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(a) Indoor scene with saturation and motions.
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(b) Outdoor scene with noise and motions.

Figure 1: Qualitative comparison between the proposed method and HDRFlow [40] on two different scenes. The input low
dynamic range (LDR) videos consist of frames with alternate exposures, meaning that the exposure changes and part of
exposure information is missing at every time stamp (1-st row). Prior arts, e.g., the HDRFlow, struggle to achieve temporally
consistent high dynamic range (HDR) results due to the exposure change and the motion that causes information loss (2-nd
row). In contrast, the proposed method achieves temporally consistent HDR reconstruction results (4-th row) by completing the
absent exposure frames (3-rd row) at each time stamp. “EV”: the exposure value for each input LDR frame. “EC”: our exposure
completing results for the absent exposure corresponding to the input LDR frames.

ABSTRACT
High dynamic range (HDR) video rendering from low dynamic
range (LDR) videos where frames are of alternate exposure encoun-
ters significant challenges, due to the exposure change and absence
at each time stamp. The exposure change and absence make ex-
isting methods generate flickering HDR results. In this paper, we
propose a novel paradigm to render HDR frames via completing
the absent exposure information, hence the exposure information
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for profit or commercial advantage and that copies bear this notice and the full citation
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and/or a fee. Request permissions from permissions@acm.org.
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© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM
https://doi.org/10.1145/nnnnnnn.nnnnnnn

is complete and consistent. Our approach involves interpolating
neighbor LDR frames in the time dimension to reconstruct LDR
frames for the absent exposures. Combining the interpolated and
given LDR frames, the complete set of exposure information is
available at each time stamp. This benefits the fusing process for
HDR results, reducing noise and ghosting artifacts therefore im-
proving temporal consistency. Extensive experimental evaluations
on standard benchmarks demonstrate that our method achieves
state-of-the-art performance, highlighting the importance of absent
exposure completing in HDR video rendering. The code will be
made publicly available upon the acceptance of this paper.

CCS CONCEPTS
• Computing methodologies → Artificial intelligence; Com-
puter vision; Image and video acquisition; Computational
photography.

https://doi.org/10.1145/nnnnnnn.nnnnnnn


117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ACM MM, 2024, Melbourne, Australia Anonymous Authors

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

KEYWORDS
HDR video, Temporal consistency, Exposure completing

1 INTRODUCTION
Compared with the high dynamic range (HDR) of natural scenes,
the standard digital camera can only capture low dynamic range
(LDR) information. To achieve the goal of “what you see is what
you get” in photography, delicate optical systems [22, 33, 38] are
designed to simultaneously capture LDR images with different
exposures which cover the whole dynamic range to reconstruct
HDR results. However, these systems are expensive and un-portable,
making HDR contents not easily accessible for general users [18].
To address this limitation, computational methods [17, 18, 29] are
designed to render HDR videos from LDR videos whose frames are
exposed alternately with different exposures (as shown in 1-st row
in Fig. 1).

In this setting, the incomplete exposure information varies along
the time dimension. Existing neural HDR rendering methods [3,
6, 15, 40] align neighbor LDR frames according to the LDR frame
of current time stamp (called reference frame in this paper) and
fuse the aligned neighbor LDR frames into the reference frame to
supplement the missing exposure information. The exposure of
reference frame changes at every time stamp, which means that the
reference frames of different exposures may have different defects:
saturation for highly exposed LDR frames, and noise for lowly
exposed ones. Due to that the methods mentioned above heavily
depend on reference frames, HDR results from these methods may
inherit defects of the reference frames, suffering from the artifacts,
i.e., the ghosting (2-nd row in Fig. 1(a)) and noise (2-nd row in
Fig. 1(b)), thereby causing temporal inconsistency.

To tackle this problem, we revisit early traditional methods [17,
18] for HDR rendering and are motivated to complete the missing
exposure information for each time stamp [17, 18]. This idea fol-
lows the philosophy of optical HDR systems [38] that are designed
to obtain different exposed LDR frames at exact the same time.
In this way, defects of different exposed frames can be mutually
compensated. In this paper, we propose the Neural Exposure Com-
pleting HDR (NECHDR) framework to reconstruct the LDR frames
with missing exposure information. In this way, full exposure in-
formation at each time stamp can be covered by the reference and
completed LDR frames, therefore the exposure information is com-
plete and consistent along the time dimension, which benefits the
temporal consistency of the rendered HDR videos.

In the proposed NECHDR framework, pyramid features of input
LDR frames are extracted by the feature encoder, then fed into the
exposure completing decoder and the HDR rendering decoder. The
exposure completing decoder interpolates the features of neighbor
LDR frames at every level of the feature pyramid. The interpolated
LDR features are combined with the features from input LDR im-
ages as the inputs to HDR rendering decoder. The HDR rendering
decoder estimates coarse HDR results and the optical flows at every
level. The flows can facilitate feature interpolating in exposure com-
pleting decoder. At the end of NECHDR, a simple blending network
is used to integrate interpolated LDR frames, input frames, and
coarse HDR frames, which can achieve high-quality and temporally
consistent HDR reconstruction results.

Extensive experimental results on multiple public benchmarks
demonstrate the superiority of the proposed NECHDR: by com-
pleting the missing exposure information (3-rd row in Fig. 1), our
methodmitigates ghosting resulting from largemotions for the time
stamps with highly exposed reference frames (4-th row in Fig. 1(a)),
and reduces the noise level for the lowly exposed reference frames
(4-th row in Fig. 1(b)), hence achieves better temporal consistency.
Our work sheds light again on the exposure completing for HDR
video rendering. The contributions can be summarized as follows:

• Our work firstly implements the idea of exposure completing
for neural HDR rendering.

• Our work proposes a novel HDR video rendering framework,
a.k.a., the NECHDR, which completes the missing exposure infor-
mation by interpolating LDR frames.

• Our NECHDR achieves new state-of-the-art performance on
current benchmarks.

2 RELATEDWORK
2.1 HDR Image Rendering
HDR imaging technology aims to extend the dynamic range of
images by merging LDR images with different exposures. Both the
HDR image and video tasks encounter the misalignment between
LDR images. Pioneer studies for HDR image rendering employ
image alignment techniques to address this issue. Early works [9,
12, 19, 24, 35, 47] often align LDR images globally, then detect
and discard unaligned regions. Directly discarding these regions
leads to significant information loss, posing challenges for HDR
image rendering. To address these issues, optical-flow-based [1, 14,
49] and patch-based methods [13, 28, 37] are proposed. However,
large motion still makes these methods fail to produce artifact-
free HDR results. With the rapid development of deep learning,
many studies for HDR image rendering switch their focus to neural
networks [2, 5, 16, 25, 27, 34, 39, 42–44], achieving promising results.
Kalantari et al. [16] propose using neural networks to align input
LDR images with predicted optical flow. Wu et al. [39] directly map
LDR images to HDR images, thereby avoiding alignment errors.
Yan et al. [43, 45] use spatial attention to implicitly align LDR
images, achieving further improvement. Liu [27] et al.introduce
a ghost-free imaging model based on swin-transformer [26]. Yan
et al. [42] utilize patch-based and pixel-based fusion to search for
information to complement the reference frame from the other
frames. However, these HDR image rendering methods assume a
fixed exposure for reference frames, typically medium exposure,
therefore is not suitable for HDR video rendering where reference
frames have alternating exposures.

2.2 HDR Video Rendering
HDR video can be obtained by delicate optical systems, such as scan-
line exposure/ISO [4, 11], internal/external beam splitter [23, 31, 38],
modulo camera [48] and neuromorphic camera [10]. However, these
expensive systems are hardly accessible to general users. Therefore,
rendering HDR videos from LDR videos is investigated. Kang et
al. [18] utilize both global and local alignment for reference frames
with neighbor frames. Kalantari et al. [17] propose a patch-based
optimization algorithm to reconstruct HDR video by synthesizing
missing exposures for each frame. These traditional methods offer
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Figure 2: Pipline of the proposed NECHDR network. Our network mainly consists of three processes: feature encoding for
LDRs, exposure completing for LDR frames with missing exposures, and HDR rendering. We extract pyramid features from
the input LDR frames using a parameter shared feature encoder. Then, the optical flows predicted by the lower-level HDR
rendering decoder is used to warp neighbor frames to the reference frame. Subsequently, the exposure completing decoder
performs exposure completing based on the warped neighbor frame features. The input features and the completed feature are
fed into the HDR rendering decoder to render the coarse HDR frame. Finally, the original frames, the completed frame, and
the coarse HDR frame are fused together through a simple blending network to produce a high-quality HDR result.

a fundamental idea for completing missing exposures, but they
require iterative optimization and are prone to producing artifacts.
Recently, Kalantari et al. [15] introduce an end-to-end neural net-
work consisting of an optical flow prediction model and a fusion
network. Chen et al. [3] propose a coarse-to-fine alignment frame-
work, which utilizes optical flow for coarse alignment and then
employs deformable convolution [7] for fine alignment. Chung et
al. [6] employ spatial attention instead of optical flow to achieve
alignment from adjacent frames to the reference frame. Xu et al. [40]
propose the HDR-domain loss, which uses optical flow supervised
by HDR frames for LDR alignment, yielding favorable results. How-
ever, when complex situations such as large motion, saturation,
and others occur simultaneously, these methods struggle to achieve
precise alignment, resulting in artifacts in the final outputs. Besides,
as the exposures of reference frames alternate, the reconstructed
HDR frames tend to inherit the defects of reference frames, leading
to flicker in the output videos. The fundamental issue lies in the
lack of exposure information at every time stamp. Different from

previous methods, we propose a renaissance work which focuses
on completing missing exposures for the reference frame in neural
HDR video rendering. Through compensating for the defects of the
alternatively exposed reference frames by utilizing the completed
results, our approach avoids artifacts of ghost and noise and obtains
a temporally consistent HDR video result.

3 PROPOSED METHODS
3.1 Overview
Each frame 𝑙𝑖 in the LDR video 𝐿 = {𝑙𝑖 |𝑖 = 1, ..., 𝑛} is expected to
have multiple exposures E = {𝜖𝑖 |𝑖 = 1, ..., 𝑧} to cover the whole
dynamic range of HDR video 𝐻 = {ℎ𝑖 |𝑖 = 1, ...𝑛}, where 𝑛 is the
length of video, and 𝑧 is the number of exposures. However, in
our task, only one exposure can be obtained in one certain time
stamp, which creates an exposure sequence 𝐸 = {𝑒𝑖 |𝑖 = 1, ...𝑛} for
the LDR video, where 𝑒𝑖 = 𝜖 (𝑖⊘𝑧 )+1. 𝑎 ⊘ 𝑏 indicates the remainder
of 𝑎 divided by 𝑏.
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Following previous work [40], we try to render a high-quality
HDR video with LDR video under two settings of different alternate
exposures: two alternate exposures (𝑧 = 2) with three frames as
input, and three alternate exposures (𝑧 = 3) with five frames. We
use the two-exposure setting as an example to demonstrate how to
achieve HDR rendering. In Sec. 3.5, we introduce how to extend our
approach to the three-exposure setting. The frame 𝑙𝑡 corresponding
to the current time stamp 𝑡 , is treated as the reference frame. 𝑙𝑡 is
combined with its neighbors as input {𝑙𝑡−1, 𝑙𝑡 , 𝑙𝑡+1}. To render HDR
frames, we explicitly complete frames �̂�𝑡 with absent exposure 𝜖𝑖 ,
where 𝑖 ≠ (𝑡⊘𝑧)+1. Therefore, with complete exposure information,
we can render a high-quality HDR video.

Our method consists of two processes: exposure completing
for the frame with the absent exposure at the time stamp 𝑡 and
coarse-to-fine HDR rendering. These two processes are coupled
together through an encoder-decoder architecture, as illustrated in
the Fig. 2. The feature encoder E takes LDR frames {𝑙𝑡−1, 𝑙𝑡 , 𝑙𝑡+1}
as input and generates pyramid features for each frame. As the
spatial dimensions decrease and the feature channels increase, the
encoder outputs feature sets {Φ𝑡−1,Φ𝑡 ,Φ𝑡+1} for input frames, each
of which is a set of 𝑘-level pyramid features Φ = {𝜙𝑘 |𝑘 = 1, 2, 3, 4}.
Considering the distinct characteristics of the two processes, we
devise two dedicated decoders. Initially, an exposure completing de-
coder D𝐼 is employed to interpolate frame �̂�𝑡 and its corresponding
features Φ̂𝑘𝑡 = {𝜙𝑘𝑡 |𝑘 = 1, 2, 3}. Subsequently, a coarse-to-fine HDR
rendering decoder D𝑅 takes {Φ𝑡−1,Φ𝑡 ,Φ𝑡+1} and Φ̂𝑡 as input, and
outputs optical flows 𝐹𝑡−1→𝑡 = {𝑓 𝑘

𝑡−1→𝑡
|𝑘 = 0, 1, 2, 3}, 𝐹𝑡+1→𝑡 =

{𝑓 𝑘
𝑡+1→𝑡

|𝑘 = 0, 1, 2, 3}, coarse HDR features Ψ̂𝑡 = {𝜓𝑘
𝑡 |𝑘 = 1, 2, 3}

and coarse HDR frame ℎ̂𝑐𝑡 . The optical flows here are utilized towarp
{Φ𝑡−1,Φ𝑡+1} or {𝑙𝑡−1, 𝑙𝑡+1} to time stamp 𝑡 , yielding warped neigh-
bor features Φ̃𝑡−1 = {𝜙𝑘

𝑡−1 |𝑘 = 1, 2, 3}, Φ̃𝑡+1 = {𝜙𝑘
𝑡+1 |𝑘 = 1, 2, 3}

or frames {̃𝑙𝑡−1, �̃�𝑡+1}. The warped neighbor features {Φ̃𝑡−1, Φ̃𝑡+1}
and frames {̃𝑙𝑡−1, �̃�𝑡+1} are fed into D𝐼 . Subsequently, the exposure
completing features Φ̂𝑡 from D𝐼 are fed into the HDR rendering
decoder D𝑅 , assisting it in better restoring lost details due to satu-
ration and noise when decoding coarse HDR features Ψ̂𝑡 and coarse
HDR frame ℎ̂𝑐𝑡 . This design coupling two decoders enables mutual
enhancement of the two processes, thus obtaining more accurate
exposure completing frame �̂�𝑡 and better coarse HDR result ℎ̂𝑐𝑡 . To
obtain the final HDR rendering result, we map {𝑙𝑡−1, 𝑙𝑡 , 𝑙𝑡+1} and �̂�𝑡
to the linear HDR domain. The function defining the mapping of
LDR frames to the linear HDR domain is as follows:

𝑥𝑡 = 𝑙
𝛾
𝑡 /𝑒𝑡 , (1)

where𝛾 is a hyperparameter and 𝑒𝑡 is the exposure time of 𝑙𝑡 . Finally,
the ultimate high-quality HDR rendering result ℎ̂𝑡 is obtained by
fusing the input and completed frames with coarse HDR frame in
linear HDR domain using a simple blending network. The details
of each process will be presented in the following sections.

3.2 Exposure Completing
Under the setting that input LDR frames are with alternating expo-
sures, completing the absent exposure information is essential for
rendering HDR frames. However, existing neural HDR rendering
methods overlook this essential problem, making it difficult for

these methods to accurately recover detailed information when
motion occurs with saturation or noise simultaneously, potentially
leading to artifacts. Furthermore, due to these methods heavily
depend on reference frames, the alternate appearance of noise and
saturation caused by the alternate exposures in reference frames
affects the temporal consistency of the video. Therefore, to better
address the aforementioned issues, we explicitly tackle the fun-
damental problem of HDR rendering by completing frames with
absent exposure corresponding to reference frames.

Given the LDR frame input{𝑙𝑡−1, 𝑙𝑡 , 𝑙𝑡+1} with alternate expo-
sures {𝑒𝑡−1, 𝑒𝑡 , 𝑒𝑡+1} , where the reference frame and neighbor
frames have two different exposures ( 𝑒𝑡 = 𝜖1 and 𝑒𝑡−1 = 𝑒𝑡+1 = 𝜖2
), our task is to complete the frame �̂�𝑡 with absent exposure 𝜖2
corresponding to reference frame through interpolation.

Our exposure completing process takes the neighbor features
{Φ𝑡−1,Φ𝑡+1} and the optical flows {𝐹𝑡−1→𝑡 , 𝐹𝑡+1→𝑡 } as input. Dur-
ing this process for the features with absent exposure informa-
tion, the 𝑘-th level neighbor features {𝜙𝑘

𝑡−1, 𝜙
𝑘
𝑡+1} and optical flows

{𝑓 𝑘
𝑡−1→𝑡

, 𝑓 𝑘
𝑡+1→𝑡

} are processed to obtain completed feature 𝜙𝑘𝑡 :

𝜙𝑘𝑡−1, 𝜙
𝑘
𝑡+1 = W(𝜙𝑘𝑡−1, 𝑓

𝑘
𝑡−1→𝑡 ),W(𝜙𝑘𝑡+1, 𝑓

𝑘
𝑡+1→𝑡 ), (2)

𝜙3𝑡 = D3
𝐼

( [
𝜙3𝑡−1, 𝜙

3
𝑡+1

] )
, (3)

𝜙𝑘𝑡 = D𝑘
𝐼

( [
𝜙𝑘𝑡−1, 𝜙

𝑘
𝑡+1,U2 (𝜙𝑘+1𝑡 )

] )
, (4)

whereW (·, ·) denotes using optical flow to warp neighbor features
to the reference feature, U2 represents the bilinear upsampling op-
eration with scale factor 2, D𝑘

𝐼
(𝑘 = 1, 2) represents the middle

levels of the exposure completing decoder D𝐼 , and [·] indicates
concatenation operation. In the final step of the exposure complet-
ing process, the completed frame �̂�𝑡 is explicitly interpolated with
neighbor frames 𝑙𝑡−1, 𝑙𝑡+1 and optical flow 𝑓 0

𝑡−1→𝑡
, 𝑓 0
𝑡+1→𝑡

as input:

�̃�𝑡−1, �̃�𝑡+1 = W(𝑙𝑡−1, 𝑓 0𝑡−1→𝑡 ),W(𝑙𝑡+1, 𝑓 0𝑡+1→𝑡 ), (5)

�̂�𝑡 = D0
𝐼

( [̃
𝑙𝑡−1, �̃�𝑡+1,U2 (𝜙1𝑡 )

] )
, (6)

where D0
𝐼
represents the highest level of the exposure completing

decoder D𝐼 .
As illustrated in the Fig. 1, with the above design, we have ob-

tained realistic exposure completing result for the challenging areas
with motion, saturation and noise, providing accurate and complete
exposure information for subsequent HDR rendering.

3.3 Coarse-to-fine HDR Rendering
Building upon the results of above process, we designed a coarse-to-
fine HDR rendering network based on completed features Φ̂𝑡 and
frame �̂�𝑡 . Taking the original features {Φ𝑡−1,Φ𝑡 ,Φ𝑡+1}, completed
features Φ̂𝑡 and warped neighbor features {Φ̃𝑡−1, Φ̃𝑡+1} as input,
the HDR rendering decoder D𝑅 reconstructs HDR features Ψ̂𝑡 and
optical flows {𝐹𝑡−1→𝑡 , 𝐹𝑡+1→𝑡 } in a coarse-to-fine manner, and
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finally obtains the coarse HDR frame ℎ̂𝑐𝑡 :

𝜓3
𝑡 , 𝑓

3
𝑡−1→𝑡 , 𝑓

3
𝑡+1→𝑡 = D4

𝑅

( [
𝜙4𝑡−1, 𝜙

4
𝑡 , 𝜙

4
𝑡+1

] )
, (7)

𝜓𝑘−1
𝑡 , 𝑓 𝑘−1𝑡−1→𝑡 , 𝑓

𝑘−1
𝑡+1→𝑡 =

D𝑘
( [
𝜙𝑘𝑡 , 𝜙

𝑘
𝑡 ,𝜓

𝑘
𝑡 , 𝑓

𝑘
𝑡−1→𝑡 , 𝑓

𝑘
𝑡+1→𝑡 , 𝜙

𝑘
𝑡−1, 𝜙

𝑘
𝑡+1

] )
, (8)

ℎ̂𝑐𝑡 , 𝑓
0
𝑡−1→𝑡 , 𝑓

0
𝑡+1→𝑡 =

D1
( [
𝜙1𝑡 , 𝜙

1
𝑡 ,𝜓

1
𝑡 , 𝑓

1
𝑡−1→𝑡 , 𝑓

1
𝑡+1→𝑡 , 𝜙

1
𝑡−1, 𝜙

1
𝑡+1

] )
, (9)

where D𝑘
𝑅
(𝑘 = 2, 3) stand for the 𝑘-th level of the HDR rendering

decoder D𝑅 . The warped neighbor features {𝜙𝑘
𝑡−1, 𝜙

𝑘
𝑡+1} help D𝑅

to identify regions with poor alignment and subsequently obtain
the refined optical flow {𝑓 𝑘−1

𝑡−1→𝑡
, 𝑓 𝑘−1
𝑡+1→𝑡

}.
Based on the completed frame �̂�𝑡 and the coarse HDR frame ℎ̂𝑐𝑡 ,

we combine them with original LDR frames to obtain the final
HDR rendering result ℎ̂𝑡 . We adopted a blending network with
U-net architecture from Xu et al. [40]. Thus, original and com-
pleted LDR frames {𝑙𝑡−1, 𝑙𝑡 , 𝑙𝑡+1, �̂�𝑡 }, along with their corresponding
frames {𝑥𝑡−1, 𝑥𝑡 , 𝑥𝑡+1, 𝑥𝑡 } in linear HDR domain, and coarse HDR
frame ℎ̂𝑐𝑡 are fed into the blending network. The blending network
calculates fusion weights𝑊 = {𝑤𝑖 |𝑖 = 0, 1, 2, 3, 4} for the input five
HDR domain frames {𝑥𝑡−1, 𝑥𝑡 , 𝑥𝑡+1, 𝑥𝑡 , ℎ̂𝑐𝑡 } and obtains the final
HDR rendering result ℎ̂𝑡 through a weighted average based on the
computed weights𝑊 :

ℎ̂𝑡 =
𝑤0ℎ̂𝑐𝑡 +𝑤1𝑥𝑡 +𝑤2𝑥𝑡 +𝑤3𝑥𝑡−1 +𝑤4𝑥𝑡+1∑4

𝑗=0𝑤 𝑗

. (10)

Following Xu et al. [40], we also fuse with the neighbor frames
{𝑥𝑡−1, 𝑥𝑡+1} to provide information about static regions. As de-
picted in Fig. 1, when encountering complex scenes involving
both motion and saturation or noise, the fused exposure comple-
tion frames effectively provide the missing exposure information,
thereby obtaining ghost-free and low-noise HDR results. In sum-
mary, based on completing the frame with missing exposure infor-
mation, we finally achieve a high-quality HDR rendering process.

3.4 Training Loss
We calculate the losses for the completed LDR features Φ̂𝑡 and
frame �̂�𝑡 , rendered HDR features Ψ̂𝑡 and frame ℎ̂𝑡 , and optical flows
{𝐹𝑡−1→𝑡 , 𝐹𝑡+1→𝑡 }:
The losses for images. The widely adopted L1 loss is used to
supervise the completed LDR frame �̂�𝑡 and rendered HDR frame ℎ̂𝑡 ,
and is defined as follows:

L𝑐𝑜𝑚
𝐼 =

̂𝑙𝑡 − 𝑙𝑡


1
, (11)

L𝑟𝑒𝑛
𝐼 =

T (
ℎ̂𝑡
)
− T

(
ℎ𝑡
)
1
, (12)

L𝐼 = L𝑐𝑜𝑚
𝐼 + L𝑟𝑒𝑛

𝐼 , (13)

where 𝑙𝑡 and ℎ𝑡 are the corresponding ground truth for the com-
pleted LDR frame �̂�𝑡 and rendered HDR frame ℎ̂𝑡 , respectively. The
T (·) is a widely used function to map HDR frame to the tone-
mapped HDR domain, since HDR images are typically displayed

after tone mapping. This simple differentiable 𝜇−law function T (·)
is defined as follows:

T (ℎ) = log(1 + 𝜇ℎ)
log(1 + ℎ) , (14)

where 𝜇 is a hyperparameter.
The losses for features. Feature space geometry loss proposed
in [21] is employed to ensure that the intermediate features obtained
from frame interpolation and HDR reconstruction can be more
effectively refined to conform to geometrically structured features.
The parameter shared encoder E is used to obtain corresponding
pyramid features Φ𝑡 = {𝜙𝑘𝑡 |𝑘 = 1, 2, 3} and Ψ𝑡 = {𝜓𝑘

𝑡 |𝑘 = 1, 2, 3}
from the ground truth of completed LDR and rendered HDR frames.
Then, the loss function for supervising the features of completed
LDR and rendered HDR frames can be written as:

L𝑐𝑜𝑚
𝐺 =

3∑︁
𝑘=1

L𝑐𝑒𝑛

(
𝜙𝑘𝑡 , 𝜙

𝑘

𝑡

)
, (15)

L𝑟𝑒𝑛
𝐺 =

3∑︁
𝑘=1

L𝑐𝑒𝑛

(
𝜓𝑘
𝑡 ,𝜓

𝑘

𝑡

)
, (16)

L𝐺 = L𝑐𝑜𝑚
𝐺 + L𝑟𝑒𝑛

𝐺 , (17)

where the L𝑐𝑒𝑛 is census loss [32] and computed using the soft
Hamming distance between census-transformed [46] feature maps,
considering 3×3 patches in a channel-by-channel manner.
The loss for optical flows. The HDR-domain alignment loss [40]
is used hierarchically to supervise the learning process of optical
flow, which is defined as follows:

L𝑡−1→𝑡
𝐹 =

3∑︁
𝑘=0

∥W
(
T
(
ℎ𝑡−1

)
,U2𝑘

(
𝑓 𝑘𝑡−1→𝑡

) )
− T

(
ℎ𝑡
)
∥1, (18)

L𝑡+1→𝑡
𝐹 =

3∑︁
𝑘=0

∥W
(
T
(
ℎ𝑡+1

)
,U2𝑘

(
𝑓 𝑘𝑡+1→𝑡

) )
− T

(
ℎ𝑡
)
∥1, (19)

L𝐹 =
(
1 −𝑚𝑡

)
⊙
(
L𝑡−1→𝑡
𝐹 + L𝑡+1→𝑡

𝐹

)
, (20)

where W (·, ·) denotes using optical flow to warp neighbor frames
to the reference frame,U𝑠 represents the bilinear upsampling opera-
tion with scale factor 𝑠 . The mask𝑚𝑡 indicates well-exposed regions
in reference frame. First, 𝑙𝑡 is converted to YCbCr color space to
extract luminance𝑦. Then,𝑚𝑡 is defined as 𝛿low < 𝑦 < 𝛿high, where
𝛿low and 𝛿high are the low and high luminance thresholds, respec-
tively. This allows the optical flow computation to focus more on
regions with poor exposure in the reference frame.
Total loss. Our total loss can be summarized as follows:

L𝑡𝑜𝑡𝑎𝑙 = L𝐼 + 𝛼 ∗ L𝐺 + 𝛽 ∗ L𝐹 . (21)

3.5 Extension to Three Exposures
In the alternate exposure setting with three exposures, five LDR
frames {𝑙𝑡−2, 𝑙𝑡−1, 𝑙𝑡 , 𝑙𝑡+1, 𝑙𝑡+2} are used as input to the network for
HDR ℎ̂𝑡 rendering. The five LDR frames are with corresponding
exposure sequences {𝑒𝑡−2, 𝑒𝑡−1, 𝑒𝑡 , 𝑒𝑡+1, 𝑒𝑡+2}. In this way, the refer-
ence frame has only one certain exposure 𝑒𝑡 = 𝜖3. Specifically, the
first frame 𝑙𝑡−2 and the fourth frame 𝑙𝑡+1 have the same exposure
𝑒𝑡−2 = 𝑒𝑡+1 = 𝜖1, while the second frame 𝑙𝑡−1 and the fifth frame
𝑙𝑡+2 also share the same exposure 𝑒𝑡−1 = 𝑒𝑡+2 = 𝜖2. Therefore, the
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Table 1: Quantitative comparisons of our method with other state-of-the-art methods on the Cinematic Video dataset [8].The
best and the second best results are highlighted in red and blue, respectively.

Methods 2-Exposure 3-Exposure
PSNR 𝑇 SSIM 𝑇 HDR-VDP-2 PSNR 𝑇 SSIM 𝑇 HDR-VDP-2

Kalantari13 [17] 2013-TOG 37.51 0.9016 60.16 30.36 0.8133 57.68
Kalantari19 [15] 2019-CGF 37.06 0.9053 70.82 33.21 0.8402 62.44
Yan19 [43] 2019-CVPR 31.65 0.8757 69.05 34.22 0.8604 66.18
Prabhakar [36] 2021-CVPR 34.72 0.8761 68.82 34.02 0.8633 65.00
Chen [3] 2021-ICCV 35.65 0.8949 72.09 34.15 0.8847 66.81
LAN-HDR [6] 2023-ICCV 38.22 0.9100 69.15 35.07 0.8695 65.42
HDRFlow [40] 2024-CVPR 39.20 0.9154 70.98 36.55 0.9039 65.89
HDRFlow [40](+Sintel) 2024-CVPR 39.30 0.9156 71.05 36.65 0.9055 66.02
Ours 40.59 0.9241 73.31 37.24 0.9102 68.36

Table 2: Quantitative comparisons of our method with other state-of-the-art methods on the DeepHDRVideo dataset [3]. The
result is the weighted average of all results from both dynamic scenes and static scenes in this dataset. The best and the second
best results are highlighted in red and blue, respectively.

Methods 2-Exposure 3-Exposure
PSNR 𝑇 SSIM 𝑇 HDR-VDP-2 PSNR 𝑇 SSIM 𝑇 HDR-VDP-2

Kalantari13 [17] 2013-TOG 40.33 0.9409 66.11 38.45 0.9489 57.31
Kalantari19 [15] 2019-CGF 39.91 0.9329 71.11 38.78 0.9331 65.73
Yan19 [43] 2019-CVPR 40.54 0.9452 69.67 40.20 0.9531 68.23
Prabhakar [36] 2021-CVPR 40.21 0.9414 70.27 39.48 0.9453 65.93
Chen [3] 2021-ICCV 42.48 0.9620 74.80 39.44 0.9569 67.76
LAN-HDR [6] 2023-ICCV 41.59 0.9472 71.34 40.48 0.9504 68.61
HDRFlow [40] 2024-CVPR 43.18 0.9510 77.11 40.45 0.9530 72.30
HDRFlow [40](+Sintel) 2024-CVPR 43.25 0.9520 77.29 40.56 0.9535 72.42

Ours 43.44 0.9558 79.20 40.13 0.9550 76.98

exposure completion process takes {𝑙𝑡−2, 𝑙𝑡 , 𝑙𝑡+1} and {𝑙𝑡−1, 𝑙𝑡 , 𝑙𝑡+2}
as inputs, generates exposure completing results {̂𝑙𝜖1𝑡 , �̂�

𝜖2
𝑡 } through

the flow-guided completing process, and obtains coarse HDR results
ℎ̂𝑐𝑡 through the coarse-to-fine HDR rendering process. A total of
fifteen images, including the exposure completing frames and mul-
tiple original LDR frames, along with their corresponding frames
in linear HDR domain, and the coarse HDR result, are fed into the
blending network. This blending network calculates seven weights
to fuse the seven HDR domain images in a weighted average man-
ner and obtain the final HDR rendering result. More details are
provided in supplementary materials.

4 EXPERIMENTS
4.1 Experimental Setup
Datasets. We utilize synthetic training data generated from the
Vimeo-90K dataset [41]. To adapt the Vimeo90K dataset for HDR
video reconstruction, we follow prior research [18] to convert the
original data into LDR sequenceswith alternate exposures. To create
the ground truth of completed LDR frames, we also generated LDR
sequences with missing exposures in the same way. Our framework
is tested on the Cinematic Video dataset [8] and DeepHDRVideo

dataset [3]. The Cinematic Video dataset has two synthetic videos
from indoor and outdoor scenes. The DeepHDRVideo dataset [3]
contains both real-world dynamic scenes and static scenes with
random global motion augmentation. The HDRVideo dataset [17] is
employed solely for qualitative evaluation, as it lacks ground truth.
Implementation details.We implement our approach using Py-
Torch and conduct experiments on an NVIDIA RTX3090 GPU. We
employ AdamW optimizer [20] with 𝛽1 = 0.9 and 𝛽2 = 0.999. The
learning rate is set to 10−4. In our experiments, we set 𝛾 in Eq. 1 to
2.2 and 𝜇 in Eq. 14 to 5000. Following HDRFlow [40], we set 𝛿low
to 0.2 and 𝛿high to 0.8. The weighting hyperparameters 𝛼 and 𝛽 for
the loss function in Eq. 21 are set to 0.01.
Evaluation metrics. PSNR𝑇 , SSIM𝑇 and HDR-VDP-2 [30] are
adopted as the evaluation metrics. PSNR𝑇 and SSIM𝑇 are computed
on the tone-mapped images. HDR-VDP-2 is computed with the
number of pixels per visual degree set to 30, which means the
angular resolution of the image.

4.2 Comparisons with State-of-the-art
Quantitative comparisons between our and other state-of-the-
art methods on the Cinematic Video [8] and DeepHDRVideo [3]
datasets are shown in Table 1 and Table 2, respectively. Compared to
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LDRs Our Tonemaped Results LDR Patchs

Chen LAN-HDR HDRFlow EC Ours GT

LDRs Our Tonemaped Results LDR Patchs

Chen LAN-HDR HDRFlow EC Ours

Figure 3: Qualitative comparison in scenes with over-saturation and motion. Left: 2-Exposure scene from the Cinematic Video
dataset [8]. Right: 2-Exposure scene from the HDRVideo dataset [17]."EC" refers to our exposure completion results.

LDRs Our Tonemaped Results LDR Patchs

Chen LAN-HDR HDRFlow EC Ours GT

LDRs Our Tonemaped Results LDR Patchs

Chen LAN-HDR HDRFlow EC Ours GT

Figure 4: Qualitative comparison in scenes with noise and motion. Left: 2-Exposure scene from the Cinematic Video dataset [8].
Right: 2-Exposure scene from the DeepHDRVideo dataset [3]. "EC" refers to our exposure completion results.

state-of-the-art methods, our approach consistently achieves supe-
rior or comparable performance. Especially, our approach achieves
state-of-the-art performance on Cinematic Video [8] dataset, out-
performing the second-best method by 1.29dB and 0.59dB in terms
of PSNR𝑇 for the 2-exposure and 3-exposure settings, respectively.
Qualitative comparisons are shown in Fig. 3 and Fig. 4. we com-
pare our NECHDR with the previous methods: Chen [3], LAN-
HDR [6] and HDRFlow [40]. Fig. 3 illustrates the results from
scenes with saturation and motion on Cinematic Video dataset [8]
and HDRVideo dataset [17] under the 2-exposure setting. Apart
from our method, other methods tend to exhibit severe artifacts or
detail loss when saturation and motion occur simultaneously. In
such challenging scenarios, we achieve accurate and artifact-free
exposure completion results for saturated regions by leveraging
frame interpolation from neighboring frames. This enables us to
fuse high-quality HDR results. And in Fig. 4, we also show the

results encountering noise and motion from the Cinematic Video
dataset [8] and DeepHDRVideo dataset [3]. The scene on the left
side of Fig. 4 is captured in low-light conditions, resulting in very
low signal-to-noise ratio in the low-exposure frames. This can lead
to very high noise levels in rendered HDR frames after tone map-
ping, which makes this scene particularly challenging. Specifically,
methods based on optical flow [3, 40] tend to produce noisy artifacts,
while attention-based method [6] exhibit more pronounced noise.
Our method explicitly reconstructs the absent high-exposure frame
with low noise at the current time stamp, achieving the best noise
suppression, even with some regions having noise intensity lower
than ground truth. The visualization results above explain why we
achieve a significant performance improvement compared with
other state-of-the-art methods. More qualitative comparisons in the
3-exposure setting are provided in the supplementary materials.
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Table 3: Ablation study of NECHDR on the DeepH-
DRVideo [3] and CinematicVideo dataset [8]. "EC" refers
to exposure completing. "HR" refers to HDR rendering. "Un-
coupled" means this two processes work independently.

Model DeepHDRVideo Cinematic Video
PSNR𝑇 SSIM𝑇 PSNR𝑇 SSIM𝑇

EC Baseline 41.09 0.9479 39.13 0.9174
HR Baseline 42.64 0.9524 39.98 0.9193

Uncoupled EC, HR 43.17 0.9535 40.27 0.9202
Coupled EC, HR (Ours) 43.44 0.9558 40.59 0.9241

EC Baseline

Uncoupled EC, HR Coupled EC, HR (Ours) 

HR Baseline� �
� �

−
�

� �
+

�

LDRs

Figure 5: Qualitative comparison of the models correspond-
ing to the ablation study on a dynamic scene of DeepH-
DRVideo [3] dataset.

4.3 Analysis
Ablation Study. We conduct ablation experiments under the 2-
exposure setting onCinematic Video dataset [8] andDeepHDRVideo
dataset [3], and the quantitative and qualitative results are shown
in Table 3 and Fig. 5, respectively. We devised a baseline that em-
ploys IFRNet [21] to utilize the neighbor frames to complete the
middle time frame that with missing exposure information and
achieve HDR results by simply fusing the completed LDR frame
with the original LDR frames. The performance of this baseline is
shown as “EC Baseline” in the first row in Table 3. Another base-
line directly renders HDR results based on IFRNet, which is the
“HR Baseline” in second row in Table 3. However, relying solely
on either exposure completing or HDR rendering results is with
limited performance. By adding the exposure completing decoder,
we get a network (third row in Table 3) that contains both decou-
pled exposure completing and HDR rendering processes. Finally,
through feeding the completed features and frames from exposure
completing decoder into the process of HDR rendering, we achieve
our NECHDR framework in the forth row in Table 3. Based on the
qualitative and quantitative results, we can see: (a) coupled expo-
sure completing and HDR rendering processes benefit the quality

t

GT Temporal Profiles
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Flow
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urs
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Figure 6: Visual comparisons of temporal consistency.

of final HDR results; (b) exposure completing decoder is necessary;
(d) the completed results with missing exposure information help
the rendering process of HDR reconstruction.
Temporal consistency.We show the visual comparisons of tempo-
ral consistency in Fig. 6. In Fig. 6, we record a two-pixel-height line
traversing all frames of a scene in the Cinematic Video dataset [8]
over time and lay them out sequentially to form temporal profiles.
Base on the illustration of temporal profiles, we can observe that
the horizontal stripes exist in the temporal profiles of other meth-
ods. The horizontal stripes comes from the differences between
adjacent frames, which represents the temporal inconsistency. In
contrast, the horizontal stripes can hardly be observed in our tempo-
ral profiles, which means that our proposed method achieves better
temporal consistency. Additional visual comparisons regarding
temporal consistency can be found in the supplementary materials.

5 CONCLUSION
In this paper, we implement the idea of exposure completing for
neural HDR video rendering and propose the Neural Exposure
Completing HDR (NECHDR) framework. The NECHDR leverages
interpolation of neighbor LDR frames to complete missing expo-
sures, providing a complete set of exposure information for each
time stamp. This process of exposure completing creates a novel
neural HDR video rendering pipeline, which can generate results
of less noise and ghosting artifacts, thereby enhancing temporal
consistency. Experimental results on multiple public benchmarks
demonstrate the superiority of our NECHDR, which may shift the
focus of researchers in this area to the exposure completing.
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