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ABSTRACT

Recent advances in Code Large Language Models (CodeLLMs) have primarily
focused on open-ended code generation, often overlooking the crucial aspect of
code understanding & reasoning. To bridge this gap, we introduce CodeMMLU,
a comprehensive multiple-choice benchmark designed to evaluate the depth of
software and code comprehension in LLMs. CodeMMLU includes nearly 20,000
questions spanning diverse domains, including code analysis, defect detection, and
software engineering principles across multiple programming languages. Unlike
traditional benchmarks that emphasize code generation, CodeMMLU assesses a
model’s ability to reason about programs across a wide-range of tasks such as
code repair, execution reasoning, and fill-in-the-blank challenges. Our extensive
evaluation reveals that even state-of-the-art models struggle with CodeMMLU,
highlighting significant gaps in comprehension beyond generation. By emphasizing
the essential connection between code understanding and effective AI-assisted
development, CodeMMLU provides a critical resource for advancing more reliable
and capable coding assistants. CodeMMLU is publicly available at: �CodeMMLU

1 INTRODUCTION

Recent advancements in Code Large Language Models (CodeLLMs) (Wang et al., 2021; 2023c;
Feng et al., 2020; Allal et al., 2023; Li et al., 2023; Lozhkov et al., 2024b; Guo et al., 2024b;
Pinnaparaju et al., 2024; Zheng et al., 2024b; Roziere et al., 2023; Nijkamp et al., 2022; Luo et al.,
2023; Xu et al., 2022; Bui et al., 2023; Hui et al., 2024; Bui et al., 2022; Dau et al., 2024b;a) have
demonstrated impressive capabilities across various software engineering (SE) tasks (Bui et al., 2022;
Dau et al., 2024a; To et al., 2023; White et al., 2024; Sobania et al., 2023; Phan et al., 2024; Sun et al.,
2023; Nguyen et al., 2022; Bui, 2019; Zhang et al., 2022; Wang et al., 2023b). However, existing
benchmarks often fall short to provide rigorous and reliable evaluations, largely due to outdated
methodologies and the risk of data leakage (Matton et al., 2024). Moreover, practical applications
of CodeLLMs reveal limitations such as bias and hallucination (Rahman & Kundu, 2024; Liu et al.,
2024a) that current benchmarks fail to adequately address.

The predominant focus of coding-related benchmarks has been on open-ended, free-form generation
tasks, such as code generation/code completion (Iyer et al., 2018; Lu et al., 2021; Chen et al., 2021;
Austin et al., 2021; Lai et al., 2023; Hendrycks et al., 2021; Ding et al., 2023; Zhuo et al., 2024)
and other SE tasks like program repair Ouyang et al. (2024); Xia et al. (2023) (Table 1). While
appealing, these benchmarks struggle to discern whether CodeLLMs truly understand code or merely
reproduce memorized training data (Carlini et al., 2022; Nasr et al., 2023). Additionally, the reliance
on test cases and executability for evaluation limits the quantity and diversity of these benchmarks
across domains, potentially leading to biased and limited generalizations. Recent efforts to improve
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Figure 1: Summary performance of LLMs on the CodeMMLU benchmark. This radar chart
presents the evaluation results (accuracy %) of different models across various CodeMMLU tasks.

evaluation through free-form question answering (Liu & Wan, 2021; Li et al., 2024) have introduced
new challenges, often requiring less rigorous metrics or LLM-as-a-judge approaches (Zheng et al.,
2023). However, LLMs-as-a-judge methods are susceptible to adversarial attacks (Raina et al., 2024),
raising concerns about the reliability of such evaluation pipelines for coding tasks.

To address the aforementioned shortcomings, we introduce CodeMMLU, a novel benchmark designed
to evaluate CodeLLMs’ ability to comprehend and reason about code through multiple-choice
question answering (MCQ). This approach enables a deeper assessment of how CodeLLMs grasp
coding concepts, moving beyond the mere generation capabilities. Inspired by the MMLU dataset
(Hendrycks et al., 2020) from natural language understanding, CodeMMLU offers a robust and
easy evaluation with the following key features. CodeMMLU comprises nearly 20,000 questions,
facilitating a robust and comprehensive evaluation. Its large-scale data curation process mitigates
potential biases and improves statistical reliability in measuring CodeLLMs’ performance across
many capabilities. CodeMMLU covers over 50 software engineering disciplines and more than
10 programming languages, providing a holistic evaluation of CodeLLMs. The MCQ format is
highly scalable, allowing for an accurate and straightforward assessment using precision-based
metrics. Moreover, by incorporating permutations of answer choices, CodeMMLU emphasizes the
model’s code understanding capabilities rather than memorizing the training datasets. Consequently,
CodeMMLU provides a robust and accurate assessment of the models capabilities to understand
software tasks.

CodeMMLU evaluates LLMs’ abilities in coding and software problem-solving from a fresh perspec-
tive, extending beyond conventional code generation and completion tasks. Our analysis uncovers
several key insights: (1) previously unidentified bias issues in CodeLLMs, consistent with those
observed in natural language MCQA tasks; (2) proprietary models (GPT-4o and Claude 3.5 Sonnet)
consistently deliver the highest average performance; (3) among open-source models, the DeepSeek
and Meta-Llama families achieve the greatest accuracy; (4) scaling laws tied to model size hold
partially within the same model family but not across families, highlighting the critical roles of
pre-training, post-training, and model architecture; (5) advanced prompting strategies, such as
Chain-of-Thought (CoT), consistently impair performance, casting doubt on CodeLLMs’ reason-
ing capabilities for complex, multi-step tasks; and (6) when code completion benchmarks (e.g.,
HumanEval) are reframed from open-ended generation to MCQA format, LLMs exhibit reduced
performance, questioning their true understanding of code. Notably, even strong reasoning models
like DeepSeek-R1 underperform on CodeMMLU, suggesting significant room for improvement in
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future iterations. These findings highlight the shortcomings of CodeLLMs in truly understanding
code and reveal several promising future research avenues.

In summary, this work makes the following contributions:

1. We present the first MCQ benchmark for software and coding-related tasks, addressing the need
for a comprehensive and large-scale evaluation in the code domain. CodeMMLU enables the
evaluation of LLMs’ alignment with human inference in the software knowledge domain, similar
to advances in the NLP field.

2. CodeMMLU provides a thorough assessment of LLM capabilities, ensuring a substantial number
of samples and the diversity across tasks, domains, and languages. This enables a more nuanced
understanding of an LLM’s strengths and weaknesses, facilitating the development of models
better aligned with the complexities and demands of the software domain.

3. Our experiments offer critical insights into LLM performance, highlighting the impact of factors
such as model size, model family, and prompting techniques. Notably, CodeMMLU unveils a
performance gap between LLMs’ code generation and comprehension abilities. Additionally, we
identify LLMs’ sensitivity to the selection biases introduced by the MCQ format. These findings
provide valuable guidance for the community to enhance the robustness, adaptability, reliability,
and domain-specific capabilities of LLMs in real-world software engineering.

2 RELATED WORK

Code Intelligence Benchmarks. The rapid development of Large Language Models (LLMs) for
code-related tasks necessitates the development of diverse benchmarks to evaluate their performance.
Algorithm-focused benchmarks, such as HumanEval (Chen et al., 2021), MBPP (Austin et al.,
2021), and their extended versions (e.g., HumanEval+, MultiPL, MBPP+) (Liu et al., 2024b), focus
on small-scale code generation tasks but lack the depth needed to assess broader comprehension.
More challenging tasks, such as those in CodeContests (Li et al., 2022) and LiveCodeBench (Jain
et al., 2024), provide competitive programming problems but remain primarily generative (Table
1). Comprehensive evaluation frameworks, such as CodeXGLUE (Lu et al., 2021), XLCoST (Zhu
et al., 2022), and XCodeEval (Khan et al., 2023), provide versatility through multi-task assessments.
However, these benchmarks are either dependent on metrics like BLEU and ROUGE, or testcase
execution, which limits their reliability and scalability for a large-scale, comprehensive evaluation of
LLM.

In contrast, multiple-choice question (MCQ) benchmarks offer a more standardized, scalable, and
reliable evaluation method, as demonstrated in popular general-purpose benchmarks such as MMLU
(Hendrycks et al., 2020) and TruthfulQA (Lin et al., 2022). Although MCQs facilitate large-scale
assessments, recent studies highlight their susceptibility to biases, such as sensitivity to the answer
choice orders (Wang et al., 2023a; Robinson et al., 2023). Existing MCQ benchmarks also lack
focus on software engineering, limiting their applicability to code-related evaluations. In contrast,
we curated data from a wide range of tasks and applied various filtering and debiasing techniques to
improve CodeMMLU’s comprehensiveness, while minimizing data leakage and biases.

Understanding & Reasoning on Code There is a large body of research leveraging AI models for
reasoning about code Gu et al. (2024a); Chen et al. (2024); Liu & Jabbarvand (2025); Dehghan (2024);
Le et al. (2024b;a); Bieber et al. (2020); Shi et al. (2019); Li et al. (2021). Reasoning about code
requires AI models to comprehend both its syntactic and semantic aspects. In the early days, static
analysis was the primary approach to reasoning about code. With the rise of deep learning, methods
that model code structures Mou et al. (2016); Bui et al. (2021b;a) emerged as promising alternatives.
Subsequently, graph-based representations of code have gained traction, enabling reasoning about
program properties and execution using graph neural networks (GNNs) Le et al. (2024a); Bieber et al.
(2020); Shi et al. (2019). With the advent of large language models (LLMs), these models have been
directly applied to reasoning about program behavior in downstream tasks Gu et al. (2024a); Chen
et al. (2024); Liu & Jabbarvand (2025); Dehghan (2024); Le et al. (2024b). CodeMMLU provides a
comprehensive benchmark that reflects real-world reasoning requirements by offering ground-truth
answers to programming-related questions, allowing LLMs to derive final solutions through various
reasoning paths.

3



Published as a conference paper at ICLR 2025

Table 1: Comparison between common code understanding benchmarks for LLMs in terms of
coverage of foundation tasks of programming comprehension model.

Benchmark
Question Programming Task

Test sizeOpen-end MCQ SWE
knowl-
edge

Code
composi-
tion

Code
compre-
hension

Code
debug-
ging

APPS Hendrycks et al. (2021) ✓ ✓ 5000
MBPP Austin et al. (2021) ✓ ✓ 974
HumanEval Chen et al. (2021) ✓ ✓ 164
CRUXEval Gu et al. (2024b) ✓ ✓ 800
LiveCodeBench Jain et al. (2024) ✓ ✓ ✓ ✓ 8801

CodeApex Fu et al. (2023) ✓ ✓ ✓ ✓ ✓ 2.056

CodeMMLU ✓ ✓ ✓ ✓ ✓ 19.912

3 CODEMMLU: DATA CURATION

The CodeMMLU benchmark is structured into two primary categories: (i) knowledge-based tests,
designed to evaluate programming knowledge through questions addressing both syntactic and
semantic aspects, and (ii) fundamental coding-skill tests, created by transforming high-quality
codebase seeds into task-specific challenges. CodeMMLU includes nearly 20,000 questions spanning
52 diverse topics (Table 2). We design the knowledge-based tests to probe multi-level cognitive
structures, assessing an LLM’s understanding of software knowledge at both semantic and syntactic
levels. In contrast, the fundamental coding-skill test sets align with the cognitive process model of
Shneiderman & Mayer (1979), focusing on core programming tasks that mimic real-world problem-
solving scenarios.

3.1 KNOWLEDGE-BASED TASK CREATION

The knowledge-based test sets are designed to cover a wide range of topics and follow the multi-level
cognitive structures model (Shneiderman & Mayer, 1979) which combines syntactic and semantic
knowledge. The subset target is to measure the LLM’s coding capability and comprehensibleness of
programming concepts. We collected raw programming-related questions and their corresponding
multiple-choices answer from W3School (W3Schools, 2024) and Common Crawl project2 (See more
license detail in Appendix A.3). The knowledge-based test set include:

• Syntactic subset. Focused on programming language grammar and structural correctness, such as
condition statement, format of iteration, common library usage.

• Semantic subset. Targeted more abstract programming concepts, such as algorithms, data struc-
tures, object-oriented principles.

We maintain a high-quality evaluation set by filtering the raw data that undergoes a rigorous formatting
and deep-learning-based filter in which we remove any instances that do not meet our quality criteria
(see in section 3.3 and Appendix A.1). Resulting in an evaluation set (Table 2) that contains more
than 11,000 instances, lying in 52 topics classified to 5 main subjects (categorized by source tag).

3.2 FUNDAMENTAL TEST CONSTRUCTION

Our benchmark encompasses four distinct MCQ programming tasks designed to assess the founda-
tional capabilities outlined in the cognitive process model of programmer comprehension, namely:
composition, comprehension, debugging, and modification.

Code Completion evaluates a model’s composition ability by requiring it to complete partially
written code based on provided requirements. We adapted HumanEval (Chen et al., 2021), originally
designed for code generation, into an MCQ format. From its 164 unique programming problems, we
employed Large Language Models (LLMs) to generate plausible but incorrect solutions as distractors.
All options, including correct solutions migrated from HumanEval and generated incorrect ones, were
tested for executability. Some incorrect solutions were designed to pass certain test cases but fail

1https://github.com/LiveCodeBench/LiveCodeBench
2https://commoncrawl.org/
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Table 2: Summary of CodeMMLU Subject Categories and Task Distribution.
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Software principles
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Others
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sk Code completion HumanEval 163
Fill in the blank LeetCode 2,129

Code repair QuixBugs 76
Execution Prediction IBM CodeNet 6,006

others, adding complexity and challenging models to distinguish between correct and nearly-correct
solutions based on semantic and syntactic understanding.

Code Repair assesses a model’s debugging capability by requiring it to identify and fix errors in
provided code snippets. We built this task upon QuixBugs (Lin et al., 2017), which was originally
designed for debugging algorithmic programs. We used a "diff" operation on buggy and corrected
versions in QuixBugs (Python and Java) to identify specific fixes, which served as correct solutions.
To create plausible distractors, we targeted components frequently involved in bugs (e.g., return
statements, loop conditions, if/else/switch expressions) and guided LLMs to generate alternative fixes.
These alternatives were designed to seem plausible but not fully resolve the bug. Each distractor was
verified for incorrectness, and all options were made executable to ensure that models needed a deep
understanding of the code to identify and apply the correct fix.

Execution Prediction evaluates a model’s ability to identify and understand defects within code
snippets, focusing on both logical and syntactical errors. This task measures the comprehension
and debugging capabilities of LLMs by requiring them to predict the execution outcome of given
code. It includes two sub-tasks: detecting any defects/flaws in the provided code and comprehending
the output of a certain test sample. We derived this task set from IBM CodeNet (Puri et al., 2021),
a large-scale benchmark for algorithmic coding tasks. We focused on Python and Java subsets,
collecting both accepted and buggy versions of code. After filtering out duplicates, we created a
diverse set of code samples. For each snippet, we provide the correct execution result (golden answer)
and three distracting options, which could be one of several possible outcomes: (i) Compile Error, (ii)
Time Limit Exceeded, (iii) Memory Limit Exceeded, (iv) Runtime Error, or (v) No abnormally found.

Fill in the Blank evaluates a model’s code comprehension ability by requiring it to complete missing
parts of a code snippet, given documentation and an incomplete code sample. This task assesses
not only the model’s ability to fill gaps but also its understanding of both high-level programming
concepts and low-level grammatical structures. We collected approximately 2,000 coding problems
from LeetCode 3, covering solutions in three widely-used programming languages (Python, Java,
C++). From each problem’s solution, we parsed and randomly selected key components (i.e. crucial
elements of the program’s logic and flow like loop conditions, expression statements, conditional
statements) to be blanked out. To create plausible but incorrect options for the multiple-choice
question (MCQ) format, we employed LLM to generate alternative solutions for the blanked-out
components. These distractors were designed to be contextually relevant but incorrect, adding
complexity to the task. We executed all generated options to verify their incorrectness, ensuring they
do not solve the problem as intended.

3https://leetcode.com/
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Figure 2: Overview of CodeMMLU data creation pipeline. The blue diagram describe the process
of collecting raw multiple-choice questions (MCQs) from open source internet for a knowledge
testset. Otherwise, the pipeline of real-world problem indicated in orange area.

3.3 DATA CLEANING

The preprocessing process (described in Figure 2) includes a deep learning-based filtering and
execution-based filtering to ensure that each question met the desired quality standards, including
clarity, lack of ambiguity, and difficulty.

LLM-based Filtering To begin, we employed an LLM-based filter to assess the instances in the
crawled knowledge test set. Each instance was evaluated based on three criteria: Completeness,
Coherence and clarity, and Coding relevance. The models utilized for this evaluation included
GPT-3.5, Llama3.1-8B Instruct, and Mixtral-8×7B Instruct. We averaged the scores and used them
to select a filtering threshold for each criteria (see discussion in Appendix A.1). To detect and
handle duplications, we applied the MinHash LSH algorithm Zhu et al. (2023), configured with
256 permutations, to cluster near-duplicate questions. We remove all false positive instances in
each cluster with 0.8 as the similarity threshold. To verify the efficacy of the LLM-based filter, we
randomly selected 100 instances from each subject area for manual verification against the three
criteria.

Execution-based Filtering To ensure the question correctness, we apply an execution-based
filtering in the fundamental test sets. We merge the distractor of (i) code completion, (ii) fill-in-
the-blank, and (iii) code repair with their codebase and execute with their corresponding test cases.
The distractor is designed to bring challenge since it requires LLM to comprehend their correctness
without executing it, we select distractors that are executable with 0 to few (less than 50%) test cases
passed in their execution result. In the other hand, the task Execution Prediction’s groundtruth are
collected from executing process, the distractor are randomly pick from common executing scenarios.

4 EXPERIMENTAL RESULTS

4.1 SETUP

Model selection. We evaluate CodeMMLU on 40 popular open-source LLMs, covering a wide
range of parameter sizes and architectures. The models were selected from 13 different families, with
parameters ranging from 1 billion to over 70 billion. Each family included base and instructed/chat
versions. In addition to open-source models, we also included several proprietary models from
OpenAI and Anthropic to ensure a comprehensive coverage of the state-of-the-art in language
modeling. All model information can be found at C.

Answer extraction. CodeMMLU leverages the MCQ format for scalability and ease of evaluation.
In order to maintain this advantage, we only apply simple regex methods to extract the selection
answer (i.e., extract by directly answering (A|B|C|D) or containing the pattern “answer is A|B|C|D”).
The model response is required to be parsable; otherwise, it will be marked as unanswered.
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Figure 3: Comparison of prompt configuration on GPT-4o. The experiment exposes the drawback
of Chain-of-Thought prompting technique in term of boosting performance on task that not require
logic or reasoning.

In the following, we present key findings of CodeMMLU on (i) knowledge and fundamental test
correlation; (ii) MCQ bias evidance; (iii) Disagreement between code-generation alike benchmark and
MCQ format. Due to space constraints, we provide detail experimental results, additional discussions
and analyses in the appendix, including assessing data leakage (Appendix A.2); MCQs analysis
(Appendix B.1); Chain-of-thought technique analysis B.2 and full 43 LLMs results B.3.

4.2 KEY INSIGHTS

Overall performance CodeMMLU revealed significant performance differences across models, as
shown in Table 3. OpenAI’s GPT-4o outperformed all models on CodeMMLU, demonstrating its
quality across diverse tasks (Figure 1). Notably, despite not being the latest model, the instructed
version of Llama3.1 70B from Meta achieved the highest score among open-source models from
13 families. While LLMs perform well on knowledge-based tasks, they struggle with real-world
problems, particularly in execution prediction tasks (see Appendix B.3 for all the experiment details.)

Figure 4 illustrates CodeMMLU’s capability to measure LLMs’ coding knowledge and skills across
a wide range of subjects. Our benchmark provides clear, distinct rankings that establish a higher
hierarchy of models compared to other benchmarks (see the result in Table 7). Interestingly, the
results do not strictly adhere to scaling laws (Kaplan et al., 2020), where larger parameter sizes
typically outperform smaller ones. This highlights the impact of data quality in the LLM pretraining
process, as recently released models often achieve comparable performance to larger models from
previous versions. CodeMMLU also indicates the importance of instruction tuning in improving
model performance on complex tasks. Models with instruction tuning substantially outperform
their non-instructed counterparts, for example, DeepSeek-Coder-33b surpasses its base model by
approximately 29%.

The impact of model reasoning and Chain-of-Thought (CoT) prompting Although CoT prompt-
ing (Wei et al., 2023) is often expected to enhance performance by eliciting deeper reasoning, our ex-
periments reveal that CoT and reasoning models may not always offer improvements in CodeMMLU.
Table 3 shows that DeepSeek R1 performs significantly worse than its base model, DeepSeek V3,
despite being designed for reasoning tasks. Meanwhile, GPT o3-mini, a native reasoning model,
achieves the best results. Our analysis suggests that, apart from GPT o3-mini, other reasoning models
(e.g, GPT o1, DeepSeek R1) tend to overreason across all CodeMMLU tasks. In contrast, o3-mini
demonstrates the ability to decide when to apply reasoning versus directly answering knowledge-
seeking tasks, such as in syntactic and semantic evaluations (Figure 11 12 ). These findings align with
Chen et al. (2025), which observes that current reasoning models often overreason even on simple
questions. This suggests the need for a more effective decision-making mechanism to determine
when reasoning is beneficial. Table 6 further highlights that while R1 generates the longest responses
(in tokens), it underperforms compared to the latest top-tier LLMs.
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We further investigate the impact of different prompting techniques and report the results in Figure
3. The results show a significant decline in GPT-4o’s performance with CoT, suggesting that the
additional complexity introduced by step-by-step reasoning does not align well with knowledge-
seeking tasks (see Appendix B.2 for more discussions). In contrast, few-shot prompting consistently
emerges as the most reliable and effective strategy across various tasks, offering a balanced approach
without overwhelming the models. Overall, with the exception of GPT o3-mini, we found no
improvements from reasoning models or CoT prompting, suggesting that CodeMMLU presents a
challenging benchmark to test the models reasoning capabilities in code domains.

Table 3: Summary of LLM Family Performance on CodeMMLU. The evaluation results (accuracy
%) of different language models across the CodeMMLU task (CodeMMLU column represents the
accuracy average among all subject).

Family Model name Size (B)
Knowledge test

Fundamental test CodeMMLUSyntactic Semantic

Closed-source models

Claude Claude3.7 Sonnet - 52.78 76.26 60.92 61.65
Claude3.5 Sonnet - 52.23 73.45 58.56 59.81
Claude3.5 Haiku - 49.24 68.20 57.83 57.25
Claude3 Sonnet - 67.22 66.08 38.26 53.97

GPT

GPT o3-mini - 53.08 75.50 62.77 62.36
GPT 4o - 50.63 69.61 53.89 56.40
GPT 4o-mini - 48.66 55.90 20.33 38.43
GPT-3.5-turbo - 61.68 53.65 45.26 51.70

Open-source models

Llama

Llama3.3 70B Inst 70 44.31 52.76 30.96 40.66
Llama3.1 405B Inst 405 50.82 71.41 57.10 58.23
Llama3 70B Inst 70 46.94 62.64 53.15 53.19
CodeLlama34B Inst 34 56.81 46.93 23.55 38.73

DeepSeek
DeepSeek R1 671 42.39 56.77 38.08 43.91
DeepSeek V3 685 48.30 57.53 45.06 49.08
DeepSeekCoder 33B Inst 33 53.65 45.43 21.46 36.60
DeepSeekMoE 16B Chat 16.4 31.74 35.42 27.32 31.01

Mistral
Mistral7B Inst (v0.3) 7 54.42 51.25 31.85 43.33
Mixtral 8×7B Inst 46.7 61.17 54.89 24.09 42.96
Codestral 22B 22 60.34 52.10 37.85 47.60

Phi Phi4 14 45.34 57.46 47.82 49.19
Phi4 Mini Inst 12 41.94 51.59 19.75 34.85

Qwen

Qwen2.5 14B Inst 14 46.38 58.70 51.49 51.38
QwQ 32B Preview 57 61.34 57.48 30.48 46.34
QwenCoder2.5 32B Inst 32 50.63 69.61 53.89 56.40

Starcoder2 15B Inst

Yi1.5 34B Chat

DeepSeek MoE 16B Chat

DeepSeek MoE 16B

DeekSeek R1

DeepSeek V3

QwenCoder2.5 32B Inst

Qwen2 57B A14B Inst

QwQ 32B

Phi3 Medium Inst
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Figure 4: CodeMMLU accuracy by task on LLMs. While knowledge tasks are following the
scaling law, real-world tasks offer more challenges to LLMs which indicate the performance of
instruction tuning and data quality when evaluating on CodeMMLU.
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Correlation Between Software Knowledge and Real-World Performance Our experiments
revealed a strong correlation between performance on knowledge-based tasks and real-world coding
challenges. Specifically, the Pearson correlation score r = 0.61 between model rankings on the
knowledge test set and their performance on real-world problems, derived from the accuracy of 43
LLMs across 15 model families, indicates a moderate alignment (Figure 5). This suggests that models
demonstrating a deeper understanding of software principles consistently excel in real-world coding
tasks, highlighting the importance of foundational knowledge for practical coding performance.
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Experiments on 10 LLM families show
a clear alignment between models with
a strong understanding of software
knowledge and their performance on
diverse problem-solving tasks in the
CodeMMLU fundamental skill tests.
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Figure 6: Comparison Between LLM Response
Length and CodeMMLU Score. While reasoning
models (e.g., DeepSeek-R1) generate longer, reasoning-
heavy responses, this does not necessarily correlate with
higher accuracy on CodeMMLU.

Selection bias in MCQs format We experimented with multiple answer order permutations (follow
Zheng et al. (2024a)), the result displayed significant inconsistent behavior exhibited by LLMs
when swapping golden answer positions. As presented in Table 7, the model’s performance changes
dramatically in each answer order configuration, which is based on the correct answer’s position. The
LLM’s accuracy fluctuates between different permutations (i.e. DeepSeek-Coder-34B ∆σ = 36.66),
demonstrating how sensitive it can be to the structure and order of answers (Figure 9). However,
Table 8 indicate the different of MCQ bias between strong models (e.g GPT-4o, Claude3-orpus) and
others, which highlight the consistency and robustness among them (see discussion in B.1).

Disagreement between Open-ended generation benchmark and MCQ Code completion A
notable finding from our experiments is the discrepancy in model performance between open-ended
benchmarks and multiple-choice formats. Specifically, when comparing the original HumanEval
questions with their multiple-choice equivalents in our CodeMMLU code completion set, we found
that models performing well on HumanEval do not consistently replicate their success in CodeMMLU.
For instance, when evaluating identical questions across the formats, the number of cases where
models answered both correctly or incorrectly was unexpectedly low. The correlation scores in Figure
7 further illustrate the weak alignment of success between these two benchmarks, revealing that
performance in open-ended tasks does not reliably predict performance in multiple-choice coding
tasks. This lack of alignment suggests that traditional benchmarks might overestimate a model’s
understanding by focusing too narrowly on code generation, which is highly susceptible to data
leakages. In contrast, CodeMMLU requires the models to engage in complex reasoning to understand
code and solve software engineering problems.

5 CONCLUSIONS

In this work, we introduced CodeMMLU, a comprehensive and scalable benchmark designed to
evaluate large language models’ (LLMs) capabilities across a wide range of software knowledge
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Table 4: Performance Comparison between HumanEval and MCQ Code Completion Tasks. The
performance fluctuation highlights the selection biases observed when the correct (golden) answer is
moved to positions A, B, C, or D.

Models HumanEval
Code Completion MCQ

A B C D

CodeLlama-7B-Python 40.48
0.00 90.24 14.02 0.61

(-40.48) (+49.76) (-26.46) (-39.87)

CodeLlama-7B-Instruct 45.65 3.66 1.22 93.90 15.85
(-41.99) (-44.43) (+48.25) (-29.80)

CodeLlama-13B-Python 42.89 0.61 54.88 70.12 12.20
(-42.28) (+11.99) (+27.23) (-30.69)

CodeLlama-13B-Instruct 50.6 2.44 68.29 72.56 29.88
(-48.16) (+17.69) (+21.96) (-20.72)

CodeLlama-34B-Python 45.11 0.61 77.44 70.73 49.39
(-44.50) (+32.33) (+25.62) 4.28

CodeLlama-34B-Instruct 50.79
9.15 84.76 65.24 46.34

(-41.64) (+33.97) (+14.45) (-4.45)

Deepseek-Coder-7B-base-v1.5 43.2
40.85 74.39 64.02 39.02
(-2.35) (+31.19) (+20.82) (-4.18)

DeepSeek-Coder-33B-base 56.1 1.22 82.32 75.00 56.10
(-54.88) (+26.22) (+18.90) (0.00)

Phind-CodeLLama-34B-v2 71.95 6.10 90.85 75.00 46.34
(-65.85) (+18.90) (+3.05) (-25.61)

Mixtral-8x7B-Instruct-v0.1 40.2
22.56 74.39 71.95 63.41

(-17.64) (+34.19) (+31.75) (+23.21)
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Figure 7: Comparison of CodeMMLU’s code completion task and HumanEval. Many LLMs
show a performance discrepancy between the two tasks, where models that successfully passed
the HumanEval code generation test often failed to select the correct answer in the multiple-choice
(MCQ) format, or vice versa, for the same question.

and real-world programming tasks. Our experiments highlighted the benchmark’s key advantages,
including its cost-effectiveness, scalability, and extensive task coverage. The insights gained revealed
a strong correlation between software knowledge and real-world task performance, demonstrating
that models with deeper comprehension outperform those relying purely on probabilistic generation.

Additionally, CodeMMLU provides more accurate and detailed rankings of LLMs, particularly in
open-source models, where significant reordering of performance was observed. The benchmark
also revealed inconsistencies in model comprehension when compared to traditional evaluations
like HumanEval, emphasizing the need for more robust benchmarks that go beyond simple code
generation.
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A DATASET

A.1 DATA CLEANING

Rule-based filtering We prefer questions that contain code when collecting data; therefore, MCQs
often contain noisy patterns and low-quality questions. In the cleaning process, we defined a heuristic
rule-based filter to eliminate incomplete data and non-textual content. First, we detect and eliminate
non-textual questions by filtering questions that contain hrefs, image URLs, links to other questions
or media. We also applied BeautifulSoup to remove unwanted HTML tags.

Deep learning-based filtering To ensure the CodeMMLU is fully targeted on coding and software-
related task, we employed models from OpenAI (GPT-3.5-turbo), Mistral (Mixtral 8×7B Instruct),
and Llama (Llama3.1 8B) as our annotators to judge the triple criteria: Completeness; coherence
and clarity; and coding relevance (check appendix C.1 to see the prompt). We averaged LLM
ratings by category and selected a threshold of 4 in 3 aspects. Result of removing ≈ 25.6% of raw
data. On the other hand, we simultaneously sampled a subset of 100 instances in each subject to
update our filter rule. (Figure 8
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Figure 8: LLM-based filter score distribution.

Execution-based filtering After synthesizing the fundamental task’s distractor (i.e., false answer),
we concatenated and executed them as a complete function in an isolated environment. The code
completion and fill-in-the-blank tasks have their original test cases, while code repair needs to
synthesize new test cases. Therefore, we extracted the method signature (using the code-text parser
toolkit from Manh et al. (2023)) and synthesized the function input, which later was executed to
create test cases for the corresponding function. We ran in parallel the distractor executing on the
testcase and synthesized a new distractor, ensuring the distractor collection is executable and able to
pass 0-50% test cases.

A.2 DATA CONTAMINATION

The development of large language models (LLMs) often involves crawling data from diverse sources
across the internet, with limited transparency regarding their preprocessing. Given the vast and
often proprietary nature of these training datasets, it is widely acknowledged that creating a fully
leakage-free benchmark is virtually impossible. While recent benchmarks have recognized this issue
and generally accept that avoiding data leakage entirely is extremely difficult, one common mitigation
strategy involves filtering data based on its timeline Jain et al. (2024); Wang et al. (2024); Zhang et al.
(2023).

In our efforts to address this challenge, we acknowledge the complexity of completely eliminating
data leakage. To enhance the reliability of CodeMMLU, we adopt proactive measures during the
data creation process. Specifically, we transform seed data into multiple-choice question formats and
introduce synthetic distractors. For tasks like code repair and execution prediction, the test sets were
extracted from codebase seeds and modified to align with specific task requirements.
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To further assess and quantify potential data leakage, we employ the methodology outlined in Xu et al.
(2024). This includes calculating perplexity and conducting n-gram analysis on several well-known
models from diverse families (e.g., Mistral, DeepSeek, Llama). The results, presented in Tables 5 and
6, highlight a significant margin between CodeMMLU and other coding benchmarks, reinforcing the
reliability of CodeMMLU as a robust evaluation tool.

Perplexity measures the uncertainty of a language model when predicting the next token in a
sequence Jelinek et al. (1977). Therefore, as low as the perplexity score indicates, the model is
confident in predicting the evaluating sequence and the more likely that the model was encountered
during the training process. Perplexity is expressed as the exponentiated average negative log-
likelihood of a sequence:

PPL(X) = exp

(
−1

t

t∑
t=0

logpθ(xi|x<i)

)
(1)

where X = [x0, x1, ..., xt] denotes a tokenized sequence.

N-gram Accuracy Xu et al. (2024) is a metric designed to detect fine-grained data leakage at
the instance level by combining the question and answer into a single text (X), uniformly sampling
starting points, and predicting the next n-grams based on the given prompts. If most n-grams are
accurately predicted, it suggests the model may have encountered the data during training. The
N-gram accuracy can be expressed as:

N-gram Accuracy(X) =
1

S ·K

S∑
i=0

K∑
j=0

I(Xstartj :startj+n, X̂startj :startj+n), (2)

where S is the dataset size, K is the number of sampled starting points, Xstartj :startj+n is the
actual n-gram, X̂startj :startj+n is the predicted n-gram, and I checks for exact matches. Author add
ROUGE-L and edit distance similarity to provide robustness for augmented datasets. A high accuracy
for each n-gram in a prediction indicates a strong likelihood that the sample was seen during the
training process. Xu et al. (2024)

Table 5: Perplexity score comparison between coding benchmark. (higher is better)

Models CodeScope CodeApex CodeMMLU
Mistral7B-v0.3 9.32 16.08 16.32

DeepSeekCoder7B-v1.5 5.26 9.39 57.36
DeepSeekV2-Lite 6.89 11.99 1419.48

Llama-3.1-8B 10.05 123.20 197.31

Table 6: 5-gram accuracy comparison between coding benchmark. (lower is better)

Models CodeScope CodeApex CodeMMLU
Mistral7B-v0.3 0.2510 0.1702 0.1365

DeepSeekCoder7B-v1.5 0.2818 0.1680 0.1416
DeepSeekV2-Lite 0.2492 0.1587 0.0687

Llama-3.1-8B 0.2219 0.1309 0.0652

A.3 LICENSE

In the construction of CodeMMLU, we collect only the multiple-choice questions, problem descrip-
tions, code solutions, and test cases from the publicly visible parts of W3School and Geeksforgeeks
quizzes/puzzles and LeetCode. We avoid any data collection that requires login or interaction with
these websites. On one hand, most of our knowledge test set (≈ 61%) are collected from Common
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Crawl (from portion tagged CC-MAIN-2021-41 to CC-MAIN-2024-46). On the other hand, the
fundamental tasks were created on a permissively licensed codebase, namely IBM Project CodeNet
(Apache 2.0), HumanEval, QuixBugs (MIT). For data crawled from websites such as W3Schools (fair
use for research purposes) and GeeksforGeeks (under the Copyright Act 1957), we fully complied
with their copyrights or sought their permission to use such data for this project. CodeMMLU will be
published and distributed under the MIT license.

B ALL EXPERIMENTAL RESULTS

Table 7: CodeMMLU and other coding benchmarks comparison. The ranking reorder comparison
between CodeMMLU (CM) and other benchmarks (namely HumanEval (HE)).

Family Model Size (B) MMLU GSM8k HumanEval MBPP CodeMMLU HE→CM

Closed-source models

Anthropic Claude-3 Sonnet - 88.70 96.40 92.00 76.6 55.48 1→4

OpenAI
GPT-4o - 88.70 95.80 90.20 81.4 64.96 2→1
GPT-3.5-turbo - 61.90 73.80 61.40 78.5 51.59 10→6

Open-source models

MetaLlama

Llama3.1 70B Instruct 70 83.60 95.10 80.50 75.4 59.68 6→3
Llama3.1 70B 70 79.30 83.70 58.50 66.2 40.45 11→20
Llama3 70B 70 79.50 83.00 48.20 70.4 49.7 14→8
Llama3 70B Instruct 70 82.00 93.00 81.70 82.3 61.79 4→2
CodeLlama 34B Instruct 34 - - 41.50 57 39.27 17→21

Mistral
Mistral 7B Instruct (v0.3) 7 62.50 50.00 26.20 50.2 44.14 21→17
Mixtral 8x7B Instruct 46.7 70.60 74.40 40.20 60.7 42.74 18
Codestral 22B 22 - - 81.10 78.2 47.61 5→13

Phi
Phi3 Medium 128k Instruct 14 78.00 91.00 62.20 75.2 48.65 9
Phi3 Mini 128k Instruct 3.8 68.80 82.50 58.50 70 39.22 11→22

Qwen
Qwen2 7B Instruct 7 70.50 82.30 79.90 - 51.86 7→5
Qwen2 57B-A14B Instruct 57 76.50 80.70 53.00 71.9 47.34 12→14
CodeQwen1.5 7B Chat 7 - - 83.50 77.7 47.71 3→12

Yi
Yi1.5 34B Chat 34 67.62 71.70 23.20 41 50.03 22→7
Yi1.5 9B Chat 9 68.40 52.30 39.00 54.4 48.15 19→10

DeepSeek

DeepSeek Coder 7B Instruct (v1.5) 7 49.20 41.00 42.10 60.7 41.59 16→19
DeepSeek Coder 33B Instruct 33 - 60.70 79.30 70 37.45 8→23
DeepSeek Moe 16B Chat 16.4 45.00 18.80 26.80 39.2 31.45 20→24
DeepSeek CoderV2 Lite Instruct 16 60.10 86.40 81.10 - 47.12 5→15

InternLM InternLM2.5 20B Chat 20 66.50 79.60 48.80 63 46.15 13→16

StarCoder StarCoder2 15B Instruct 15 - - 46.3 66.2 47.76 15→11

B.1 SELECTION BIAS IN MCQS FORMAT

Building on the findings from Zheng et al. (2024a), which investigated the effects of reordering
answer options in multiple-choice questions (MCQs), we observe inconsistent behavior among large
language models (LLMs) when performing the same code completion task. Table 8 highlights the
sensitivity of LLMs to the order of answers, even for models renowned for their high performance (e.g.,
GPT, Claude, MetaLlama). Specifically, the results reveal that most models experience significant
performance degradation when the correct answer is positioned as “A”, with an average performance
drop of 25%. In contrast, placing the correct answer in position “B” leads to a marked performance
improvement, with an average increase of 15.49%.

The standard deviation (STD) further illustrates how differently models respond to answer reordering.
For instance, models such as CodeLlama-7B/13B/34B and DeepSeekCoder-33B exhibit substantial
dependency on the arrangement of options, whereas models like GPT-4o/3.5, Claude-3, and Claude-
3.5 show greater resilience to such selection bias. Interestingly, instruction-tuned models, which are
generally expected to demonstrate increased robustness, show minimal to no improvement over their
base versions in this regard.

These findings suggest that higher-quality models are more resistant to MCQ biases, reflecting a
human-like ability to maintain performance irrespective of answer order. We believe that introduc-
ing this MCQ bias into the CodeMMLU benchmark adds an extra layer of difficulty for LLMs,
encouraging the research community to prioritize enhancing the consistency and robustness of LLMs.
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Figure 9: Task-Specific Accuracy and Performance Fluctuations Across Answer Options Models
exhibit marked fluctuations in accuracy depending on the position of the correct answer in Code
Completion in CodeMMLU. Revealing the bias and inconsistencies in related coding multiple-choice
question (MCQ) task and how sensitive LLMs are to answer ordering.

Table 8: Selection bias effect comparison on LLMs. The performance fluctuation trends show a
significant margin of model with high quality and the other. STD stands for standard deviation.

Models Instructed A B C D STD

GPT-4o ✓ 80.49 78.05 71.34 70.12 4.38
GPT-3.5-turbo ✓ 51.22 43.29 47.56 54.88 4.30

Claude3.5 Sonnet ✓ 90.24 81.1 85.37 79.27 4.23
Claude3.5 Haiku ✓ 86.59 69.51 72.56 68.29 7.30

Claude3 Opus ✓ 79.27 77.44 82.32 84.76 2.81
Claude3 Sonnet ✓ 62.8 64.02 73.17 73.78 5.06
Claude3 Haiku ✓ 56.1 75 73.78 76.83 8.34

Mixtral 8x7B ✓ 22.56 74.39 71.95 63.41 20.91
DSCoder 33B - 1.22 82.32 75.00 56.10 31.75
DSCoder 7B - 40.85 74.39 64.02 39.02 15.10

Phind-CL 34B ✓ 6.10 90.85 75.00 46.34 32.21

CL 34B Python - 0.61 77.44 70.73 49.39 30.09
CL 34B Instruct ✓ 9.15 84.76 65.24 46.34 27.91
CL 13B Python - 0.61 54.88 70.12 12.20 28.85
CL 13B Instruct ✓ 2.44 68.29 72.56 29.88 28.85
CL 7B Python - 0.00 90.24 14.02 0.61 37.39
CL 7B Instruct ✓ 3.66 1.22 93.90 15.85 38.07
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B.2 COT MIGHT NOT BE ALL YOU NEED

In our experiments with models from over 15 families, we evaluated CodeMMLU under two different
prompt settings: standard zero-shot and few-shot, as well as Chain-of-Thought (CoT) with short and
long prompts. The detailed results, provided in B.3, reveal a consistent trend of decreased performance
in the CoT setting compared to zero-shot and few-shot configurations. Even strong models like
GPT-4o and Llama3 70B, known for their robust reasoning and comprehensive capabilities, exhibited
this pattern, as illustrated in Figure 13.

10 20 30

Chain-of-Thought
(28/64 correct)

Fewshot
(31/64 correct)

Zeroshot
(34/64 correct)

overlap

Distinct corrects 
compared to zeroshot
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prompts (GPT-4o)

Figure 10: Comparison experiment of different prompts by GPT-4o in OOP subject.

A closer analysis of results for zero-shot, few-shot, and CoT prompts, particularly in the GPT-4o
experiment on the object-oriented programming (OOP) subject (Figure 10), highlights the effects
of an additional “thinking” step introduced by CoT. While this step intended to enhance reasoning,
the thought often diverged from the original focus or brought up another challenge for the task.
For instance, example 1 in Figure 14 showcases a case where the CoT approach incorporated an
unnecessary definitional analysis but failed to arrive at the correct answer. Similarly, examples 2
and 3 (Figure 14) demonstrate misinterpretations during the reasoning process. This additional
“thinking” step often introduced new challenges that might lead to incorrect conclusions, resulting in
a significant performance gap between zero-shot and CoT prompts.

Interestingly, when visualizing the newly addressed questions by CoT settings (compared to 0-shot),
we do not observe a clear pattern of these new corrects. Questions that CoT addressed were neither
inherently tricky nor required deeper interpretive reasoning. For example, example 4 (Figure 14) asks
for a prediction of program outcomes within the OOP domain, comparable in scope to example 3, yet
the CoT approach showed inconsistent performance.

As concluded by the findings in Sprague et al. (2024), the CoT strategy introduces an additional
reasoning step that is effective primarily for tasks involving mathematical or logical problem-solving.
However, for benchmarks like MMLU, the results with and without CoT prompting are nearly
identical. The observed performance decline in the CodeLLM knowledge test set aligns with Sprague
et al. (2024), further underscoring the inefficiency of CoT for non-reasoning tasks.

B.3 EXPERIMENT RESULTS

We provide the full experiment results of 43 LLMs from 15 families in Table 9, 10, 11.
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Question: Which of the following is another name for class
components?

(A) Stateful components
(B) Stateless Components
(C) Props
(D) State

Question

The correct answer is:
(C) Change the layout
Explanation:
In React, the `useLayoutEffect` Hook is used when you need to
perform side effects that read or write layout information (like getting
the position or size of DOM elements) synchronously after all DOM
mutations but before the browser has a chance to paint. This can be
crucial when you need to make visual changes that must happen
before the browser updates the screen to prevent visual discrepancies
or flickering.
Here's how the options relate to `useLayoutEffect`:
- (A) Optimize for all devices: This is too vague and not specifically
related to the purpose of `useLayoutEffect`.
- (B) Complete all the update: While `useLayoutEffect` runs after DOM
updates, it's more about reading and synchronizing layout changes
before painting rather than just completing updates.
\u2705 (C) Change the layout: This is the best choice.
`useLayoutEffect` is intended for operations that need to read or alter
the DOM layout before the browser paints the screen.
- (D) Paint before the effect runs: This is the opposite of what actually
happens. `useLayoutEffect` runs **before** the browser paints, not
after.
Note: It's generally recommended to use `useEffect` for most side
effects to avoid blocking visual updates. Use `useLayoutEffect`
sparingly for cases where you need to perform measurements or
mutations that affect layout and need to happen before painting.
Answer: (C) Change the layout

GPT o1

The correct answer is D.
Explanation:
React 2019s useLayoutEffect hook is designed to run synchronously
after all DOM mutations but before the browser actually repaints the
screen. This means it can be used to perform tasks like measuring the
layout or synchronously updating the DOM to avoid visual
inconsistencies (flicker) during the rendering process. In other words,
any changes that need to happen before the browser paints should be
handled in useLayoutEffect, which is why option D ("Paint before the
effect runs") best captures that behavior.

GPT o3-mini

DeepSeek R1

<think>
Okay, let me see... The question is about the correct use of useLayoutEffect in React. I
remember that both useEffect and useLayoutEffect are hooks for handling side effects in React
components, but there's a key difference between them. 
From what I recall, useEffect runs after the component has rendered and the screen has been
updated. That's the usual case. On the other hand, useLayoutEffect is designed to run
synchronously after all DOM mutations but before the browser paints the screen. So the main
point is about when they fire. UseLayoutEffect's purpose is to make changes that need to be
visible to the user immediately, without causing a flicker.
Looking at the options: 
(A) Optimize for all devices \u2013 Hmm, optimization might be a side effect of correctly handling
layout, but I don't think that's the direct purpose of useLayoutEffect.
(B) Complete all the update \u2013 Not sure. Maybe refers to batching updates? Or ensuring
updates are finished?
(C) Change the layout \u2013 That sounds more like a possible use case. If you need to change
the layout, and want to do it before the browser paints, useLayoutEffect would be appropriate
here.
(D) Paint before the effect runs \u2013 Wait, useLayoutEffect runs before paint. So this option
seems incorrect. The normal useEffect runs after paint. If D says \"Paint before the effect runs\"
then in the case of useLayoutEffect, the effect runs before painting, so the painting happens after.
So D's description might fit useEffect instead.
Wait, the answer options are for what useLayoutEffect is correctly used for The documentation
says useLayoutEffect fires synchronously after all DOM mutations. That is, after React has
updated the DOM, but before the browser paints those changes. So the use case for
useLayoutEffect is when you need to make DOM changes (like measuring layout or modifying
the DOM) and you don't want the user to see a flicker between the initial paint and the updated
state.
So one of the correct reasons to use useLayoutEffect is to read layout from the DOM and then
make changes to it synchronously. So options that relate to changing the layout (C) or ensuring
that effects run before paint to prevent flickering.
Looking back at the options:
Option D is \"Paint before the effect runs\". No, because useLayoutEffect's effect runs before the
paint. So D's statement is the opposite. Option B, complete all the update, maybe that refers to
completing updates before the paint. But not sure. Option C is \"Change the layout\", which could
be correct if you need to make a layout change that's done before the browser paints. So maybe
the correct answer is C or D, but I need to think.
Wait the answer options:

<<CONTINUE REASONING ABOUT ~5400 TOKENS>>

...Therefore, option (C) is correct.
</think>
The correct use of `useLayoutEffect` is to perform DOM mutations or read layout properties that
need to be reflected synchronously before the browser paints the screen. This prevents users
from seeing intermediate states or flickering. 
**Analysis of Options:**
- **(A) Optimize for all devices**: Incorrect. Optimization is not directly tied to `useLayoutEffect`.
- **(B) Complete all the update**: Vague and not specific to the purpose of `useLayoutEffect`.
- **(C) Change the layout**: **Correct**. `useLayoutEffect` is used to modify the DOM (e.g.,
adjust styles, element positions) before the browser paints, ensuring changes are immediate.
- **(D) Paint before the effect runs**: Incorrect. `useLayoutEffect` runs *before* painting, not after.
**Answer:** (C) Change the layout

Figure 11: Comparison reasoning process of GPT o1, GPT o3-mini and DeepSeek R1 on knowledge-
seeking task.
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The following are multiple choice questions (with answers) about
programming problem.

Question: Given a code snippet below, which behavior most likely to
occur when execute it?
```import java.util.*;

public class Main {

    public static void main(String[] args) {
      Scanner sc = new Scanner(System.in);
      int num = Integer.parseInt(sc.next());
      
      long[] inputs = new long[num];
      long sum = 0;
      for (int i = 0; i < num; i++) {
        inputs[i] = Long.parseLong(sc.next());
        sum ^= inputs[i];
      }
      // only interested in 1's bit
      for (int i = 0; i < num; i++) {
        inputs[i] &= ~sum;
      }
      System.out.println(sum + (maxSubarrayXOR(inputs) << 1));
    }
  
    public static long maxSubarrayXOR(long A[]) {
      int idx = 0;
      for (int bit = 60; bit >= 0; bit--) {
        int find = idx;

        <<QUESTION ID rt08365>>

      return ret;
    } 
```

Answer:
A. Time Limit Exceeded
B. Compile Error
C. Memory Limit Exceeded
D. No abnormally found

Question

The correct answer is (B) Compile Error.

The code snippet contains an incorrect implementation of the XOR
swap algorithm. The XOR swap is intended to swap two variables
without using a temporary variable. However, it can lead to issues in
high-level languages like Java because it assumes that variables are
stored in distinct memory locations and that there are no side effects
during operations.

In the code, the swapping is done using:
```java
A[idx] ^= A[find];
A[find] ^= A[idx];
A[idx] ^= A[find];
find = idx;```

The problem with this swapping method in Java is that it may not work
as intended due to Java's abstraction of memory management and
potential optimizations performed by the JVM. Additionally, using
bitwise operations on `long` types can cause unexpected behavior if
not handled carefully.

To fix the compile error, you should use a temporary variable to swap
the elements:
```java
long temp = A[idx];
A[idx] = A[find];
A[find] = temp;```
This method is clear, efficient, and less error-prone.
Answer: (B) Compile Error

GPT o1

The answer is (D) No abnormally found.
Explanation:
The provided code snippet is a Java implementation that reads input,
performs bitwise XOR operations, and computes the maximum
subarray XOR using a Gauss-Jordan like elimination approach on the
bit representation of numbers. There is no inherent flaw such as
causing time limit, compile, or memory limit errors under normal
circumstances. Hence, the code executes as expected without
triggering any abnormal behaviors.

GPT o3-mini

DeepSeek R1

<think>
Okay, let's see. So I've got this Java code here, and the question is about what happens when you execute it. The options are about various runtime
or compile issues, including no error. Hmm.
First, I should read through the code and see if there's anything that jumps out as an error. Let's start with the main method. The code reads some
input using Scanner. Then it parses an integer 'num', which is the size of an array 'inputs'. Then it reads 'num' numbers into the array, calculating the
sum as the XOR of all elements. 
Then, there's a loop that iterates over each element in 'inputs' and performs a bitwise AND with the bitwise NOT of sum. So each inputs[i] is being set
to inputs[i] & ~sum. That leaves only the bits where sum had a 0, since ~sum flips all the bits. But since sum is the XOR of all elements, that has
something to do with their combined parity. But maybe that's part of an algorithm, like maybe finding maximum XOR subarrays? The code then calls
maxSubarrayXOR on the modified array, shifts the result left by one, adds it to sum, and prints.
Now looking at the maxSubarrayXOR method. Oh right, this looks like it's trying to implement Gaussian elimination for the basis of XOR vectors. Let's
think. The method starts with an index of 0, then loops from the highest bit (60) down. For each bit, it's trying to find a number with that bit set starting
from the current index. If it finds one, it swaps with the current index (using XOR swaps maybe?), then eliminates that bit from all other numbers.
That's standard for Gaussian elimination over GF(2) to find the basis. Then after all bits are processed, it XORs all the elements in the basis to get
the maximum XOR. But wait, since they might have done the elimination, maybe that correctly gives the maximum subset XOR. 
Wait, but in the code, when they swap elements, are they actually using XOR swaps correctly here? Let's look: the code swaps A[idx] and A[find]. The
way they do it is:
A[idx] ^= A[find];
A[find] ^= A[idx];
A[idx] ^= A[find];
But wait, the typical XOR swap between two variables x and y is done as:
x ^= y;
y ^= x;
x ^= y;
Which swaps x and y. But the code here does the same using the initial and new values. Wait, but in the code, after the first line, A[idx] becomes
A[idx] ^ A[find]. Then the second line is A[find] ^= A[idx], which is now the new A[idx] (so original a[idx] XOR a[find] XOR that would be what?), but
perhaps during the swap between two array elements, unless they are the same element, this works. Though if idx == find, which they check before
doing the swap, so they skip that case. So if idx != find, the swap code is correct. Wait, but the way that code works, after the swap, find is set to idx
and then the loop continues. Maybe that's correct.
Now, the possible bugs here: When dealing with Gaussian elimination, after selecting the pivot element (the one with the highest bit set), we want to
eliminate that bit from all other vectors. The code checks for each i not equal to find (but here find is updated to idx?), maybe there's an off-by-one
error. Let's look: after the swap, find becomes idx. Wait, the code says:
if (idx != find) {
    // perform the swaps as mentioned, then sets find = idx; ???
Wait in the code after swapping, they have:
A[idx] ^= A[find]; 
A[find] ^= A[idx];
A[idx] ^= A[find];
find = idx;
Wait no, the swap is in three steps. Let's see:
Original A[idx] is 'x', A[find] is 'y'.
First line: x becomes x ^ y.
Second line: y becomes y ^ (x^y) = x.
Third line: new x (x^y) becomes (x^y) ^ x = y.
So after all, A[idx] is y, A[find] is x. Then, after swapping, they set find = idx. So after swapping, find is equal to idx. Then they proceed to eliminate the
bit from all other elements. Wait, but in the code after swapping, the code's for loop iterates through all values of i, and checks if i != find, then if the
bit is set in A[i], it XORs A[i] with A[find] (which is now the element at idx).
So that part seems correct since the current pivot is at idx. Hmm.
Another possible mistake is in the initial loop conditions. The code for the bits runs from 60 down to 0. For each bit, in the while loop, starting from
'find = idx', but is that correct? Because maybe the maximum subarray algorithm requires processing the elements in order, and once an element is
used as a pivot, it's left alone. So it keeps increasing idx each time a pivot is found. This seems correct.
But what's the scenario here? The code in the maxSubarrayXOR function is trying to compute the maximum subset XOR, perhaps, and then returns
it, which is shifted left by one and added to sum.
Another part that might be problematic: after modifying the array A, which is done in-place, the final loop is just XORing all the elements. Wait, but in
some cases, after Gaussian elimination, some elements could be zero. The maximum XOR is the XOR of the basis vectors, which in this procedure
might be stored in the first elements up to idx. So XORing all the elements may not give the correct result. However, maybe with how the elimination
is done, the non-zero elements contribute. For example, all the non-zero elements in the array after elimination form a basis, but the code XORs all of
them to get the maximum. But I remember that in some versions of this, you build the basis and then greedily choose to include elements to
maximize the result, maybe. If they're processed from highest bit to lowest, maybe XORing all gives the maximum sum. Not entirely sure. But if the
Gaussian elimination is correctly implemented in the code, that's probably okay.
Alternatively, maybe there's a bug in how the for loop variables are used.
But the problem here is the possible options: which of the four outputs (TLE, Compile Error, MLE, or no issue) happens when this code is executed.
Looking through the code for syntax errors.
In Java, the syntax seems okay. Let me scan.
The code starts with import java.util.*; which is valid. The Main class has a public static main method, and the code is in a class. So no problem there.
Inside maxSubarrayXOR, the code uses a for loop, variables. The code here uses the method parameter long A[], which is okay. The code uses bit
manipulations like 1L << bit (since bit can be up to 60, 1L is a long, so that's correct. Since in Java shifting 1 (as int) might not get higher than 31 bits,
but 1L << 60 is a long, which is correct.
The code looks like it's doing the Gaussian elimination correctly in terms of syntax. No obvious syntax errors here.
The only possibility for a compile error might be if, for instance, some variable is used out of scope. Wait, in the main method, in the loop:
for (int i = 0; i < num; i++) {
    inputs[i] &= ~sum;
}
But 'sum' is of type long. The bitwise complement (~sum) is a long, which when ANDed with inputs[i] (a long) is okay. So that's valid Java.
So the code would compile. So option B (Compile Error) is out.
Now, runtime issues: Could it be TLE (timeout), MLE, or something?
Well, for the maxSubarrayXOR function, the algorithm seems to have a time complexity. Let's see:
Outer loop runs from bit 60 downto 0: 61 bits. For each bit, it performs a loop that could scan up to A.length elements (in the 'find' loop), then in the
worst case for each bit, and then another loop over all elements to eliminate the bit.
So the total time is O(number_of_bits * n). Given that number_of_bits is 61 (since 0 to 60), and n is the length of the array, which is up to the input's
num. If num is large, 1e5 for example, then 61*1e5 is 6.1e6 operations\u2014manageable. If the input is large, like 1e5, this would be acceptable.
However, if in Java that is acceptable for the time constraints (assuming the programming problem might have tight time limits), perhaps. But the
code as presented seems like it's performing a Gaussian elimination which is O(n * bits), which is feasible in Java for n up to 1e5 and bits 60.
But wait: the code reads inputs as all lines. How many elements are being passed in depends on the input. But perhaps in a scenario where num is
up to, say, 1e4 or 1e5, the code might not run into TLE. But without knowing the test cases, perhaps it's more about possible logical errors leading to
infinite loops" <<UNABLE TO CONCLUDE THE FINAL ANSWER>>

Figure 12: Comparison reasoning process of GPT o1, GPT o3-mini and DeepSeek R1 on problem
solving task

27



Published as a conference paper at ICLR 2025

Zero Few CoT
Type

28

30

32

34

36

38

40

42

Pe
rfo

rm
an

ce

PL syntax

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

40

50

60

70

80

90

Pe
rfo

rm
an

ce

API & Frameworks

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

30

35

40

45

50

55

60

65

Pe
rfo

rm
an

ce

DBMS & SQL

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

35

40

45

50

55

60

Pe
rfo

rm
an

ce

Software principles

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

35

40

45

50

55

60

Pe
rfo

rm
an

ce

Others

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

30

40

50

60

70

80

Pe
rfo

rm
an

ce

Code Completion
GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

50

60

70

80

90

Pe
rfo

rm
an

ce

Fill in the middle
GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

40

50

60

70

80

Pe
rfo

rm
an

ce

Code Repair

GPT-4o
Meta-Llama-3-70B

Zero Few CoT
Type

0

10

20

30

40

50

60

Pe
rfo

rm
an

ce

Defect Detection

GPT-4o
Meta-Llama-3-70B

Figure 13: Comparison between GPT4o and Meta Llama-3 70B on various prompt settings.
We experiment with zero-shot, 1-shot, and CoT prompt configuration, where the result indicates the
ineffectiveness of CoT in boosting the models’ performance. Comparing to zeroshot config, 1-shot
prompt slightly increase the performance in knowledge tasks but falls shorter in real tasks.
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Question: Converting a primitive type data into its corresponding wrapper class object instance is called 

(A) Boxing 
(B) Wrapping 
(C) Instantiation 
(D) Autoboxing

Question

(D) Autoboxing

Zeroshot

Chain-of-Though

To determine the correct answer, let's break down each option and understand what they mean in the
context of software development:

(A) Boxing: This term is used to describe the process of converting a primitive type into its corresponding
wrapper class object. For example, converting an `int` to an `Integer`.

(B) Wrapping: While this term might sound relevant, it is not commonly used in this specific context. It
generally refers to enclosing or encapsulating something within another layer.

(C) Instantiation: This term refers to creating an instance of a class. It does not specifically relate to
converting primitive types into their wrapper classes.

(D) Autoboxing: This is a more specific term that describes the automatic conversion that the Java
compiler makes between primitive types and their corresponding object wrapper classes. For example,
automatically converting an `int` to an `Integer`.

Given these definitions:

- "Boxing" (A) correctly describes manually converting a primitive type into its corresponding wrapper
class.
- "Autoboxing" (D), however, specifies that this conversion happens automatically by the compiler.

Since we are looking for just "converting," without specifying whether it's manual or automatic:

Answer:
(A) Boxing
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Question: Which among the following is correct for the following code?
class A
{  
    public : class B 
    { 
        public : B(int i): data(i)
        { 
        }
        int data;
    }
};
class C: public A
{
     class D:public A::B{ };
};

(A) Multi-level inheritance is used, with nested classes
(B) Multiple inheritance is used, with nested classes
(C) Single level inheritance is used, with enclosing classes
(D) Single level inheritance is used, with both enclosing and nested classes

Chain-of-Though

Let's analyze the code step by step to determine which type of inheritance and class
structure is being used.

1. Class A:
- Contains a nested public class `B`.
- Class `B` has a constructor that initializes an integer member variable `data`.

2. Class C:
- Inherits publicly from class `A`.
- Contains a nested public class `D` that inherits publicly from `A::B`.

Now, let's break down the inheritance and nesting:

- Nested Classes:
- Class B is nested within Class A.
- Class D is nested within Class C.

- Inheritance Relationships:
- Class C inherits from A (single level).
- Nested class D in C inherits from B in A (multi-level).

Given these points, we can evaluate each option:

(A) Multi-level inheritance is used, with nested classes
- This seems correct because there are multiple levels of inheritance involved:
C -> A (single level)
D -> B (nested multi-level)

(B) Multiple inheritance is used, with nested classes
- This isn't correct because no single class directly inherits from more than one base class.

(C) Single level inheritance is used, with enclosing classes
- This isn't entirely accurate since there are multiple levels of nesting and some multi-level
relationships.

(D) Single level inheritance is used, with both enclosing and nested classes
- While it mentions both enclosing and nesting correctly, it incorrectly states "Single level"
when there's also multi-level involved due to the relationship between D and B through their
respective parent classes.

Therefore,

The correct answer should be:

(A) Multi-level inheritance is used, with nested classes

Question

(D) Single level inheritance is used, with both enclosing and nested classes

Explanation:
- The code defines a class `A` which contains a nested class `B`.
- Class `C` inherits from class `A`, making it single-level inheritance.
- Within class `C`, there is another nested class `D` that inherits from the
nested class `B` of the base class.

Therefore, this scenario involves single-level inheritance (class C inheriting
from A) and includes both enclosing (class A containing B, and C containing
D) and nested classes.

Zeroshot

Question: What is the output of the following program?
class A
{

protected: int a,b;
public: void disp()
{ 

cout&lt;&lt;a&lt;&lt;b; 
}

};
class B:public A
{

int x,y;
};

(A) Garbage value
(B) Compile time error
(C) Runtime error
(D) Runs but gives random values as output

Question

The correct answer is: (B) Compile time error
Explanation: The program will result in a compile-time error
because the `cout` statement inside the `disp()` method of class
`A` is using the variables `a` and `b`, which are protected
members. However, these variables have not been initialized or
assigned any values before being used in the output statement.
Additionally, there might be an issue with including necessary
headers (like `<iostream>`) and using the appropriate namespace
(`std::`). 

Zeroshot

Chain-of-Though

To determine the output of the given program, let's analyze it step by step:
1. Class Definition:
   - `class A` has two protected integer members `a` and `b`.
   - It also has a public member function `disp()` that prints the values of `a` and `b`.
2. Inheritance:
   - `class B` publicly inherits from class A.
   - Class B introduces two additional private integer members, `x` and `y`.
3. Functionality:
   - The function in class A (`disp()`) is designed to print the values of its protected
members (`a`, and `b`). 
4. Output Analysis:
    - Since there are no constructors or any other functions initializing or setting values for
variables 'a' and 'b', they will contain whatever data happens to be at their memory
locations when an object of class B (or even class A) is created.
5. Compilation Check:
    - There are no syntax errors in this code snippet; hence it will compile successfully.
6. Runtime Behavior: 
    - When you call the disp() method on an instance of either class A or B without
initializing 'a' and 'b', they will hold garbage values (uninitialized local variables).

Given these points, we can conclude:
- The program compiles successfully.
- At runtime, since 'a' and 'b' are not initialized before being printed, they will display
garbage/random values.

Therefore, considering all steps above: 
The correct answer is:  (D) Runs but gives random values as output
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Sure, let's break it down step by step.
1. Understanding the Code Structure:
   - There are two packages: `pack1` and `pack2`.
   - In `pack1`, there is a class `A` with a constructor that prints "object created".
   - In `pack2`, there is a class `B` which creates an instance of class `A`.
2. Code Analysis:
   ```java
   package pack1;
   
   class A {
       public A() { 
           System.out.print("object created"); 
       }   
   }
   package pack2;
   import pack1.*;
   class B {
       A a = new A();
    }
    ```
3. Compilation and Execution Steps:
    - When you compile the code, both packages (`pack1` and `pack2`) need to be
compiled.
    - The import statement in package 2 allows access to classes in package 1.
4. **Expected Output or Errors:**
    - If everything compiles correctly, creating an instance of class B will result in creating
an instance of class A due to the line:
      ```java
      A a = new A();
      ```
      This will invoke the constructor of Class A which prints "object created".
5. Possible Issues Leading to Errors:
    - If there's any issue with accessing classes across packages (e.g., if they are not
properly compiled or if there's some visibility issue), it could lead to either compile-time or
runtime errors.
6. Checking for Compile-Time Errors: 
     Since all necessary imports are done correctly and assuming no other issues like file
structure problems exist, there should be no compile-time error.
7. Checking for Runtime Errors:
     Assuming proper setup (correct directory structure, correct compilation), there should
be no runtime errors as well.
8.Output Verification:
When you create an object of Class B:
```java
B b = new B();
```
It will internally create an object of Class A due to its member variable initialization:
```java
A a = new A(); // This line triggers the print statement inside Class 'A' constructor.
```
So this results in printing "object created".

Therefore:
Answer: (A) Output is: object created

Question: What is the output of the following code?
package pack1;
class A
{

public A()
{ 

System.out.print(“object created”); 
}   

}
package pack2;
import pack1.*;
class B
{

A a=new A();
}

(A) Output is: object created
(B) Output is: object createdobject created
(C) Compile time error
(D) Run time error

Question

The correct answer is:

(C) Compile time error

Explanation:
In Java, each class must be in its own file with the same name
as the class. The provided code snippet does not follow this rule,
and it also has issues with package declarations and imports.

1. Each class should be in a separate file named after the class
(e.g., `A.java` for class A and `B.java` for class B).
2. The packages need to be properly structured in directories
that match their names.
3. The import statement should correctly reference classes from
other packages.

Given these issues, attempting to compile this code will result in
a compile-time error due to incorrect packaging and file
structure.

Zeroshot

Chain-of-Though

Figure 14: Examples of Chain-of-Thought and zeroshot in Object-oriented programming (OOP)
subset.
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B.4 CODEMMLU EXAMPLE

General knowledge MCQ example:

The following are multiple-choice questions (with answers) about debugging a programming
problem.
Question: Suppose we have an O(n) time algorithm that finds the median of an unsorted
array. Now consider a QuickSort implementation where we first find the median using the
above algorithm, then use the median as a pivot. What will be the worst-case time complexity
of this modified QuickSort?
(A) O(n2 log n)
(B) O(n2)
(C) O(n log n log n)
(D) O(n log n)

Code Completion example:

The following are multiple-choice questions (with answers) about programming problems.
Question: Which solution below is the most likely to complete the following code to achieve
the desired goal?

from typing import List

def has_close_elements(numbers: List[float], threshold: float) −> bool:
""" Check if in given list of numbers , are any two numbers closer to each

↪→ other than given threshold.
>>> has_close_elements ([1.0, 2.0, 3.0], 0.5)
False
>>> has_close_elements ([1.0, 2.8, 3.0, 4.0, 5.0, 2.0], 0.3)
True
"""

(A)
for i in range(len(numbers)): # Change range to len(numbers)

for j in range(i + 1, len(numbers)):
if abs(numbers[i] − numbers[j]) < threshold:

return True
return False

(B)
return any(abs(a − b) < threshold for a, b \

in zip(numbers , numbers [1:]))

(C)
for i in range(len(numbers) − 1):

for j in range(i + 1, len(numbers)):
if abs(numbers[i] − numbers[j]) > threshold:

return False
return True

(D)
for idx , elem in enumerate(numbers):

for idx2 , elem2 in enumerate(numbers):
if idx != idx2:

distance = abs(elem − elem2)
if distance < threshold:

return True

return False

Answer:

Fill in the blank example:
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The following are multiple-choice questions (with answers) about a programming problem
with incomplete solution.
Problem statement: You are given an array of intervals, where intervals[i] = [starti, endi]
and each starti is unique. The right interval for an interval i is an interval j such that startj >=
endi and startj is minimized. Note that i may equal j. Return an array of right interval indices
for each interval i. If no right interval exists for interval i, then put -1 at index i.
Incomplete Solution:
def find_right_interval(intervals):

n = len(intervals)
res = [−1] ∗ n
for i in range(n):

intervals[i]. append(i)

def binary_search(ele):
left , right = 0, n−1
ans = float(’inf’)
while left <= right:

mid = (left + right) // 2
if intervals[mid ][0] >= ele:

ans = min(ans , mid)
right = mid − 1

else:
left = mid + 1

return ans

intervals.sort()
for i in intervals:

_________________
if val != float(’inf’):

res[i[2]] = intervals[val ][2]
return res

Question: The provided solution is missing a part, which option below is the most likely to
complete the solution and achieve the desired goal?
(A)

val = binary_search(i[1])

(B)
if val != float(’inf’):

(C)
val = binary_search(i[1])

(D)
if val != float(’inf’):

res[i[2]] = intervals[val ][2]

Answer:

Code Repair example:

The following are multiple-choice questions (with answers) about debugging a programming
problem.
Question: The following code snippet is producing incorrect results; Which solution below
correctly identifies the bug and repairs it to achieve the desired goal?

1 import java.util .∗;
2 public class DETECT_CYCLE {
3 public static boolean detect_cycle(Node node) {
4 Node hare = node;
5 Node tortoise = node;
6 while (true) {
7 if (hare.getSuccessor () == null)
8 return false;
9 tortoise = tortoise.getSuccessor ();

10 hare = hare.getSuccessor ().getSuccessor ();
11 if (hare == tortoise)
12 return true;
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13 }
14 }
15 }

(A) Modify line 6:
for (; ; ) {

(B) Modify line 7:
if (null==hare ||hare.getSuccessor () == null)

(C) Modify line 12:
return hare.getSuccessor () != null && hare == tortoise;

(D) Modify line 11:
if (Objects.equals(hare , tortoise))

Execution Prediction example:

The following are multiple-choice questions (with answers) about programming problem.
Question: Given a code snippet below, which behavior most likely to occur when running
the solution?

import java.util .∗;
public class Main {

public static void main(string [] args) {
Scanner sc = new Scanner(System.in);
int A = sc.nextInt ();
int B = sc.nextInt ();
int T = sc.nextInt ();
int S = T/A System.out.println(s∗b);

}
}

(A) Memory Limit Exceeded
(B) Runtime Error
(C) Compile Error
(D) No abnormally found

C MODELS SETUP

In our experiment and study, we consider GPT-4o (OpenAI et al., 2024), GPT-3.5 (OpenAI, 2023),
Claude-3.5, Claude-3 (Anthropic, 2024), MetaLlama 3.1 (Dubey et al., 2024), MetaLlama3 (Dubey
et al., 2024), CodeLLaMA (Rozière et al., 2024), DeepSeek AI, DeepSeek Coder, DeepSeek Coder
V2 (Guo et al., 2024b; DeepSeek-AI et al., 2024; Guo et al., 2024a), MistralAI, Codetral (Jiang et al.,
2024), Qwen2 (Yang et al., 2024), CodeQwen1.5 (Bai et al., 2023), Yi (AI et al., 2024), StarCoder2
(Lozhkov et al., 2024a), InternLM (Cai et al., 2024), Phind (Phind, 2023).

Table 12: Language Models Description

Model ID Short Name Link

OpenAI
GPT-o1-2024-12-17 GPT o1 -
GPT-o3-mini-2025-01-31 GPT o3-mini -
GPT-4o-2024-05-13 GPT 4o -
GPT-4o-mini-2024-07-18 GPT 4o mini -
GPT-3.5-turbo-16k-0613 GPT-3.5-turbo -

Anthropic

Claude-3.5-sonnet-20241022 Claude3.5 Sonnet -
Claude-3.7-sonnet-20250219 Claude3.7 Sonnet -
Claude-3.5-haiku-20241022 Claude3.5 Haiku -
Claude-3-haiku-20240307 Claude3 Haiku -
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Claude-3-sonnet-202402029 Claude3 Sonnet -
Claude-3-opus-20240229 Claude3 Opus -

CodeLlama

codellama/CodeLlama-13b-
Instruct-hf

CodeLlama 13B
Instruct

codellama/CodeLlama-
13b-Instruct-hf

codellama/CodeLlama-13b-
Python-hf

CodeLlama 13B
Python

codellama/CodeLlama-
13b-Python-hf

codellama/CodeLlama-13b-hf CodeLlama 13B codellama/CodeLlama-
13b-hf

codellama/CodeLlama-34b-
Instruct-hf

CodeLlama 34B
Instruct

codellama/CodeLlama-
34b-Instruct-hf

codellama/CodeLlama-34b-
Python-hf

CodeLlama 34B
Python

codellama/CodeLlama-
34b-Python-hf

codellama/CodeLlama-7b-
Instruct-hf

CodeLlama 7B In-
struct

codellama/CodeLlama-
7b-Instruct-hf

codellama/CodeLlama-7b-
Python-hf

CodeLlama 7B
Python

codellama/CodeLlama-
7b-Python-hf

MetaLlama

meta-llama/Meta-Llama-3-
70B

Llama3 70B meta-llama/Meta-
Llama-3-70B

meta-llama/Meta-Llama-3-
70B-Instruct

Llama3 70B In-
struct

meta-llama/Meta-
Llama-3-70B-Instruct

meta-llama/Meta-Llama-3-8B Llama3 8B meta-llama/Meta-
Llama-3-8B

meta-llama/Meta-Llama-3-
8B-Instruct

Llama3 8B In-
struct

meta-llama/Meta-
Llama-3-8B-Instruct

meta-llama/Meta-Llama-3.1-
70B

Llama3.1 70B meta-llama/Meta-
Llama-3.1-70B

meta-llama/Meta-Llama-3.1-
70B-Instruct

Llama3.1 70B In-
struct

meta-llama/Meta-
Llama-3.1-70B-
Instruct

meta-llama/Meta-Llama-3.1-
8B

Llama3.1 8B meta-llama/Meta-
Llama-3.1-8B

meta-llama/Meta-Llama-3.1-
8B-Instruct

Llama3.1 8B In-
struct

meta-llama/Meta-
Llama-3.1-8B-Instruct
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C.1 PROMPT LIBARARY

Filtering prompts: LLM-based filtering for ranking questions’ completeness, coherence, and
clarity.

Quality filtering prompt:

Please rate the following question based on three criteria , with a score from 1 to 5 for
↪→ each criterion (where 1 is the lowest and 5 is the highest). No explanation needed:

1. Completeness:
− Does the question stand alone and provide enough information independently?
− Avoid including any images , links , or external references.
2. Coherence and Clarity:
− Is the question phrased clearly , with proper grammar?
− Is there any ambiguity or confusion in the wording?
3. Relevance:
− Is the question directly related to software development or programming issues?
− Does it involve technical challenges , concepts , or tools commonly used in software

↪→ or programming?

Question:
"""{}"""

Data creation prompts: Prompt used for synthesis distractor for real-world task:

Code Repair distractor creation prompts:

After extracting statement from buggy version, we use LLMs to rewrite a new version of that statement. We
command LLMs to assume the bug is located in the assigned line and their target is correct that line.
Here is the prompt:

Given a buggy Python code snippet , you will be asked to debugging the code.
‘‘‘
def truncate_number(number: float) −> float:

return number ∗ (number % 1)
‘‘‘
Let assume the bug is located in this line:
‘‘‘ return number ∗ (number % 1) ‘‘‘
Adjust this line in order to solve the bug.
The re−written line must be syntactic correct , executable and wrapped in ‘‘‘ ‘‘‘

↪→ brace.
Don’t give any details.
### Rewritten line:
‘‘‘ return number % 1.0‘‘‘

Given a buggy Java code snippet , you will be asked to debugging the code.
‘‘‘{code}‘‘‘
Let assume the bug is located in this line:
‘‘‘{line}‘‘‘
Adjust this line in order to solve the bug.
The re−written line must be syntactic correct , executable and wrapped in ‘‘‘ ‘‘‘

↪→ brace.
Don’t give any details.
### Rewritten line:

We executing the problem with given test cases. Our target is to create reasonable false answer that would require
deep interpretation. Follow by an LLMs based filter to pick from pool of negative answer the most likely able to
solve the buggy problem. This result a set of confusing negative answer. Those reasonable false sample with
executable (and if they can pass through few testcases) is golden negative answer.
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Fill in the blank distractor creation prompt:

From correct solution from leetcode, we randomly mask a line/a block of code and generate false answer (for
multiple choice) from LLMs:

Following this code:
{code}
I prepare some multiple choice questions answering
so i want to make small change on this line
but it still look true of this line : {line}
help me generate 3 version change in this code and each output should in ‘‘‘ ‘‘‘

↪→ brace and code only.
Don’t give any details

Experimental prompts: Prompt used in CodeMMLU evaluation.

Zero-shot prompts

General knowledge MCQ test set:
The following are multiple −choice questions (with answers) about software

↪→ development.

Question: {question}
{multiple_choices}

Answer:

Code completion:
The following are multiple −choice questions (with answers) about software

↪→ development.

Question: {question}
{multiple_choices}

Answer:

Fill in the blank:
The following are multiple −choice questions (with answers) about a programming

↪→ problem with an incomplete solution.

Problem statement: {question}

Incomplete Solution:
{codebase}

Question: The provided solution is missing a part , Which option below is the
↪→ most likely to complete the solution and achieve the desired goal?

{multiple_choices}

Answer:
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Code Repair:
The following are multiple −choice questions (with answers) about debugging a

↪→ programming problem.

Question: The implementation below is producing incorrect results. Which
↪→ solution below correctly identifies the bug and repairs it to achieve the desired
↪→ goal?

{question}

{multiple_choices}

Answer:

Defect Detection:
The following are multiple −choice questions (with answers) about programming

↪→ problems.

Question: Given a code snippet below , which behavior most likely to occur when
↪→ execute it?

{question}

{multiple_choices}

Answer:
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Few-shot prompt

General knowledge MCQ test set:
The following are multiple choice questions (with answers) about software

↪→ development.

Question: If a sorted array of integers is guaranteed to not contain duplicate
↪→ values , in order to search a for a specific value which of the following algorithms
↪→ is the most efficient for this task?

(A) Bubble Sort (B) Linear Search (C) Insertion Sort (D) Binary Search

Answer: The answer is (D).

Question: {question}
{multiple_choices}

Answer:

Code completion:

The following are multiple −choice questions (with answers) about programming
↪→ problems.

Question: Which solution below is the most likely completion the following code
↪→ snippet to achieve the desired goal?

‘‘‘python
from typing import List

def two_sum(nums: List[int], target: int) −> List[int]:
"""
Given an array of integers nums and an integer target , return indices of the

↪→ two numbers such that they add up to target.
You may assume that each input would have exactly one solution , and you may

↪→ not use the same element twice.

>>> two_sum ([2,7,11,15], 9)
[0,1]
>>> two_sum ([3,2,4], 6)
[1,2]
>>> two_sum ([3,3], 6)
[0,1]
"""

‘‘‘

(A) ‘‘‘python
n = len(nums)
for i in range(n − 1):

for j in range(i + 1, n):
if nums[i] + nums[j] == target:

return [i, j]
return []

‘‘‘
(B) ‘‘‘python

for num in nums:
if target − num in nums:

return [nums.index(num), nums.index(target − num)]
return []

‘‘‘
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(C) ‘‘‘python
for i in range(len(nums)):

if nums[i] ∗ 2 == target:
return [i, i]

return []
‘‘‘
(D) ‘‘‘python

num_dict = {}
for i, num in enumerate(nums):

if target − num in num_dict:
return [num_dict[target − num], i]

num_dict[i] = num
return []

‘‘‘
Answer: The answer is A.

Question: Which solution below is the most likely completion the following code
↪→ snippet to achieve the desired goal?

‘‘‘python
{question}
‘‘‘

{multiple_choices}

Answer:’’’

Fill in the blank:
The following are multiple −choice questions (with answers) about a programming

↪→ problem with incomplete solution.

Problem statement: You are given an array of intervals , where intervals[i] =
↪→ [starti , endi] and each starti is unique.

The right interval for an interval i is an interval j such that startj >= endi
↪→ and startj is minimized.

Note that i may equal j. Return an array of right interval indices for each
↪→ interval i.

If no right interval exists for interval i, then put −1 at index i.

Incomplete Solution:
python ‘‘‘
def find_right_interval(intervals):

n = len(intervals)
res = [−1] ∗ n
for i in range(n):

intervals[i]. append(i)

def binary_search(ele):
left , right = 0, n−1
ans = float(’inf’)
while left <= right:

mid = (left + right) // 2
if intervals[mid ][0] >= ele:

ans = min(ans , mid)
right = mid − 1

else:
left = mid + 1

return ans

intervals.sort()
for i in intervals:

_________________

return res
‘‘‘
Question: The provided solution is missing a part , Which option below is the

↪→ most likely to complete the solution and achieve the desired goal?
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(A) ‘‘‘python
val = binary_search(i[1])
if val != float(’inf’):

res[i[2]] = intervals[val ][2]
‘‘‘
(B) ‘‘‘python

if val != float(’inf’):
res[i[2]] = intervals[val ][2]

else:
continue

‘‘‘
(C) ‘‘‘python

val = binary_search(i[1])
if val != float(’inf’): res[i[2] + 1] = intervals[val ][2]

‘‘‘
(D) ‘‘‘python

if val != float(’inf’):
res[i[2]] = intervals[val ][2]

else:
continue

‘‘‘
Answer: The answer is (A).

Problem statement: {question}

Incomplete Solution:
{codebase}

Question: The provided solution is missing a part , Which option below is the
↪→ most likely to complete the solution and achieve the desired goal?

{multiple_choices}

Answer:
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Code Repair:
The following are multiple −choice questions (with answers) about debugging a

↪→ programming problem.

Question: The implementation below is producing incorrect results.
Which solution below correctly identifies the bug and repairs it to achieve the

↪→ desired goal?

1 def two_sum(nums , target):
2 complement_map = {{}}
3 for i, num in enumerate(nums):
4 complement = target − num
5 complement_map[num] = i
6 if complement in complement_map:
7 return [complement_map[complement], i]
8 return None

(A) Remove line 5.

(B) Remove line 5. Add at line 7:
‘‘‘ complement_map[num] = i‘‘‘

(C) Modify line 7:
‘‘‘ return [i, complement_map[complement]]‘‘‘

(D) Remove line 5. Add at line 7:
‘‘‘ if i == len(nums) − 1:

return None
complement_map[num] = i‘‘‘

Answer: The answer is (B).

Question: The implementation below is producing incorrect results.
Which solution below correctly identifies the bug and repairs it to achieve the

↪→ desired goal?
{question}

{choices}

Answer:

Defect Detection:
The following are multiple choice questions (with answers) about programming

↪→ problem.

Question: Given a code snippet below , which behavior most likely to occurr when
↪→ execute it?

‘‘‘python
def chkPair(A, size , x):

for i in range(0, size − 1):
for j in range(i + 1, size):

if (A[i] + A[j] == x):
return 1

return 0

‘‘‘

(A). The code contain no issue.
(B). Memory Limit Exceeded
(C). Compile error
(D). Runtime Error
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Answer: The answer is (A).

Question: Given a code snippet below , which behavior most likely to occurr when
↪→ execute it?

{question}

{multiple_choices}

Answer:
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Chain-of-Thought zero-shot prompts

General knowledge MCQ test set:
The following are multiple choice questions (with answers) about software

↪→ devopment.

Question: {question}
{multiple_choices}

Answer: Let’s think step by step.

Code completion:
The following are multiple choice questions (with answers) about programming

↪→ problems.

Question: Which solution below is the most likely completion the following code
↪→ snippet to achieve the desired goal?

‘‘‘python
{question}
‘‘‘
{multiple_choices}

Answer: Let’s think step by step.

Fill in the blank:
The following are multiple −choice questions (with answers) about a programming

↪→ problem with uncomplete solution.

Problem statement: {question}

Incomplete Solution:
{codebase}

Question: The provided solution is missing a part , Which option below is the
↪→ most likely to

complete the solution and achieve the desired goal?

{multiple_choices}

Answer: Let’s think step by step.

Code Repair:
The following are multiple −choice questions (with answers) about debugging a

↪→ programming problem.

Question: The implementation below is producing incorrect results.
Which solution below correctly identifies the bug and repairs it to achieve the

↪→ desired goal?
{question}

{multiple_choices}

Answer: Let’s think step by step.
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Defect Detection:
The following are multiple −choice questions (with answers) about debugging a

↪→ programming problem.

The algorithm implementation below is producing incorrect results;
Which solution below correctly identifies the bug and repairs it to achieve the

↪→ desired goal?
{question}

{multiple_choices}

Answer: Let’s think step by step.
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Chain-of-Thought few-shot prompts

General knowledge MCQ test set:
The following are multiple choice questions (with answers) about software

↪→ devopment.

Question: If a sorted array of integers is guaranteed to not contain duplicate
↪→ values , in order to search a for a specific value which of the following algorithms
↪→ is the most efficient for this task?

(A) Bubble Sort (B) Linear Search (C) Insertion Sort (D) Binary Search

Answer: Let’s think step by step. Binary Search is a divide −and −conquer
↪→ algorithm that works by repeatedly dividing the search interval in half and searching
↪→ for the value in the appropriate half. Since the array is already sorted and does not
↪→ contain any duplicate value , this algorithm is optimal to find the desired value. The
↪→ answer is (D).

Question: {question}
{multiple_choices}

Answer: Let’s think step by step.

Code completion:
The following are multiple choice questions (with answers) about programming

↪→ problem.

Question: Which solution below is the most likely completion the following code
↪→ snippet to achieve the desired goal?

‘‘‘python
def is_vowel(char: str) −> bool:

"""
Checks if the input character is a vowel.
"""

‘‘‘

(A) ‘‘‘python
return char.lower().is_vowel ()

‘‘‘
(B) ‘‘‘python

vowels = set("aeiou")
return char.lower() in vowels

‘‘‘
(C) ‘‘‘python

vowels = set("aeiou")
return char.upper() in vowels

‘‘‘
(D) ‘‘‘python

vowels = "aeiou"
return char.count(vowels) > 0

‘‘‘

Answer: Let’s think step by step. The goal is to write a function is_vowel(char:
↪→ str) −> bool that checks if the input character char is a vowel. The solution B
↪→ correctly converts the input character to lowercase and checks if it is in the set of
↪→ vowels.

The answer is (B).

Question: Which solution below is the most likely completion the following code
↪→ snippet to achieve the desired goal?

‘‘‘python
{question}
‘‘‘
{multiple_choices}

Answer: Let’s think step by step.
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Fill in the blank:
The following are multiple −choice questions (with answers) about a programming

↪→ problem with uncomplete solution.

Problem statement: You are given an array of intervals , where intervals[i] =
↪→ [starti , endi] and each starti is unique.

The right interval for an interval i is an interval j such that startj >= endi
↪→ and startj is minimized.

Note that i may equal j. Return an array of right interval indices for each
↪→ interval i.

If no right interval exists for interval i, then put −1 at index i.

Incomplete Solution:
python ‘‘‘
def find_right_interval(intervals):

n = len(intervals)
res = [−1] ∗ n
for i in range(n):

intervals[i]. append(i)
def binary_search(ele):

left , right = 0, n−1
ans = float(’inf’)
while left <= right:

mid = (left + right) // 2
if intervals[mid ][0] >= ele:

ans = min(ans , mid)
right = mid − 1

else:
left = mid + 1

return ans

intervals.sort()
for i in intervals:

_________________

return res
‘‘‘

Question: The provided solution is missing a part , Which option below is the
↪→ most likely to

complete the solution and achieve the desired goal?

(A) ‘‘‘python
val = binary_search(i[1])
if val != float(’inf’):

res[i[2]] = intervals[val ][2]
‘‘‘
(B) ‘‘‘python

if val != float(’inf’):
res[i[2]] = intervals[val ][2]

else:
continue

‘‘‘
(C) ‘‘‘python

val = binary_search(i[1])
if val != float(’inf’): res[i[2] + 1] = intervals[val ][2]

‘‘‘
(D) ‘‘‘python

if val != float(’inf’):
res[i[2]] = intervals[val ][2]

else:
continue

‘‘‘
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Answer: Let’s think step by step. The incomplete solution first sorts the
↪→ intervals and then iterates over the sorted intervals. For each interval , it finds
↪→ the right interval using a binary search.

This option (A) finds the right interval index using the binary search and
↪→ updates the result array accordingly.

The option (B) is similar to (A), but it does not increment the index when
↪→ finding the right interval index. This could lead to incorrect results.

The option (C) increments the index when finding the right interval index.
↪→ However , this is incorrect because the problem statement asks for the index of the
↪→ right interval , not the offset from the original index.

The option (D) uses the same index for both the original interval and the right
↪→ interval , which could lead to incorrect results.

The answer is (A).

Problem statement: {question}

Incomplete Solution:
{codebase}

Question: The provided solution is missing a part , Which option below is the
↪→ most likely to

complete the solution and achieve the desired goal?

{multiple_choices}

Answer: Let’s think step by step.
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Code Repair:
The following are multiple −choice questions (with answers) about debugging a

↪→ programming problem.

Question: The implementation below is producing incorrect results.
Which solution below correctly identifies the bug and repairs it to achieve the

↪→ desired goal?

1 def two_sum(nums , target):
2 complement_map = {{}}
3 for i, num in enumerate(nums):
4 complement = target − num
5 complement_map[num] = i
6 if complement in complement_map:
7 return [complement_map[complement], i]
8 return None

(A) Remove line 5.

(B) Remove line 5. Add at line 7:
‘‘‘ complement_map[num] = i‘‘‘

(C) Modify line 7:
‘‘‘ return [i, complement_map[complement]]‘‘‘

(D) Remove line 5. Add at line 7:
‘‘‘ if i == len(nums) − 1:

return None
complement_map[num] = i‘‘‘

Answer: Let’s think step by step. The bug in the code occurs because the current
↪→ number is added to the complement_map before checking if its complement already
↪→ exists , which can lead to incorrectly matching a number with itself. To fix this , the
↪→ number should only be added to the map after checking for its complement. Solution
↪→ (B) does exactly this by moving the line that adds the current number to the map
↪→ after the complement check , ensuring the logic works as intended without
↪→ self −matching errors.

The answer is (B).

Question: The implementation below is producing incorrect results.
Which solution below correctly identifies the bug and repairs it to achieve the

↪→ desired goal?
{question}

{choices}

Answer: Let’s think step by step.
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Defect Detection:
The following are multiple choice questions (with answers) about programming

↪→ problem.

Question: Given a code snippet below , which behavior most likely to occurr when
↪→ execute it?

‘‘‘python
def chkPair(A, size , x):

for i in range(0, size − 1):
for j in range(i + 1, size):

if (A[i] + A[j] == x):
return 1

return 0

‘‘‘
(A). The code contain no issue.
(B). Memory Limit Exceeded
(C). Compile error
(D). Runtime Error

Answer: Let’s think step by step. The code appears to have no issues with
↪→ typical valid inputs and will function as expected. It correctly checks for pairs of
↪→ elements whose sum is x.

The answer is (A).

Question: Given a code snippet below , which behavior most likely to occurr when
↪→ execute it?

{question}
{multiple_choices}

Answer: Let’s think step by step.
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