
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SUPPLEMENTARY MATERIAL: TOWARDS MULTIPLIER-
FREE TRANSFORMERS WITH STOCHASTIC ATTENTION

Anonymous authors
Paper under double-blind review

1 PROMPTING, PARSING, AND GRADING

Scope. Four model–dataset pairs are evaluated with left-padded batches of 8–16 prompts:

• DeepSeek-R1-Distill-Qwen-7B + GSM8K
• DeepSeek-R1-Distill-Qwen-7B + MMLU
• Llama-3.1-8B-Instruct + GSM8K
• Llama-3.1-8B-Instruct + MMLU

For GSM8K and MMLU, generation uses temperature=0.6, top_p=0.95, and
repetition_penalty=1.1. For long-context tasks, decoding is greedy. We remark
that baseline attention implementations and SANTA are compared in the scope of a single
model-dataset pair, thus parameter choices do not affect conclusions so long as they are consistent
across attention implementations.

DeepSeek 7B + GSM8K

Aspect Procedure

Prompt Question, blank line, then Please reason step by step,
and put your final numeric answer within
\boxed{}.

Answer extraction Perform a brace-balanced search for the last occurrence of
\boxed{...} (robust to nested braces). If none is found, fall back
to the final ∼200 characters of the model output.

Grading Numeric equality judged by the MIT-licensed PRM800K grader; every
prompt is counted, and blank or unparsable predictions score 0.

Table S1: Prompting and grading for DeepSeek 7B on GSM8K.

DeepSeek 7B + MMLU

Aspect Procedure

Prompt Question, four labeled choices, then Answer briefly. Put
your final answer as a single letter inside
\boxed{}.

Answer extraction Brace-balanced search for the last occurrence of \boxed{...}; if
none is found, inspect the final ∼300 characters of the output. Scan
this region backwards and take the first occurrence of A–D (case-
insensitive), then convert it to uppercase.

Grading The predicted letter is compared with the gold key (case-insensitive).
If no valid letter is found—or the output is blank—the item scores 0;
otherwise it scores 1 when the letters match.

Table S2: Prompting and grading for DeepSeek 7B on MMLU.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Llama 8B + GSM8K

Aspect Procedure

Prompt Meta chat template. System: “You are a precise mathematician. Ex-
plain your reasoning step by step, then output ONLY the final number
on a new line.” User: the GSM8K question.

Answer extraction Inspect the model reply in order: (i) the last non-empty line of the
response; (ii) if that fails, the final 25 whitespace-separated tokens.
From the selected chunk, take the first integer-looking token (commas
allowed, optional leading minus).

Grading Numeric equality judged by the MIT-licensed PRM800K grader; every
question is counted, and blank or unparsable answers score 0.

Table S3: Prompting and grading for Llama 8B on GSM8K.

Llama 8B + MMLU

Aspect Procedure

Prompt Meta chat template. System: “You are a knowledgeable and concise
subject-matter expert. Work through the problem step by step. Finally,
on a new line, output ONLY the single capital letter (A, B, C, or D)
that corresponds to the correct choice.” User: the question followed
by the four labeled choices A–D.

Answer extraction Take the substring after the last newline and scan it left-to-right for
the first capital A–D (case-insensitive). If none is found, inspect the
final 10 whitespace-separated tokens of the whole response, scanning
them right-to-left for A–D.

Grading Predicted letter (upper-cased) is compared with the gold key. Every
question is counted; if no valid letter is found or it does not match the
gold answer, the item scores 0.

Table S4: Prompting and grading for Llama 8B on MMLU.

Llama 8B + RULER prompts

Aspect Procedure

Prompt Prompts are generated for the following RULER sub-tasks with a
length of 8192 tokens: fwe, niah_multivalue, qa_1, and qa_2. Greedy
decoding is used. The model generates a maximum of 64 new tokens.

Grading fwe: partial credit = (# of gold words present in the model output)
/ 3 (case-insensitive set match). niah_multivalue: take the first four
unique integers from the model output; partial credit = (# of these that
appear in the gold set) / 4. qa_1 and qa_2: correct if the gold answer
string appears as a case-insensitive substring of the model output.

Table S5: Prompting and grading for Llama 8B on RULER prompts.

Licenses.

• Models. deepseek-ai/DeepSeek-R1-Distill-Qwen-7B (MIT) and meta-llama/Meta-Llama-3.1-8B-
Instruct (Llama 3.1 license) on Hugging Face.

• Datasets. GSM8K openai/gsm8k (MIT) and MMLU cais/mmlu (MIT) on Hugging Face. RULER
prompts (Apache) — https://github.com/nvidia/ruler

• Grader. PRM800K numeric grader (MIT) — https://github.com/openai/prm800k.

2

https://github.com/nvidia/ruler
https://github.com/openai/prm800k


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 IMPLEMENTATION NOTES

The SANTA and top-k routines are concise, self-contained Python scripts meant as reference im-
plementations. They run under stock PyTorch and make no attempt at kernel fusion or memory
tuning.

2.1 STOCHASTIC ADDITIVE NO-MULT ATTENTION (SANTA)

Logical flow. For each attention head the script

(i) reshapes batch, head, and query axes into an (nq × nk) matrix of logits;

(ii) draws S categorical samples from every query’s softmax distribution;

(iii) gathers the S selected rows of V ∈Rnk×dk ;

(iv) accumulates the samples and divides by S to yield an unbiased estimate of AV .

The only arithmetic after softmax is a vector addition per sample and one normalizing divide (a
bit-shift if S is a power of two).

Two-way tiling. A direct call to torch.multinomial or torch.gather allocates large
temporaries: nq × nk and nq × S × dk, respectively. For long sequences these buffers exceed GPU
memory, so the script processes

• row tiles of Tr = 1024 queries, and
• sample tiles of Ts = 64 samples inside each row tile.

Row-wise tiling spawns several small CUDA kernels and adds one per-tile normalization step. These
are implementation-specific details that do not change the algorithm’s mathematics.

2.2 TOP-k

Top-k is implemented as follows:

(i) compute the full logits QKT∈Rnq×nk ;

(ii) retain the k largest entries of each row, setting the rest to −∞;

(iii) apply softmax and perform a dense matrix multiply with V .

Although a truly sparse AV multiply is possible, the reference code performs the full product (many
zeros included) to keep the implementation straightforward.

2.3 SCOPE AND LIMITATIONS

• Pure PyTorch. No Triton or custom CUDA.
• Code prioritises clarity over speed, and we make no latency or VRAM claims.
• FLOP accounting. Table 1 is a pen-and-paper tally; Fig. 2 derives FLOPs from tensor shapes

in Llama-8B. We count only algorithm-intrinsic ops, omitting implementation artifacts such as
SANTA’s per-tile normalizing divides (which are negligible) and top-k multiplies on zeroed logits.
The exclusion of implementation-dependent operations does not alter any conclusion.

The scripts are reference implementations. Performance-tuned versions for GPU, CPU, or edge
devices are future work.

Kubernetes (k8s) is an orchestration layer that runs containerized tasks (called “pods") across a cluster
of machines while handling restarts and scaling automatically.

3 DISTRIBUTED REINFORCEMENT LEARNING ON KUBERNETES

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Aggregator

Shared filesystem

GPU 1 GPU 2 GPU 50...

write read (schedule, reward)

sa
mple

 

append 
(schedule, reward)

Figure S1: Kubernetes deployment schematic.

Topology. All pods mount a single read–write
volume that serves as the rendezvous point.

• Aggregator pod. Holds the current policy and
records a running history of baselines and gra-
dients.

• Worker pods. Operate in a tight loop: (i) read
the latest policy; (ii) sample a 28-dimensional
schedule; (iii) evaluate ten batches of 16 ques-
tions; (iv) append a small JSON-lines result
file to a designated “inbox” directory on the
volume.

Aggregator loop. Whenever at least one new
result file appears, the aggregator moves all current files into a private folder for the next iteration,
computes the REINFORCE update and writes a new policy snapshot. It never pauses or signals
the workers; it simply processes whatever has arrived. In practice, workers are unlikely to finish
evaluation simultaneously, thus nearly every policy update comes from one worker output (10 × 16
questions). If two land together, the aggregator just uses a double-sized batch, which lowers the
gradient’s variance.

Asynchrony and fault-tolerance.

• Workers can be terminated at any time; partial output vanishes harmlessly.

• Workers always proceed with the newest policy that has reached disk; no locking is needed.

• If the aggregator restarts it scans the history directory, resumes from the last completed iteration,
and continues.

Scaling and resources. The worker Deployment’s replica count can scaled up or down at any time
during learning. For the 501 iterations in Fig. 5 we ran 50 GPU workers on a mix of RTX 3090, L4,
and A10 cards (24 GB Ampere generation cards) for roughly 20 h, totaling ≈ 1000 GPU-hours. The
aggregator requests just one CPU core and a few hundred MiB of RAM.

Terminology. We keep the names aggregator and worker to highlight the simple “parameter-
server” flavor of the design, but these roles align exactly common learner/actor split in distributed
reinforcement learning.

4


	Prompting, Parsing, and Grading
	Implementation notes
	Stochastic Additive No-mulT Attention (SANTA)
	Top-k
	Scope and limitations

	Distributed reinforcement learning on Kubernetes

