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Introduction 

Dynamic sparse training (DST) enables neural networks to evolve their 

topology during training, which reduces computational overhead while 

maintaining performance. Cannistraci-Hebb Training (CHT), a brain-inspired 

method based on epitopological learning principles, has demonstrated 

significant advantages in building ultra-sparse fully connected networks.

We propose CHT-Conv, extending CHT to convolutional layers while 

adhering to the inherent constraints of convolutional layers. Experiments on 

CIFAR-10 and CIFAR-100 using VGG16 architectures show CHT-Conv 

achieves competitive or superior performance compared to SET baseline at 

50\% and 70\% sparsity levels.

Proposed Method

Initialization, Fig (c)

For each convolutional layer, we initialize a random Boolean tensor mask of 

the same shape as each kernel to govern which positions are removed at 

this phase.
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Experimental Results

Removal, Fig (d)

On each kernel, a fixed fraction positions with the smallest weight 

magnitudes are removed.

We evaluate the performance of CHT-Conv on CIFAR10 and CIFAR100 with 

VGG16.

Preliminary experimental results indicate that:

(1) As sparsity progressively increases, the performance of the network declines;

(2) Compared to SET, the CHT method either outperforms SET (on CIFAR-10) or 

performs at least comparably to SET (on CIFAR-100).

Link Prediction and Regrowth, Fig (e)(f)

With CH link predictors, each inactive positions is assigned a likelihood 

scores, by which we choose the positions to regrow.


