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1 Bernoulli Sampling Optimization Objective Derivation Details1

Notations. ϕ denotes the parameter set of the BernPool module, ψ is the parameter set of the other2

modules.3

Mutual Information Maximizing. BernPool aims to maximize the mutual information between4

learned subgraph embeddings and corresponding labels, which can be formulated as:5

ζMI =MI(y, fψ,ϕ(G,S)) =MI(y, f), (1)

where fψ,ϕ represents the graph embedding process. Moreover, we introduce f to denote fψ,ϕ(G,S)6

for simplification, which distributes in the embedding space F . F is spanned by the resulted7

embeddings of fψ,ϕ inferred based on the input G and reference set S . Then, based on the connection8

between the mutual information and entropy, the objective can be further written as:9

argmaxMI(y, f)

= argmaxH(y)−H(y|f), (2)

where H(y) can be just omitted from the objective as it is independent from ψ̃, ϕ̃. We have the10

following derivation:11

argmax−H(y|f)

= argmax
∑
i

−H(y|f = Fi)p(Fi)

= argmax
∑
i

p(Fi)Ey|Fi
(log p(y|f = Fi)),

(3)

where p(Fi) means the probability of the i-th observation in the embedding space and can be12

rationally assumed to conform to the uniform distribution. L denotes the number of observations. As13

the observation Fi means to be inferenced based on an input sample Gi with S, we further denote14

p(y|f = Fi) equally pψ,ϕ(y|Gi,S). The objective can be further written as:15

argmax
∑
i

1

L
Ey|Gi,S(log pψ,ϕ(y|f = Fi))

= argmax
∑
i

Ey|Gi,S [log

∫
pψ(y|Gi,S, z)pϕ(z|Gi,S)dz]

= argmax
∑
i

Ey|Gi,S [log

∫
qϕ(z|Gi,S)pψ(y|Gi,S, z)

pϕ(z|Gi,S)
qϕ(z|Gi,S)

dz],

(4)

where pψ(y|Gi,S, z) is the conditional probability of label y. pϕ(z|Gi,S) denotes the conditional16

probability of the factor z, which is usually intractable. Hence, we resort to the variational inference to17

approximate the intractable true posterior with qϕ(z|Gi,S) that is the expected distribution. According18
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to the Jensen Inequality, the above formulation can be deduced as follows:19

≥ argmax
∑
i

Ey|Gi,S [

∫
qϕ(z|Gi,S) log(pψ(y|Gi,S, z)

pϕ(z|Gi,S)
qϕ(z|Gi,S)

)dz]

= argmax
∑
i

Ey|Gi,S [

∫
qϕ(z|Gi,S) log pψ(y|Gi,S, z) + qϕ(z|Gi,S) log

pϕ(z|Gi,S)
qϕ(z|Gi,S)

dz]

= argmax
∑
i

Ey|Gi,S [Eqϕ(z|Gi,S)[log pψ(y|Gi,S, z)]]−DKL(qϕ(z|Gi,S)||pϕ(z|Gi,S)).

(5)

As qϕ(z|Gi,S) is predefined distribution, Eqϕ(z|Gi,S) can be regarded as a constant, the objective can20

be formulated as:21

argmaxEy|G,S [log pψ(y|Gi,S, z)]−DKL(qϕ(z|Gi,S)||pϕ(z|Gi,S))
= argmax−ζCE −DKL(qϕ(z|Gi,S)||pϕ(z|Gi,S))
= argmin ζCE +DKL(qϕ(z|Gi,S)||pϕ(z|Gi,S)).

(6)

In addition, we can extend the above single-layer BernPool into multi-layer networks by deploying22

independent sampling factors in sequential graph pooling.23

Cross-entropy Loss Function ζCE based on Subgraph Sampling. Referring to the analysis of a24

random dropping method [1], we analyze the loss function of our proposed BernPool. We can derive25

two parts from ζCE :26

ζCE = LCE +
∑
i

1

2
yi(1− yi)V ar(h̃i), (7)

where LCE is the original cross-entropy loss function, the second term tends the classification27

probability to 0 or 1 and reduces the variance of hi in the training process.28

Specifically, for analytical simplicity, we apply a single-layer graph convolution as the backbone29

model to perform the binary classification task. As mentioned in Section 3 of this paper, H =30

σ(D̂− 1
2 ÂD̂

1
2XW) and y = sigmoid(H) represents predicted probability. Thus the original cross-31

entropy loss function can be expressed as follows:32

LCE =
∑
j,yj=1

log(1 + e−hj ) +
∑

k,yk=0

log(1 + ehk). (8)

When performing sampling in the original graph, the objective function can be regarded as adding a33

bias, which is expressed as follows:34

E(ζCE) =
∑
j,yj=1

[log(1 + e−hj ) + E(u(h̃j , hj))] +
∑

k,yk=0

[log(1 + ehk) + E(v(h̃k, hk))]. (9)
35 {

u(h̃j , hj) = log(1 + e−h̃j )− log(1 + e−hj ).

v(h̃k, hk) = log(1 + e−h̃k)− log(1 + e−hk).
(10)

We can approximate it with second-order Taylor expansion of u(·) and v(·) around hj and hk,36

respectively. For instance:37

u(h̃j , hj) =
−e−hj

1 + e−hj
(h̃j − hj) +

1

2

e−hj

(1 + e−hj )2
(h̃j − hj)

2

= (−1 + yj)(h̃j − hj) +
1

2
yj(1− yj)(h̃j − hj)

2.

(11)

In the same way, v(h̃k, hk) = yk(h̃k − hk) +
1
2yk(1− yk)(h̃k − hk)

2. So the above equation can be38

transformed as:39

E(ζCE) = LCE + E(
∑
j,yj=1

[(−1 + zj)(h̃j − hj) +
1

2
yj(1− yj)(h̃j − hj)

2])

+ E(
∑

k,yk=1

[zk(h̃k − hk) +
1

2
yk(1− yk)(h̃k − hk)

2])

= LCE +
∑
i

1

2
yi(1− yi)V ar(h̃i).

(12)
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