Cannistraci-Hebb Training of Convolutional

NeuralNetworks

Introduction

Dynamic sparse training (DST) enables neural networks to evolve their
topology during training, which reduces computational overhead while
maintaining performance. Cannistraci-Hebb Training (CHT), a brain-inspired
method based on epitopological learning principles, has demonstrated
significant advantages in building ultra-sparse fully connected networks.

We propose CHT-Conv, extending CHT to convolutional layers while
adhering to the inherent constraints of convolutional layers. Experiments on
CIFAR-10 and CIFAR-100 using VGG16 architectures show CHT-Conv
achieves competitive or superior performance compared to SET baseline at
50\% and 70\% sparsity levels.
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Proposed Method

Initialization, Fig (c)

For each convolutional layer, we initialize a random Boolean tensor mask of
the same shape as each kernel to govern which positions are removed at
this phase.

Removal, Fig (d)

On each kernel, a fixed fraction positions with the smallest weight
magnitudes are removed.

Link Prediction and Regrowth, Fig (e)(f)

With CH link predictors, each inactive positions is assigned a likelihood
scores, by which we choose the positions to regrow.
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(c) Sparsity Initialization
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Experimental Results

(b) Conv Layer - Bipartite Graph View/

We evaluate the performance of CHT-Conv on CIFAR10 and CIFAR100 with
VGG16.

Preliminary experimental results indicate that:

(1) As sparsity progressively increases, the performance of the network declines;

(2) Compared to SET, the CHT method either outperforms SET (on CIFAR-10) or
performs at least comparably to SET (on CIFAR-100).
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Sparsity Method CIFAR-10 CIFAR-100

0% Dense 92.14 £ 0.06 72.58 + 0.11

50% SET 92.08 £ 0.10 71.86 £ 0.12
CHT-CH2 92.04 + 0.21 72.08 + 0.06
JHT-CH3 92.32 £ 0.06 72.14 &+ 0.06

70% SET 91.63 £ 0.07 71.03 4+ 0.13
CHT-CH2  91.73 £ 0.15 70.89 + 0.23
CHT-CH3 92.04 + 0.05 70.75 + 0.00
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