custom CUDA.

* Code prioritises clarity over speed, and we make no latency or VRAM claims.

» FLOP accounting. Table[I]is a pen-and-paper tally; Fig. 2] derives FLOPs from tensor shapes
in Llama-8B. We count only algorithm-intrinsic ops, omitting implementation artifacts such as
SANTA’s per-tile normalizing divides (which are negligible) and top-k multiplies on zeroed logits.
The exclusion of implementation-dependent operations does not alter any conclusion.

The scripts are reference implementations. Performance-tuned versions for GPU, CPU, or edge
devices are future work.

Kubernetes (k8s) is an orchestration layer that runs containerized tasks (called “pods") across a cluster
of machines while handling restarts and scaling automatically.

3 DISTRIBUTED REINFORCEMENT LEARNING ON KUBERNETES
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Topology. All pods mount a single read—write Aggregator
volume that serves as the rendezvous point.

read (schedule, reward)Tl write 6
* Aggregator pod. Holds the current policy and
records a running history of baselines and gra- Shared filesystem oy

dients. @Q@% &2
“ ’ S
* Worker pods. Operate in a tight loop: (i) read N / Tl \ ‘%@

the latest policy; (ii) sample a 28-dimensional
schedule; (iii) evaluate ten batches of 16 ques- GPU 1 GPU 2 GPU 50
tions; (iv) append a small JSON-lines result T
file to a designated “inbox” directory on the
volume.

Figure S1: Kubernetes deployment schematic.

Aggregator loop. Whenever at least one new

result file appears, the aggregator moves all current files into a private folder for the next iteration,
computes the REINFORCE update and writes a new policy snapshot. It never pauses or signals
the workers; it simply processes whatever has arrived. In practice, workers are unlikely to finish
evaluation simultaneously, thus nearly every policy update comes from one worker output (10 x 16

questions). If two land together, the aggregator just uses a double-sized batch, which lowers the
gradient’s variance.

Asynchrony and fault-tolerance.

* Workers can be terminated at any time; partial output vanishes harmlessly.
* Workers always proceed with the newest policy that has reached disk; no locking is needed.

« If the aggregator restarts it scans the history directory, resumes from the last completed iteration,
and continues.

Scaling and resources. The worker Deployment’s replica count can scaled up or down at any time
during learning. For the 501 iterations in Fig.[5|we ran 50 GPU workers on a mix of RTX 3090, L4,
and A10 cards (24 GB Ampere generation cards) for roughly 20 h, totaling ~ 1000 GPU-hours. The
aggregator requests just one CPU core and a few hundred MiB of RAM.

Terminology. We keep the names aggregator and worker to highlight the simple “parameter-
server” flavor of the design, but these roles align exactly common learner/actor split in distributed
reinforcement learning.
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