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ABSTRACT

Federated learning (FL) inevitably confronts the challenge of system heterogeneity
in practical scenarios. To enhance the capabilities of most model-homogeneous FL
methods in handling system heterogeneity, we propose a training scheme that can
extend their capabilities to cope with this challenge. In this paper, we commence our
study with a detailed exploration of homogeneous and heterogeneous FL settings
and discover three key observations: (1) a positive correlation between client
performance and layer similarities, (2) higher similarities in the shallow layers in
contrast to the deep layers, and (3) the smoother gradient distributions indicate
the higher layer similarities. Building upon these observations, we propose InCo
Aggregation that leverages internal cross-layer gradients, a mixture of gradients
from shallow and deep layers within a server model, to augment the similarity
in the deep layers without requiring additional communication between clients.
Furthermore, our methods can be tailored to accommodate model-homogeneous
FL methods such as FedAvg, FedProx, FedNova, Scaffold, and MOON, to expand
their capabilities to handle the system heterogeneity. Copious experimental results
validate the effectiveness of InCo Aggregation, spotlighting internal cross-layer
gradients as a promising avenue to enhance the performance in heterogeneous FL.

1 INTRODUCTION

Federated learning (FL) is proposed to enable a federation of clients to effectively cooperate towards
a global objective without exchanging raw data (McMahan et al., 2017). While FL makes it possible
to fuse knowledge in a federation with privacy guarantees (Huang et al., 2021; McMahan et al., 2017;
Jeong & Hwang, 2022), its inherent attribute of system heterogeneity (Li et al., 2020a), i.e., varying
resource constraints of local clients, may hinder the training process and even lower the quality of the
jointly-learned models (Kairouz et al., 2021; Li et al., 2020a; Mohri et al., 2019; Gao et al., 2022).

System heterogeneity refers to a set of varying physical resources {Ri}ni=1, where Ri denotes the
resource of client i, a high-level idea of resource that holistically governs the aspects of computation,
communication, and storage. Existing works cater to system heterogeneity through a methodology
called model heterogeneity, which aligns the local models of varying architectures to make full use
of local resources (Diao et al., 2021; Baek et al., 2022; Alam et al., 2022; Huang et al., 2022; Fang
& Ye, 2022; Lin et al., 2020). Specifically, model heterogeneity refers to a set of different local
models {Mi}ni=1 with Mi being the model of client i. Let R(M) denote the resource requirement
for the model M . Model heterogeneity is a methodology that manages to meet the constraints
{R(Mi) ≤ Ri}ni=1. In the case of model heterogeneity, heterogeneous devices are allocated to a
common model prototype tailored to their varying sizes, such as ResNets with different depths or
widths of layers (Liu et al., 2022; Diao et al., 2021; Horvath et al., 2021; Baek et al., 2022; Caldas
et al., 2018; Ilhan et al., 2023), strides of layers (Tan et al., 2022), or numbers of kernels (Alam et al.,
2022), to account for their inherent resource constraints. While several methods have been proposed
to incorporate heterogeneous models into federated learning (FL), their performances often fall short
compared to FL training using homogeneous models of the same size (He et al., 2020; Diao et al.,
2021). Therefore, gaining a comprehensive understanding of the factors that limit the performance
of heterogeneous models in FL is imperative. The primary objective of this paper is to investigate
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Figure 1: CKA similarity in different environments and the relation between accuracy and CKA
similarity. (a) and (b): The CKA similarity of different federated settings. (c): The positive relation
between CKA and accuracy during the training process.

the underlying reasons behind this limitation and propose a potential solution that acts as a bridge
between model homogeneity and heterogeneity to tackle this challenge.

In light of this, we first conduct a case study to reveal the obstacles affecting the performance of
heterogeneous models in FL. The observations from this case study are enlightening: (1) With
increasing heterogeneity in data distributions and model architectures, we observe a decline in model
accuracy and layer-wise similarity (layer similarity) as measured by Centered Kernel Alignment
(CKA)1 (Kornblith et al., 2019), a quantitative metric of bias (Luo et al., 2021; Raghu et al., 2021);
(2) The deeper layers share lower layer similarity across the clients, while the shallower layers exhibit
greater alignment. These insights further shed light on the notion that shallow layers possess the
ability to capture shared features across diverse clients, even within the heterogeneous FL setting.
Moreover, these observations indicate that the inferior performances in heterogeneous FL are related
to the lower similarity in the deeper layers. Motivated by these findings, we come up with an idea:
Can we enhance the similarity of deeper layers, thereby attaining improved performance?

To answer this question, we narrow our focus to the gradients, as the dissimilarity of deep layers
across clients is a direct result of gradient updates (Ruder, 2016; Chen et al., 2021). Interestingly, we
observe that (3) the gradient distributions originating from shallow layers are smoother and possess
higher similarity than those from deep layers, establishing a connection between the gradients and the
layer similarity. Therefore, inspired by these insights, we propose a method called InCo Aggregation,
deploying different model splitting methods and utilizing the Internal Cross-layer gradients (InCo) in
a server model to improve the similarity of its deeper layers without additional communications with
the clients. More specifically, cross-layer gradients are mixtures of the gradients from the shallow
and the deep layers. We utilize cross-layer gradients as internal knowledge, effectively transferring
knowledge from the shallow layers to the deep layers. Nevertheless, mixing these gradients directly
poses a significant challenge called gradient divergence (Wang et al., 2020; Zhao et al., 2018). To
tackle this issue, we normalize the cross-layer gradients and formulate a convex optimization problem
that rectifies their directions. In this way, InCo Aggregation automatically assigns optimal weights
to the cross-layer gradients, thus avoiding labor-intensive parameter tuning. Furthermore, InCo
Aggregation can extend to model-homogeneous FL methods that previously do not support
model heterogeneity, such as FedAvg(McMahan et al., 2017), FedProx (Li et al., 2020b), FedNova
(Wang et al., 2020), Scaffold (Karimireddy et al., 2020), and MOON (Li et al., 2021a), to develop
their abilities in managing the model heterogeneity problem.

Our main contributions are summarized as follows:
• We first conduct a case study on homogeneous and heterogeneous FL settings and find that (1)

client performance is positively correlated to layer similarities across different client models,
(2) similarities in the shallow layers are higher than the deep layers, and (3) smoother gradient
distributions hint for higher layer similarities.

• We propose InCo Aggregation, applying model splitting and the internal cross-layer gradients
inside a server model. Moreover, our methods can be seamlessly applied to various model-
homogeneous FL methods, equipping them with the ability to handle model heterogeneity.

• We establish the non-convex convergence of utilizing cross-layer gradients in FL and derive the
convergence rate.

• Extensive experiments validate the effectiveness of InCo Aggregation, showcasing its efficacy in
strengthening model-homogeneous FL methods for heterogeneous FL scenarios.

1The detailed descriptions for CKA are introduced in Appendix A.
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Figure 2: Cross-environment similarity and gradients distributions. (a) and (b): Similarity from Stage
2 and Stage 3. (c) and (d): The gradient distributions of Non-IID with hetero and IID with homo.

2 PRELIMINARY

To investigate the performance of clients in diverse federated learning settings, we present a case
study encompassing both homogeneous and heterogeneous model architectures with CIFAR-10 and
split data based on IID and Non-IID with ResNets (He et al., 2016) and ViTs (Dosovitskiy et al.,
2020). We use CKA (Kornblith et al., 2019) similarities among models to measure the level of bias
exhibited by each model. More detailed results of the case study are provided in Appendix G.

2.1 A CASE STUDY IN DIFFERENT FEDERATED LEARNING ENVIRONMENTS

Case Analysis. Generally, we find three intriguing observations from Table 1 and Figure 1:

Table 1: Accuracy of the case study.

Settings Test Accuracy

R
es

N
et IID with homo 81.0

Non-IID with homo 62.3(↓18.7)
Non-IID with hetero 52.3(↓28.7)

V
iT

IID with homo 81.0
Non-IID with homo 54.8(↓26.2)
Non-IID with hetero 50.1(↓30.9)

(i) The deeper layers or stages have lower CKA similarities than
the shallow layers. (ii) The settings with higher accuracy also
obtain higher CKA similarities in the deeper layers or stages.
(iii) The CKA similarity is positively related to the accuracy
of clients, as shown in Figure 1c. These observations indicate
that increasing the similarity of deeper layers can serve as a
viable approach to improving client performance. Considering
that shallower layers exhibit higher similarity, a potential direc-
tion emerges: to improve the CKA similarity in deeper layers
according to the knowledge from the shallower layers.

2.2 DEEP INSIGHTS OF GRADIENTS IN THE SHALLOWER LAYERS

Gradients as Knowledge. In FL, there are two primary types of knowledge that can be utilized:
features, which are outputs from middle layers, and gradients from respective layers. We choose
to use gradients as our primary knowledge for two essential reasons. Firstly, our FL environment
lacks a shared dataset, impeding the establishment of a connection between different clients using
features derived from the same data. Secondly, utilizing features in FL would significantly increase
communication overheads. Hence, taking these practical considerations into account, we select
gradients as the knowledge.
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Figure 3: The gradient distributions from round 40 to 50 in different environments.

Cross-environment Similarity. In this subsection, we deeply investigate the cross-environment
similarity of gradients between two environments, i.e., IID with homo and Non-IID with hetero, to
shed light on the disparities between shallow and deep layers in the same stage2 and identify the gaps
between the homogeneous and heterogeneous FL. As depicted in Figure 2a and 2b, gradients from
shallow layers (Stage2.conv0 and Stage3.conv0) exhibit higher cross-environment CKA similarity
than those from deep layers such as Stage2.conv1, and Stage3.conv2. Notably, even the lowest
similarities (red lines) in Stage2.conv0 and Stage3.conv0 surpass the highest similarities in deep
layers. These findings underscore the superior quality of gradients obtained from shallow layers

2We discuss a shallow layer (the first layer with the same shape in a stage) and deep layers (remaining layers)
within a stage for ResNets and a block for ViTs. The gradient analyses for ViTs are introduced in Appendix G.3

3



Published as a conference paper at ICLR 2024

Deeper Layers

𝑅𝑅2 Split

Central Server

Clients Resource Constraints: 𝑅𝑅𝑖𝑖 𝑖𝑖=1
3

Layer Splitting

Sp
lit

 C
on

fig

Aggregate

Client Resources

𝑅𝑅2𝑅𝑅1 𝑅𝑅3

Splitting

𝑅𝑅1 Split 𝑅𝑅3 Split

Global Model

Deeper

𝑅𝑅1 𝑅𝑅2 𝑅𝑅3

𝑅𝑅1 𝑅𝑅2 𝑅𝑅3

(a) Layer splitting.

𝑅𝑅2 Split

Central Server

Clients Resource Constraints: 𝑅𝑅𝑖𝑖 𝑖𝑖=1
3

Stage Splitting

Sp
lit

 C
on

fig

Aggregate

Client Resources

𝑅𝑅2𝑅𝑅1 𝑅𝑅3

Splitting

𝑅𝑅1 Split 𝑅𝑅3 Split

Global Model

Deeper

𝑅𝑅1 𝑅𝑅2 𝑅𝑅3

𝑅𝑅1 Split

𝑅𝑅2 Split

𝑅𝑅3 Split

Stage 1 Stage 2 Stage 3

(b) Stage splitting.

Deeper Layers

𝑅𝑅2 Split

Central Server

Clients Resource Constraints: 𝑅𝑅𝑖𝑖 𝑖𝑖=1
3

Hetero Splitting

Sp
lit

 C
on

fig

Aggregate

Client Resources

𝑅𝑅2𝑅𝑅1 𝑅𝑅3

Splitting

𝑅𝑅1 Split 𝑅𝑅3 Split

Global Model

Deeper

𝑅𝑅1 𝑅𝑅2 𝑅𝑅3

𝑅𝑅1 𝑅𝑅2 𝑅𝑅3
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Figure 5: The system architecture of three different model splitting methods: (a) layer splitting, (b)
stage splitting, and (c) heterogeneous (hetero) splitting. (a): Layer splitting divides the entire model
layer by layer. (b): Stage splitting separates each stage layer by layer. (c): Hetero splitting partitions
the whole model in different widths and depths depending on the available resources Ri of client i.

relative to those obtained from deep layers, and also indicate that the layers within the same stage
exhibit similar patterns to the layers throughout the entire model.

Gradient Distributions. To dig out the latent relations between gradients and layer similarity, we
delve deeper into the analysis of gradient distributions across different FL environments. More
specifically, the comparison of Figure 2c and Figure 2d reveals that gradients from shallow layers
(Stage3.conv0) exhibit greater similarity in distribution between Non-IID with hetero and IID with
homo environments, in contrast to deep layers (Stage3.conv1 and Stage3.conv2). Additionally, as
depicted in Figure 3c and Figure 3d, the distributions of gradients from a deep layer (Figure 3d)
progressively approach the distribution of gradients from a shallow layer (Figure 3c) with each round,
in contrast to Figure 3a and Figure 3b, where the distributions from deep layers (Figure 3b) are less
smooth than those from shallow layers (Figure 3a) in Non-IID with hetero during rounds 40 to 50.
Consequently, drawing from the aforementioned gradient analysis, we can enhance the quality of
gradients from deep layers in Non-IID with hetero environments by leveraging gradients from shallow
layers, i.e., cross-layer gradients as introduced in the subsequent section.

3 INCO AGGREGATION

We provide a concise overview of the three key components in InCo Aggregation at first.

Layer 1, 𝐺1
𝑡 + 𝐺0

𝑡

Layer N, 𝐺𝑁
𝑡 + 𝐺0

𝑡

Layer 2, 𝐺2
𝑡 + 𝐺0

𝑡

Layer 0, 𝐺0
𝑡

Stage 𝑖

……

…
…

Stage 𝑖 − 1

Stage 𝑖 + 1

……

……

𝐺0
𝑡

Figure 4: Cross-layer gradients for the
server model in InCo.

The first component is model splitting, including three
types of model splitting methods, as shown in Figure 5.
The second component involves the combination of gra-
dients from a shallow layer and a deep layer, referred
to as internal cross-layer gradients. To address gradient
divergence, the third component employs gradient normal-
ization and introduces a convex optimization formulation.
We elaborate on these three critical components of InCo
Aggregation as follows.

3.1 MODEL SPLITTING

To facilitate model heterogeneity, we propose three model
splitting methods: layer splitting, stage splitting, and het-
ero splitting, as illustrated in Figure 5. These methods
distribute models with varying sizes to clients based on
their available resources, denoted as Ri. In layer splitting, the central server initiates a global model
and splits it layer by layer, considering the client resources Ri, as depicted in Figure 5a. In contrast,
stage splitting separates each stage layer by layer in Figure 5b. For instance, Figure 5b illustrates how
the smallest client with R1 resources obtains the first layer from each stage in stage splitting, whereas
it acquires the first three layers from the entire model in layer splitting. Furthermore, hetero splitting,
depicted in Figure 5c, involves the server splitting the global model into distinct widths and depths for
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Figure 6: A depiction of gradient divergence, as shown in Figure 6a, along with its solutions. Despite
the normalization portrayed in Figure 6b, the impact of gradient divergence persists. To mitigate
this issue, we propose a convex optimization problem that is restricting gradient directions, as
demonstrated in Figure 6c and supported by Theorem 3.1.

different clients, similar to the approaches in HeteroFL (Diao et al., 2021) and FedRolex (Alam et al.,
2022). Layer splitting and stage splitting offer flexibility for extending model-homogeneous methods
to system heterogeneity, while hetero splitting enables the handling of client models with varied
widths and depths. Finally, the server aggregates client weights based on their original positions in
the server models.

3.2 INTERNAL CROSS-LAYER GRADIENTS

Deploying model splitting methods directly in FL leads to a significant decrease in client accuracy, as
demonstrated in Table 1. However, based on the findings of the case study, we observe that gradients
from shallow layers contribute to increasing the similarity among layers from different clients, and
CKA similarity exhibits a positive correlation with client accuracy. Therefore, we enhance the
quality of gradients from deep layers by incorporating the utilization of cross-layer gradients. More
specifically, when a server model updates the deep layers, we combine and refine the gradients from
these layers with the gradients from the shallower layers to obtain appropriately updated gradients.
Figure 4 provides a visual representation of how cross-layer gradients are employed. We assume that
this stage has N layers. The first layer with the same shape in a stage (block) is referred to as Layer
0, and its corresponding gradients at time step t are Gt

0. For Layer k, where k ∈ {1, 2, ..., N} within
the same stage, the cross-layer gradients are given by Gt

k +Gt
0. Despite a large number of works on

short-cut paths in neural networks, our method differs fundamentally in terms of the goals and the
operations. We provide a thorough discussion in Appendix B.

3.3 GRADIENTS DIVERGENCE ALLEVIATION

However, the direct utilization of cross-layer gradients leads to an acute issue known as gradient
and weight divergence (Wang et al., 2020; Zhao et al., 2018), as depicted in Figure 6a. To counter
this effect, we introduce gradient normalization (Figure 6b) and the proposed convex optimization
problem to restrict gradient directions, as illustrated in Figure 6c.

Cross-layer Gradients Normalization. Figure 6b depicts the benefits of utilizing normalized gradients.
The normalized cross-layer gradient gt0

′
+ gtk

′ directs the model closer to the global optimum than
the original cross-layer gradient gt0 + gtk. In particular, our normalization approach emphasizes the
norm of gradients, i.e., gt0

′
= gt0/||gt0|| and gtk

′
= gtk/||gtk||. The normalized cross-layer gradient is

computed as (gt0
′
+ gtk

′
)× (||gt0||+ ||gtk||)/2 in practice.

Convex Optimization. In addition to utilizing normalized gradients, incorporating novel projective
gradients that leverage knowledge from both gt0 and gtk serves to alleviate the detrimental impact of
gradient divergence arising from the utilization of cross-layer gradients. Moreover, Our objective
is to find the optimal projective gradients, denoted as gopt, which strike a balance between being as
close as possible to gk while maintaining alignment with g0. This alignment ensures that gk is not
hindered by the influence of g0 while allowing gopt to acquire the beneficial knowledge for gk from
g0. In other words, we aim for gopt to capture the advantageous information contained within g0
without impeding the progress of gk. Pursuing this line of thought, we introduce a constraint aimed
at ensuring the optimization directions of gradients, outlined as ⟨gt0, gtk⟩ ≥ 0, where ⟨·, ·⟩ is the dot
product. To establish a convex optimization problem incorporating this constraint, we denote the
projected gradient as gopt and formulate the following primal convex optimization problem,

min
gt
opt

||gtk − gtopt||22, s.t. ⟨gtopt, gt0⟩ ≥ 0, (1)

where we preserve the optimization direction of gt0 in gtopt while minimizing the distance between
gtopt and gtk. We prioritize the proximity of gtopt to gtk over gt0 since gtk represents the true gradients of
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layer k. By solving this problem through Lagrange dual problem (Bot et al., 2009), we derive the
following outcomes,
Theorem 3.1. (Divergence alleviation). If gradients are vectors, for the layers that require cross-layer
gradients, their updated gradients can be expressed as,

gtopt =

{
gtk, if β ≥ 0

gtk − θtgt0, if β < 0,
(2)

where θt = β
α , α = (gt0)

T gt0 and β = (gt0)
T gtk.

Remark 3.2. This theorem can be extended to the matrix form.

We provide proof for Theorem 3.1 and demonstrate how matrix gradients are incorporated into the
problem in Appendix C. Our analytic solution in Equation 2 automatically determines the optimal
settings for parameter θt, eliminating the need for cumbersome manual adjustments. In our practical
implementation, we consistently update the server model using the expression gtk − θtgt0, irrespective
of whether β ≥ 0 or β < 0. This procedure is illustrated in Algorithm 1 in Appendix H.

Communication Overheads. According to the entire process, the primary process (internal cross-
layer gradients) is conducted on the server. Therefore, our method does not impose any additional
communication overhead between clients and the server.

4 CONVERGENCE ANALYSIS

In this section, we demonstrate the convergence of cross-layer gradients and propose the convergence
rate in non-convex scenarios. To simplify the notations, we adopt Li to be the local objective. At
first, we show the following assumptions frequently used in the convergence analysis for FL (Tan
et al., 2022; Li et al., 2020b; Karimireddy et al., 2020).
Assumption 4.1. (Lipschitz Smooth). Each objective function Li is L-Lipschitz smooth and satisfies
that ||∇Li(x)−∇Li(y)|| ≤ L||x− y||,∀(x, y) ∈ Di, i ∈ 1, ...,K.
Assumption 4.2. (Unbiased Gradient and Bounded Variance). At each client, the stochastic gradient
is an unbiased estimation of the local gradient, with E[gi(x)]) = ∇Li(x), and its variance is bounded
by σ2, meaning that E[||gi(x)−∇Li(x)||2] ≤ σ2,∀i ∈ 1, ...,K, where σ2 ≥ 0.

Assumption 4.3. (Bounded Expectation of Stochastic Gradients). The expectation of the norm of the
stochastic gradient at each client is bounded by ρ, meaning that E[||gi(x)||] ≤ ρ, ∀i ∈ 1, ...,K.
Assumption 4.4. (Bounded Covariance of Stochastic Gradients). The covariance of the stochastic
gradients is bounded by Γ, meaning that Cov(gi,lk , gi,lj ) ≤ Γ,∀i ∈ 1, ...,K, where lk, lj are the
layers belonging to a model at client i.

Following these assumptions, we present proof of non-convex convergence concerning the utilization
of cross-layer gradients in Federated Learning (FL). We outline our principal theorems as follows.
Theorem 4.5. (Per round drift). Supposed Assumption 4.1 to Assumption 4.4 are satisfied, the loss
function of an arbitrary client at round t+ 1 is bounded by,

E[Lt+1,0] ≤ E[Lt,0]− (η − Lη2

2
)

E−1∑
e=0

||∇Lt,e||2 +
LEη2

2
σ2 + 2η(Γ + ρ2) + Lη2(2ρ2 + σ2 + Γ). (3)

The Theorem 4.5 demonstrates the bound of the local objective function after every communication
round. Non-convex convergence can be guaranteed by the appropriate η.
Theorem 4.6. (Non-convex convergence). The loss function L is monotonously decreased with the
increasing communication round when,

η <
2
∑E−1

e=0 ||∇Lt,e||2 − 4(Γ + ρ2)

L(
∑E−1

e=0 ||∇Lt,e||2 + Eρ2 + 2(2ρ2 + σ2 + Γ)
. (4)

Moreover, after we prove the non-convex convergence for the cross-layer gradients, the non-convex
convergence rate is described as follows.
Theorem 4.7. (Non-convex convergence rate). Supposed Assumption 4.1 to Assumption 4.4 are
satisfied and κ = L0 − L∗, for an arbitrary client, given any ϵ > 0, after

T =
2κ

Eη((2− Lη)ϵ− 3Lησ2 − 2(2 + Lη)Γ− 4(1 + Lη)ρ2)
(5)
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Table 2: Test accuracy of model-homogeneous methods with 100 clients and sample ratio 0.1. We
shade in gray the methods that are combined with our proposed method, InCo Aggregation. We bold
the best results and denote the improvements compared to the original methods in red. See Appendix
H.5 for the error bars of InCo methods.

Base Methods
Fashion-MNIST SVHN CIFAR10 CINIC10

α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0

R
es

N
et

(S
ta

ge
sp

lit
tin

g)

HeteroAvg 87.8±1.1 86.0±1.0 85.1±2.0 86.9±2.3 64.8±2.9 66.7±3.3 48.6±2.6 56.5±1.6
HeteroProx 86.8±1.5 83.9±1.8 87.8±2.1 89.9±1.7 72.5±2.1 73.1±1.9 56.4±2.0 60.9±1.8

HeteroScaffold 85.2±0.8 86.4±0.7 80.6±2.3 86.3±2.7 65.5±3.0 69.7±2.8 50.8±2.9 57.8±3.4
HeteroNova 84.9±1.3 86.7±1.1 84.4±1.4 88.0±1.7 60.1±3.7 68.0±3.5 46.1±2.3 52.1±2.2

HeteroMOON 87.9±0.4 88.3±0.3 83.0±2.3 86.5±1.6 65.1±2.9 68.4±2.6 50.1±2.3 54.7± 1.8
InCoAvg 90.2(↑2.4) 88.4(↑2.4) 87.6(↑2.5) 89.0(↑2.1) 67.8(↑3.0) 70.7(↑4.0) 53.0(↑4.4) 57.5(↑1.0)
InCoProx 88.8(↑2.0) 86.4(↑2.5) 89.0(↑1.2) 90.8(↑0.9) 74.5(↑2.0) 76.8(↑3.7) 59.1(↑2.7) 62.5(↑1.6)

InCoScaffold 88.3(↑3.1) 90.1(↑3.7) 85.4(↑4.8) 87.8(↑1.5) 67.3(↑1.8) 73.8(↑4.1) 53.5(↑2.7) 61.7(↑3.9)
InCoNova 86.6(↑1.7) 87.4(↑0.7) 86.4(↑2.0) 88.4(↑0.4) 62.8(↑2.7) 69.7(↑2.7) 48.0(↑1.9) 54.1(↑2.0)

InCoMOON 89.1(↑1.2) 89.5(↑1.2) 85.6(↑2.6) 89.3(↑2.8) 68.2(↑3.1) 71.8(↑3.4) 54.3(↑4.2) 57.6(↑2.9)

V
iT

(L
ay

er
sp

lit
tin

g)

HeteroAvg 92.2±0.6 92.0±0.6 92.9±1.0 93.8±0.9 93.6±1.0 94.1±0.9 84.2±1.6 85.3±1.3
HeteroProx 90.9±0.8 91.7±0.6 91.2±1.3 92.4±1.8 92.0±1.5 92.6±1.3 84.0±1.8 84.8±2.0

HeteroScaffold 91.9±0.6 92.1±0.4 92.5±0.9 93.7±0.6 93.8±0.8 94.3±0.4 83.8±1.9 85.3±1.6
HeteroNova 92.1±0.9 92.4±0.4 92.3±1.0 94.1±1.2 93.6±0.5 94.5±0.6 85.3±1.7 86.7±1.5

HeteroMOON 92.0±0.4 92.3±0.3 92.7±1.1 94.0±0.9 93.5±0.8 94.6±0.5 84.7±1.4 85.6±1.4
InCoAvg 93.0(↑0.8) 93.1(↑1.1) 94.2(↑1.3) 95.0(↑1.2) 94.6(↑1.0) 95.0(↑0.9) 85.9(↑1.7) 86.8(↑1.5)
InCoProx 92.6(↑1.7) 92.5(↑0.8) 93.9(↑2.7) 94.4(↑2.0) 94.0(↑2.0) 94.8(↑2.2) 85.1 (↑1.1) 86.0(↑1.2)

InCoScaffold 92.9(↑1.0) 93.0(↑0.9) 94.0(↑1.5) 94.8(↑1.1) 94.6(↑0.8) 95.0(↑0.7) 85.7(↑1.9) 86.5(↑1.2)
InCoNova 93.1(↑1.0) 93.6(↑1.2) 94.7(↑2.4) 95.6(↑1.5) 94.8(↑1.2) 95.7(↑1.2) 86.2(↑0.9) 88.2(↑1.2)

InCoMOON 92.8(↑0.8) 93.0(↑0.7) 94.7(↑2.0) 95.1(↑1.1) 94.2(↑0.7) 95.1 (↑0.5) 86.0(↑1.3) 86.8(↑1.2)

communication rounds, we have

1

TE

T−1∑
t=0

E−1∑
e=0

E[||∇Lt,e||2] ≤ ϵ, if η <
2ϵ− 4(Γ + ρ2)

L(ϵ+ Eρ2 + 2(2ρ2 + σ2 + Γ))
. (6)

Following these theorems, the convergence of internal cross-layer gradients is guaranteed. The proof
is presented in Appendix D.

5 EXPERIMENTS

In this section, we conduct comprehensive experiments aimed at demonstrating three fundamental
aspects: (1) the efficacy of InCo Aggregation and its extensions for various FL methods (Section 5.2),
(2) the robustness analysis and ablation study of InCo Aggregation (Section 5.3), (3) in-depth analyses
of the underlying principles behind InCo Aggregation (Section 5.4). Our codes are released on GitHub
3. More experimental details and results can be found in Appendix H.

5.1 EXPERIMENT SETUP

Dataset and Data Distribution. We conduct experiments on Fashion-MNIST (Xiao et al., 2017),
SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky et al., 2009) and CINIC-10 (Darlow et al., 2018)
under non-iid settings. We evaluate the algorithms under two Dirichlet distributions with α = 0.5
and α = 1.0 for all datasets.

Baselines. To demonstrate the effectiveness of InCo Aggregation, we use five baselines in model-
homogeneous FL: FedAvg (McMahan et al., 2017), FedProx (Li et al., 2020b), FedNova (Wang et al.,
2020), Scaffold (Karimireddy et al., 2020), and MOON (Li et al., 2021a) for ResNets and ViTs. In the
context of model heterogeneity, we extend the training procedures of these baselines by incorporating
model splitting methods, denoting the modified versions with the prefix ”Hetero”. Furthermore, by
incorporating these methods with InCo Aggregation, we prefix the names with ”InCo”. Moreover, we
also extend our methods to four state-of-the-art methods in model-heterogeneous FL: HeteroFL(Diao
et al., 2021), InclusiveFL(Liu et al., 2022), FedRolex(Alam et al., 2022) and ScaleFL(Ilhan et al.,
2023) for ResNets. We take the average accuracy of three different random seeds.

Federated Settings. In heterogeneous FL, we consider two architectures, ResNets and ViTs. The
largest models are ResNet26 and ViT-S/12 (ViT-S with 12 layers). We deploy stage splitting for
ResNets and obtain five sub-models, which can be recognized as ResNet10, ResNet14, ResNet18,
ResNet22, and ResNet26. For the pre-trained ViT models, we employ layer splitting and result in five
sub-models, which are ViT-S/8, ViT-S/9, ViT-S/10, ViT-S/11, and ViT-S/12. Moreover, we consider
five different model capacities β = {1, 1/2, 1/4, 1/8, 1/16} in hetero splitting, where for instance, 1/2

3https://github.com/ChanYunHin/InCo-Aggregation
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Table 3: Test accuracy of model-heterogeneity methods with 100 clients and sample ratio 0.1. We
shade in gray the methods that are combined with our proposed method, InCo Aggregation. We
denote the improvements compared to the original methods in red. See Appendix H.5 for the error
bars of InCo methods.

Base Splitting Methods
Fashion-MNIST SVHN CIFAR10 Comm.

FLOPs
α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0 overheads

R
es

N
et

Hetero
HeteroFL 88.9±1.0 89.7±0.7 90.5±1.6 92.2±1.3 65.2±3.2 68.4±3.6 4.6M 33.4M

+InCo 90.0(↑1.1) 90.4(↑0.7) 92.1(↑1.6) 93.5(↑1.3) 68.2(↑3.0) 71.2(↑2.8) 4.6M 33.8M

Stage
InclusiveFL 89.1±1.1 89.8±1.0 88.6±2.0 90.0±2.2 65.7±3.5 68.4±3.3 12.3M 75.2M

+InCo 90.1(↑1.0) 90.5(↑0.7) 90.6(↑2.0) 90.9(↑0.9) 69.1(↑3.4) 72.3(↑3.9) 12.3M 75.6M

Hetero
FedRolex 88.2±1.0 90.2±0.8 90.9±1.3 91.6±1.7 64.7±4.1 72.3±3.0 4.6M 33.4M

+InCo 90.4(↑2.2) 91.3(↑1.1) 92.8(↑1.9) 93.4(↑1.8) 67.9(↑3.2) 75.6(↑3.3) 4.6M 33.8M

Hetero
ScaleFL 90.9±0.5 91.0±0.4 92.6±1.0 92.9±0.9 71.1±2.9 74.7±3.1 9.5M 51.9M
+InCo 91.5(↑0.6) 91.7(↑0.7) 93.4(↑0.8) 93.6(↑0.7) 73.8(↑2.7) 76.1(↑2.4) 9.5M 52.3M

N/A AllSmall 83.5±1.7 84.0±1.7 72.1±3.5 81.0±2.9 39.2±2.0 44.9±2.3 0.07M 3.7M
N/A AllLarge 91.8±0.5 92.5±0.8 93.4±0.8 93.8±0.5 79.6±2.9 82.5±1.0 17.5M 112.4M
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Figure 7: Robustness analysis for InCo Aggregation.
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Figure 8: Ablation studies for InCo Aggregation. The federated settings are the same as Table 2.

indicates the widths and depths are half of the largest model ResNet26. Our experimental setup
involves 100 clients, categorized into five distinct groups, with a sample ratio of 0.1. The detailed
model sizes are shown in Appendix H.4.

5.2 INCO AGGREGATION IMPROVES ALL BASELINES.
Table 2 and Table 3 present the test accuracy of 100 clients with a sample ratio of 0.1. Table 2 provides
compelling evidence for the efficacy of InCo Aggregation in enhancing the performance of all model-
homogeneous baselines. Table 3 demonstrates the improvements of deploying InCo Aggregation in
the model-heterogeneous methods. Moreover, Table 3 highlights that InCo Aggregation introduces
no additional communication overhead and only incurs 0.4M FLOPs, which are conducted on the
server side, indicating that InCo Aggregation does not impose any burden on client communication
and computation resources.

5.3 ROBUSTNESS ANALYSIS AND ABLATION STUDY.
We delve into the robustness analysis of InCo Aggregation, examining two aspects: the impact
of varying batch sizes and noise perturbations on gradients during transmission. Additionally, we
perform an ablation study for InCo Aggregation. We provide more experiments in Appendix H.

Effect of Batch Size and Noise Perturbation. Notably, when compared to FedAvg as depicted in
Figure 7a and Figure 7b, our method exhibits significant improvements while maintaining comparable
performance across all settings. Furthermore, as illustrated in Figure 7c and Figure 7d, we explore the
impact of noise perturbations by simulating noise with standard deviations following the gradients.

Ablation Study. Our ablation study includes the following methods: (i) InCoAvg w/o Normalization
(HeteroAvg with cross-layer gradients and optimization), (ii) InCoAvg w/o Optimization (HeteroAvg
with normalized cross-layer gradients), (iii) InCoAvg w/o Normalization and Optimization (Het-
eroAvg with cross-layer gradients), and (iv) HeteroAvg (FedAvg with stage splitting). The ablation
study of InCo Aggregation is depicted in Figure 8, demonstrating the efficiency of InCo Aggregation.
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Figure 9: Important coefficients of Theorem 3.1 and t-SNE visualization of features. (a): θ in all
layers. (b): β in Layer 11. (c): β in Layer 13. (d) to (f): t-SNE visualization of features learned by
different methods on CIFAR-10. We select data from one class and three clients (client 0: ResNet10,
client 1: ResNet14, client 2: ResNet26) to simplify the notations in t-SNE figures.
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Figure 10: CKA layer similarity, Heatmaps, and accuracy of different clients. (a): The layer similarity
of different methods. (b) to (d): Heatmaps for different methods in stage 2 and stage 3. (e): Accuracy
of each client group. (0: ResNet10, 20: ResNet14, 40: ResNet18, 60: ResNet22, 80: ResNet26)

5.4 THE REASONS FOR THE IMPROVEMENTS

We undertake a comprehensive analysis to gain deeper insights into the mechanisms underlying the
efficacy of InCo Aggregation. Our analysis focuses on the following three key aspects: (1) The
investigation of important coefficients θ and β in Theorem 3.1. (2) An examination of the feature
spaces generated by different methods. (3) The evaluation of CKA similarity across various layers.
Moreover, we discuss the differences between adding noises and InCo gradients in Appendix H.6.

Table 4: The Percentage of β > 0

Methods
Percentage of β > 0

Layer 11 Layer 13

InCoAvg 83.8 74.4
InCoAvg w/o O 53.5 50.2

Analysis for θ and β. In our experiments, we set θ = 1 for
InCoAvg w/o Optimization, the blue dash line in Figure 9a.
However, under Theorem 3.1, we observe that the value of
θ varies for different layers, indicating the effectiveness of
the theorem in automatically determining the appropriate θ
values. β > 0 denotes the same direction between shallow
layer gradients and the current layer gradients. Furthermore,
Table 4 provides empirical evidence supporting the efficacy of Theorem 3.1 in heterogeneous FL.

t-SNE Visualizations. Figure 9d and Figure 9e provide visual evidence of bias stemming from model
heterogeneity in the FedAvg and HeteroAvg. In contrast, Figure 9f demonstrates that InCoAvg
effectively addresses bias. These findings highlight the superior generalization capability of InCoAvg
compared to HeteroAvg and FedAvg, indicating that InCoAvg mitigates bias issues in client models.

Analysis for CKA Layer Similarity. Figure 10a reveals that InCoAvg exhibits a significantly higher
CKA layer similarity compared to FedAvg. Consistent with the t-SNE visualization, FedAvg’s
heatmaps exhibit block-wise patterns in Figure 10d due to its inability to extract features from diverse
model architectures. Notably, the smallest models in InCoAvg (top left corner) exhibit lower similarity
(more black) with other clients compared to HeteroAvg in stage 3. This discrepancy arises because
the accuracy of the smallest models in InCoAvg is similar to that of HeteroAvg, but the performance
of larger models in InCoAvg surpasses that of HeteroAvg, as indicated in Figure 10e. Consequently,
a larger similarity gap emerges between the smallest models and the other models. Addressing the
performance of the smallest models in InCo Aggregation represents our future research direction.

6 CONCLUSIONS

We propose a novel FL training scheme called InCo Aggregation, which aims to enhance the
capabilities of model-homogeneous FL methods in heterogeneous FL settings. Our approach leverages
normalized cross-layer gradients to promote similarity among deep layers across different clients.
Additionally, we introduce a convex optimization formulation to address the challenge of gradient
divergence. Through extensive experimental evaluations, we demonstrate the effectiveness of InCo
Aggregation in improving heterogeneous FL performance.
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A CENTERED KERNEL ALIGNMENT

Centered Kernel Alignment (CKA) originally serves as a similarity measure for different kernel
functions (Cortes et al., 2012). Later, its purpose has been extended to discovering meaningful
similarities between internal representations of neural networks (Kornblith et al., 2019). Compared
with alternative methods to monitor representation learning, such as Canonical Correlation Analysis-
based methods (Raghu et al., 2017; Morcos et al., 2018) and neuron alignment methods (Li et al.,
2015; Wang et al., 2018), CKA achieves the state-of-the-art performance in measuring the difference
between representations of neural network. This is based on the fact that CKA reliably identifies
correspondences between representations from architecturally corresponding layers in two networks
trained with different initializations.4

Denote X ∈ Rn×p and Y ∈ Rn×q as two representations of n data points with possibly different
dimensions (i.e., p ̸= q). These two representations fall into the following three categories: (1)
internal outputs at two different layers of an individual network, (2) internal layer outputs of two
architecturally identical networks trained from different initialization or by different datasets, or
(3) internal layer outputs of two networks with different architectures possibly trained by different
datasets. The application of CKA in our paper belongs to the third category, where we examine the
CKA similarities of a corresponding layer output between every pair of local client models in the
context of federated learning.

Let kx(·, ·) and ky(·, ·) be the kernel functions for X and Y respectively. Then the resulted kernel
matrices of kx and ky with respect to x1, . . . ,xn and y1, . . . ,yn are Kx and Ky , whose (i, j)-entries
are Kx(i, j) = kx(xi,xj) and Ky(i, j) = ky(yi,yj). Then CKA is defined as

CKA(Kx,Ky) :=
tr(KxHKyH)√

tr(KxHKxH)tr(KyHKxH)
, (7)

where H = In − 1
n11

T is the centering matrix.

As for the kernels in CKA, we select linear kernel (i.e., Kx = XXT, Ky = Y Y T) 5 over Radial
Basis Function (RBF) kernel 6 from common kernels for the following reasons. First, experiments
in Kornblith et al. (2019) manifest that linear and RBF kernels work equally well in similarity
measurement of feature representations. Furthermore, it is recently validated that CKA based on an
RBF kernel converges to linear CKA in the large-bandwidth limit (Alvarez, 2023). Hence, in our
investigation we stick with linear CKA for computational efficiency, where the resulting linear CKA
is

CKAlinear(X,Y ) = CKA(XXT, Y Y T)

=
tr(XXTHY Y TH)√

tr(XXTHXXTH)tr(Y Y THY Y TH)

=
tr(Y THXXTHY )√

tr(XTHXXTHX)tr(Y THY Y THY )

=
||Y THX||2F

||XTHX||F||Y THY ||F
. (8)

In our design, we measure the averaged CKA similarities according to the outputs from the same
batch of test data. The range of CKA is between 0 and 1, and a higher CKA score means more similar
paired features.

B COMPARISONS WITH RESIDUAL CONNECTIONS

Remarks on self-mixture approaches in neural networks. The goal of residual connections is to
avoid exploding and vanishing gradients to facilitate the training of a single model (He et al., 2016),
while cross-layer gradients aim to increase the layer similarities across a group of models that are
jointly optimized in federated learning. Specifically, residual connections modify forward passes by

4We refer the readers to Section 6.1. in Kornblith et al. (2019) for a complete sanity check of representational
similarity measures.

5Linear kernel k(xi,xj) = xT
ixj

6Radial Basis Function (RBF) kernel k(xi,xj) = exp(−γ||xi − xj ||22) with γ > 0
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adding the shallow-layer outputs to those of the deep layers. In contrast, cross-layer gradients operate
on the gradients calculated by back-propagation. We present the distinct gradient outcomes of the
two methods in the following.
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(a) Cross-layer gradients
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(b) Residual connections

Figure 11: Comparison of cross-layer gradients and residual connections
Consider three consecutive layers of a feedforward neural network indexed by i− 1, i, i+ 1. With
a slight abuse of symbols, we use f( · ;Wk) to denote the calculation in the k-th layer. Given the
input xi−2 to layer i− 1, the output from the previous layer becomes the input to the next layer, thus
generating xi−1,xi,xi+1 sequentially.

xi−1 = f(xi−2;Wi−1)

xi = f(xi−1;Wi)

xi+1 = f(xi;Wi+1)

(9)

In the case of residual connections, there is an additional operation that directs xi to xi+1, formulated
as x′

i+1 = xi+1 + xi. The gradient of Wi is

gWi
=

∂loss

∂Wi

=
∂loss

∂x′
i+1

·
∂x′

i+1

∂xi
· ∂xi

∂Wi

=
∂loss

∂(xi+1 + xi)
·
(
∂xi+1

∂xi
+ I

)
· ∂xi

∂Wi

=
∂loss

∂(xi+1 + xi)
·
(
∂xi+1

∂Wi
+

∂xi

∂Wi

)
(10)

In the case of cross-layer gradients, the gradient of Wi is

gWi =
∂loss

∂Wi
+

∂loss

∂Wi−1

=
∂loss

∂xi+1
·
(
∂xi+1

∂Wi
+

∂xi+1

∂Wi−1

) (11)

We note that both residual connections and cross-layer gradients are subject to certain constraints.
Residual connections require identical shapes for the layer outputs, while cross-layer gradients operate
on the layer weights with the same shape.

C PROOF OF THEOREM 3.1
This section demonstrates the details of the proof of Theorem 3.1. We will present the proof of
Theorem 3.1 in the vector form and the matrix form.

15



Published as a conference paper at ICLR 2024

C.1 VECTOR FORM

We state the convex optimization problem Theorem 1 in the vector form in the following,

min
gopt

||gk − gopt||22,

s.t. ⟨gopt, g0⟩ ≥ 0.
(12)

Because the superscript t would not influence the proof of the theorem, we simplify the notation gt to
g. We use Equation 12 instead of Equation 1 to complete this proof. The Lagrangian of Equation 12
is shown as,

L(gopt, λ) =(gk − gopt)
T (gk − gopt)− λgToptg0

=gTk gk − gToptgk − gTk gopt + gToptgopt − λgToptg0

=gTk gk − 2gToptgk + gToptgopt − λgToptg0.

(13)

Let ∂L(gopt,λ)
∂gopt

= 0, we have

gopt = gk + λg0/2, (14)

which is the optimum point for the primal problem Equation 12. To get the Lagrange dual function
L(λ) = infgopt L(gopt, λ), we substitute gopt by gk + λg0/2 in L(gopt, λ). We have

L(λ) =gTk gk − 2(gk +
λg0
2

)T gk + (gk +
λg0
2

)T (gk +
λg0
2

)− λ(gk +
λg0
2

)T g0

=gTk gk − 2gTk gk − λgT0 gk + gTk gk +
λgT0 gk

2
+

λgTk g0
2

+
λ2gT0 g0

4
− λgTk g0 −

λ2gT0 g0
2

=gTk gk − 2gTk gk + gTk gk − λgT0 gk + λgT0 gk +
λ2gT0 g0

4
− λ2gT0 g0

2
− λgTk g0

=− gT0 g0
4

λ2 − gTk g0λ.

(15)

Thus, the Lagrange dual problem is described as follows,

max
λ

L(λ) = −gT0 g0
4

λ2 − gTk g0λ,

s.t. λ ≥ 0.

(16)

L(λ) is a quadratic function. Because gT0 g0 ≥ 0, the maximum of L(λ) is at the point λ = − 2b
a

where a = gT0 g0 and b = gTk g0 if we do not consider the constraint. It is clear that this convex
optimization problem holds strong duality because it satisfies Slater’s constraint qualification(Boyd
et al., 2004), which indicates that the optimum point of the dual problem Equation 16 is also the
optimum point for the primal problem Equation 12. We substitute λ by − 2b

a in Equation 14, and we
have

gopt =

{
gk, if b ≥ 0,

gk − θtg0, if b < 0,
(17)

where θt = b
a , a = (g0)

T g0 and b = gTk g0. We add the superscript t to all gradients, and we finish
the proof of Theorem 3.1.

C.2 MATRIX FORM

The proof of the matrix form is similar to Appendix C.1. We update Equation 12 to the matrix form
as follows,

min
Gopt

||Gk −Gopt||2F ,

s.t. ⟨Gopt, G0⟩ ≥ 0.
(18)

Similar to Equation 13, the Lagragian of Equation 18 is,

L(Gopt, λ) = tr(GT
kGk)− tr(GT

optGk)− tr(GT
kGopt) + tr(GT

optGopt)− λtr(GT
optG0), (19)
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where tr(A) means the trace of the matrix A. We can obtain the optimum point for Equation 18
according to ∂L(Gopt,λ)

∂Gopt
= 0. We have

Gopt = Gk + λG0/2. (20)

Similar to the analysis in Appendix C.1 and Equation 15, we get the Lagrange dual problem as
follows,

max
λ

L(λ) = − tr(GT
0 G0)

4
λ2 − tr(GT

kG0)λ,

s.t. λ ≥ 0,

(21)

where tr(GT
0 G0) ≥ 0. Following the same analysis in Appendix C.1, we have

Gopt =

{
Gk, if b ≥ 0,

Gk − θtG0, if b < 0,
(22)

where θt = b
a , a = tr(GT

0 G0) and b = tr(GT
kG0). At last, we have finished the proof of the matrix

form of Theorem 3.1.

D PROOF OF CONVERGENCE ANALYSIS

We show the details of convergence analysis for cross-layer gradients. W li
t,e are the weights from the

layers which need cross-layer gradients at round t of the local step e. To simplify the notations, we
use Wt,e instead of W li

t,e.
Lemma D.1. (Per Round Progress.) Suppose our functions satisfy Assumption 4.1 and Assump-
tion 4.2. The expectation of a loss function of any arbitrary clients at communication round t after E
local steps are bounded as,

E[Lt,E−1] ≤ E[Lt,0]− (η − Lη2

2
)

E−1∑
e=0

||∇Lt,e||2 +
LEη2

2
σ2. (23)

Proof.

Considering an arbitrary client, we omit the client index i in this lemma. Let Wt,e+1 = Wt,e − ηgt,e,
we have

Lt,e+1 ≤ Lt,e + ⟨∇Lt,e,Wt,e+1 −Wt,e⟩+
L

2
||Wt,e+1 −Wt,e||2

≤ Lt,e − η⟨∇Lt,e, gt,e⟩+
L

2
||ηgt,e||2,

(24)

where Equation 24 follows Assumption 4.1. We take expectation on both sides of Equation 24, then

E[Lt,e+1] ≤ E[Lt,e]− ηE[⟨∇Lt,e, gt,e⟩] +
L

2
E[||ηgt,e||2]

= E[Lt,e]− η||∇Lt,e||2 +
Lη2

2
E[||gt,e||2]

(a)
= E[Lt,e]− η||∇Lt,e||2 +

Lη2

2
(E[||gt,e||]2 + V ar(||gt,e||))

= E[Lt,e]− η||∇Lt,e||2 +
Lη2

2
(||∇Lt,e||2 + V ar(||gt,e||))

(b)

≤ E[Lt,e]− (η − Lη2

2
)||∇Lt,e||2 +

Lη2

2
σ2,

(25)

where (a) follows V ar(X) = E[X2]− E2[X], and (b) is Assumption 4.2. Telescoping local step 0
to E − 1, we have

E[Lt,E−1] ≤ E[Lt,0]− (η − Lη2

2
)

E−1∑
e=0

||∇Lt,e||2 +
LEη2

2
σ2, (26)

then we finish the proof of Lemma D.1.
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Lemma D.2. (Bound Client Dirft.) Suppose our functions satisfy Assumption 4.2, Assumption 4.3
and Assumption 4.4. After each aggregation, the updates, ∆W , for the layers need cross-layer
gradients have bounded drift:

E[||∆W ||2] ≤ 2η2(2ρ2 + σ2 + Γ). (27)

Proof.

We have Wt+1,0 −Wt,E−1 = ∆W = η(gl0 + gli),∀li need cross-layer gradients. Because all
gradients are in the same aggregation round, we omit the time subscript in this proof process. Since η
is a constant, we also simplify it. gl0 and gli the gradients from the same client, indicating that they
are dependent, then

||∆W ||2 = ||gl0 + gli ||2

(c)

≤ ||gl0 ||2 + 2||⟨gl0 , gli⟩||+ ||gli ||2,
(28)

where (c) is Cauchy–Schwarz inequality. We take the expectation on both sides, then
E[||∆W ||2] ≤ E[||gl0 ||2] + 2E[||⟨gl0 , gli⟩||] + E[||gli ||2]

(a)
= E[||gl0 ||]2 + V ar(||gl0 ||) + E[||gli ||]2 + V ar(||gli ||) + 2E[||⟨gl0 , gli⟩||]
(d)

≤ 2(ρ2 + σ2) + 2E[||gl0 , gli ||]
(e)
= 2(ρ2 + σ2) + 2(Cov(gl0 , gli) + E[||gl0 ||]E[||gli ||])
(f)

≤ 2(ρ2 + σ2) + 2(Γ + ρ2)

= 4ρ2 + 2σ2 + 2Γ,

(29)

where (d) follows assumption Assumption 4.2 and Assumption 4.3, (e) follows the covariance formula,
and (f) follows assumption Assumption 4.4. We put back η2 to the final step of Equation 29. At last,
we complete the proof of Lemma D.2.

D.1 PROOF OF THEOREM 4.5 AND THEOREM 4.6
We state Theorem 4.5 again in the following,

(Per round drift) Supposed Assumption 4.1 to Assumption 4.4 are satisfied, the loss function of an
arbitrary client at round t+ 1 is bounded by,

E[Lt+1,0] ≤ E[Lt,0]− (η − Lη2

2
)

E−1∑
e=0

||∇Lt,e||2+

LEη2

2
σ2 + 2η(Γ + ρ2) + Lη2(2ρ2 + σ2 + Γ).

(30)

Proof.

Following the Assumption 4.1, we have

Lt+1,0 ≤ Lt,E−1 + ⟨∇Lt,E−1,Wt+1,0 −Wt,E−1⟩+
L

2
||Wt+1,0 −Wt,E−1||2

= Lt,E−1 + η⟨∇Lt,E−1, gl0 + gl1⟩+
L

2
η2||∆W ||2.

(31)

Taking the expectation on both sides, we obtain

E[Lt+1,0] = E[Lt,E−1] + ηE[⟨∇Lt,E−1, gl0 + gl1⟩] +
L

2
η2E[||∆W ||2]. (32)

The first item is Lemma D.1, and the third item is Lemma D.2. We consider the second item
E[⟨∇Lt,E−1, gl0 + gl1⟩] in the following, then,

E[⟨∇Lt,E−1, gl0 + gl1⟩] = E[∇Lt,E−1gl0 ] + E[∇Lt,E−1gl1 ]

(e)
= Cov(∇Lt,E−1, gl0) + E[||∇Lt,E−1||]E[||gl0 ||]+
Cov(∇Lt,E−1, gl1) + E[||∇Lt,E−1||]E[||gl1 ||]
(f)

≤ 2(Γ + ρ2).

(33)
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Combining two lemmas and Equation 33, we have

E[Lt+1,0] ≤ E[Lt,0]− (η − Lη2

2
)

E−1∑
e=0

||∇Lt,e||2 +
LEη2

2
σ2 + 2η(Γ + ρ2) + Lη2(2ρ2 + σ2 + Γ),

(34)
then we finish the proof of Theorem 4.5.

For Theorem 4.6, we consider the sum of the second term to the last term in Equation 34 to be smaller
than 0, i.e.,

−(η − Lη2

2
)

E−1∑
e=0

||∇Lt,e||2 +
LEη2

2
σ2 + 2η(Γ + ρ2) + Lη2(2ρ2 + σ2 + Γ) < 0, (35)

then, we have

η <
2
∑E−1

e=0 ||∇Lt,e||2 − 4(Γ + ρ2)

L(
∑E−1

e=0 ||∇Lt,e||2 + Eρ2 + 2(2ρ2 + σ2 + Γ)
. (36)

We finish the proof of Theorem 4.6.

D.2 PROOF OF THEOREM 4.7
Telescoping the communication rounds from t = 0 to t = T − 1 with the local step from e = 0 to
e = E − 1 on the expectation on both sides of Equation 34, we have

1

TE

T−1∑
t=0

E−1∑
e=0

||∇Lt,e||2 ≤
2

TE

∑T−1
t=0 (E[Lt,0]− E[Lt+1,0]) + Lη2σ2 + 4η(Γ + ρ2) + 2Lη2(2ρ2 + σ2 + Γ)

2η − Lη2
.

(37)

Given any ϵ > 0, let
2

TE

∑T−1
t=0 (E[Lt,0]− E[Lt+1,0]) + Lη2σ2 + 4η(Γ + ρ2) + 2Lη2(2ρ2 + σ2 + Γ)

2η − Lη2
≤ ϵ, (38)

and we denote κ = L0 − L∗, then Equation 38 becomes
2κ
TE + Lη2σ2 + 4η(Γ + ρ2) + 2Lη2(2ρ2 + σ2 + Γ)

2η − Lη2
≤ ϵ, (39)

because
∑T−1

t=0 (E[Lt,0]− E[Lt+1,0]) ≤ κ. We consider T in Equation 39, i.e.,

T ≥ 2κ

Eη((2− Lη)ϵ− 3Lησ2 − 2(2 + Lη)Γ− 4(1 + Lη)ρ2)
, (40)

then, we have
1

TE

T−1∑
t=0

E−1∑
e=0

||∇Lt,e||2 ≤ ϵ, (41)

when

η <
2ϵ− 4(Γ + ρ2)

L(ϵ+ Eρ2 + 2(2ρ2 + σ2 + Γ)
. (42)

We complete the proof of Theorem 4.7.

E MORE RELATED WORKS

E.1 FEDERATED LEARNING.
In 2017, Google proposed a novel machine learning technique, i.e., Federated Learning (FL), to
organize collaborative computing among edge devices or servers (McMahan et al., 2017). It enables
multiple clients to collaboratively train models while keeping training data locally, facilitating privacy
protection. Various synchronous or asynchronous FL schemes have been proposed and achieved good
performance in different scenarios. For example, FedAvg (McMahan et al., 2017) takes a weighted
average of the models trained by local clients and updates the local models iteratively. FedProx (Li
et al., 2020b) generalized and re-parametrized FedAvg, guaranteeing the convergence when learning
over non-iid data. FedAsyn (Xie et al., 2020) employed coordinators and schedulers to achieve an
asynchronous training process.
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E.2 HETEROGENEOUS MODELS.
The clients in homogeneous federated learning frameworks have identical neural network architec-
tures, while the edge devices or servers in real-world settings show great diversity. They usually
have different memory and computation capabilities, making it difficult to deploy the same machine-
learning model in all the clients. Therefore, researchers have proposed various methods supporting
heterogeneous models in the FL environment.

Knowledge Distillation. Knowledge distillation (KD) (Hinton et al., 2015) was proposed by Hinton
et al., aiming to train a student model with the knowledge distilled from a teacher model, which
becomes an important research area in Machine Learning (Gou et al., 2021; Zhao et al., 2023).
Inspired by the knowledge distillation, several studies(Li & Wang, 2019; Li et al., 2021b; He et al.,
2020) are proposed to address the system heterogeneity problem. In FedMD(Li & Wang, 2019),
the clients distill and transmit logits from a large public dataset, which helps them learn from both
logits and private local datasets. In RHFL (Fang & Ye, 2022), the knowledge is distilled from
the unlabeled dataset and the weights of clients are computed by the symmetric cross-entropy loss
function. Unlike the aforementioned methods, data-free KD is a new approach to completing the
knowledge distillation process without the training data. The basic idea is to optimize noise inputs to
minimize the distance to prior knowledge(Nayak et al., 2019). Chen et al.(Chen et al., 2019) train
Generative Adversarial Networks (GANs)(Goodfellow et al., 2014) to generate training data for the
entire KD process utilizing the knowledge distilled from the teacher model. In FedHe(Chan & Ngai,
2021), a server directly averages the logits transmitted from clients. FedGen(Zhu et al., 2021) adopts
a generator to simulate the prior knowledge from all the clients, which is used along with the private
data from clients in local training. In FedGKT(He et al., 2020), a neural network is separated into two
segments, one held by clients, the other preserved in a server, in which the features and logits from
clients are sent to the server to train the large model. In Felo (Chan & Ngai, 2022), the representations
from the intermediate layers are the knowledge instead of directly using the logits.

Public or Generated Data. In FedML (Shen et al., 2020), latent information from homogeneous
models is applied to train heterogeneous models. FedAUX (Sattler et al., 2021) initialized heteroge-
neous models by unsupervised pre-training and unlabeled auxiliary data. FCCL (Huang et al., 2022)
calculate a cross-correlation matrix according to the global unlabeled dataset to exchange knowledge.
However, these methods require a public dataset. The server might not be able to collect sufficient
data due to data availability and privacy concerns.

Model Compression. Although HeteroFL (Diao et al., 2021) derives local models with different
sizes from one large model, the architectures of local and global models still have to share the same
model architecture, and it is inflexible that all models have to be retrained when the best participant
joins or leaves the FL training process. Federated Dropout (Caldas et al., 2018) randomly selects sub-
models from the global models following the dropout way. SlimFL (Baek et al., 2022) incorporated
width-adjustable slimmable neural network (SNN) architectures(Yu & Huang, 2019) into FL which
can tune the widths of local neural networks. FjORD (Horvath et al., 2021) tailored model widths to
clients’ capabilities by leveraging Ordered Dropout and a self-distillation methodology. FedRoLex
(Alam et al., 2022) proposes a rolling sub-model extraction scheme to adapt to the heterogeneous
model environment. However, similar to HeteroFL, they only vary the number of parameters for each
layer.

F PROBLEM FORMULATION

In this section, we introduce federated learning with model heterogeneity. Federated learning aims to
foster collaboration with clients to jointly train a shared global model while preserving the privacy
of their local data. However, in the context of model heterogeneity, it becomes challenging to
maintain the same architectures across all clients. Specifically, we consider a set of physical resources
denoted as {Ri}ni=1, where Ri represents the available resources of client i. For each local client
model {Mi}ni=1, the resource requirement R(Mi) must be smaller than or equal to the available
resources of client i, i.e. {R(Mi) ≤ Ri}ni=1. To satisfy this constraint, the client models have
varying sizes and architectures. Let wi denote the weights of the client model Mi, and f(x,wi)
represent the forward function of model Mi with input x. Moreover, each client has a local dataset
Di = {(xk,i, yk,i)|k ∈ {1, 2, ..., |Di|}}, where |Di| signifies the size of a dataset Di. The loss
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function li of client i is shown as follows,

min
w

li(wi) =
1

|Di|

|Di|∑
k=1

lCSE(f(xk;wi), yk), (43)

where lCSE is a cross-entropy function. Moreover, if we denote K =
∑n

i=1 |Di| as the total size of
all local datasets, the global optimization problem is,

min
w1,w2,...,wn

L(w1, ..., wn) =

n∑
i=1

|Di|
K

li(wi), (44)

where the optimized model weights {w1, w2, ..., wn} are the parameters from Mi
n
i=1. In our case,

{w1, w2, ..., wn} are split from the server model weight ws from the server model Ms. The goal of
our paper is to propose a method that can effectively optimize Equation 44.

G CONFIGURATIONS AND MORE RESULTS OF THE CASE STUDY

G.1 CONFIGURATIONS

In the case study, we have five ResNet models which are stage splitting from ResNet26, resulting in
ResNet10, ResNet14, ResNet18, ResNet22, and ResNet26. Five ViTs models are ViT-S/8, ViT-S/9,
ViT-S/10, ViT-S/11, ViT-S/12, the results from the layer splitting of ViT-S/12. The model prototypes
are the same as the experiment settings. To quantify a model’s degree of bias towards its local
dataset, we use CKA similarities among the clients based on the outputs from the same stages in
ResNet (ResNets of different sizes always contain four stages) and the outputs from the same layers
in Vision Transformers (ViTs) (Dosovitskiy et al., 2020). Specifically, we measure the averaged CKA
similarities according to the outputs from the same batch of test data. The range of CKA is between 0
and 1, and a higher CKA score means more similar paired features. We train FedAvg under three
settings: IID with the homogeneous setting, Non-IID with the homogeneous setting, and Non-IID
with the heterogeneous setting. FedAvg only aggregates gradients from the models sharing the same
architectures under the heterogeneous model setting (Lin et al., 2020). For ResNets, we conduct
training 100 communication rounds, while only 20 rounds for ViTs. The local training epochs for
clients are five for all settings. We use Adam(Kingma & Ba, 2015) optimizer with default parameter
settings for all client models, and the batch size is 64. We use two small federated scales. One is
ten clients deployed the same model architecture (ResNet18 for ResNets and ViT-S/12 for ViTs),
which is called a homogeneous setting. The other is ten clients with five different model architectures,
which is a heterogeneous setting. This setting means that we have five groups whose architectures are
heterogeneous, but the clients belonging to the same group have the same architectures.
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Figure 12: Cross-environment similarity and more results between accuracy and CKA similarity.
(a) and (b): Cross-environment similarity from Block 7 and Block 11 from ViTs. (c) and (d): The
positive relation between stage1 and stage2.

G.2 RELATIONS BETWEEN CKA AND ACCURACY.
In this subsection, we continue to describe more results about the relations between CKA similarity
and accuracy. Similar to Figure 1c from stage0, Figure 12c and Figure 12d show the positive relations
between CKA and accuracy from stage1 and stage2.

G.3 GRADIENT ANALYSIS FOR VITS

Similar to the gradient analyses conducted for ResNets, we have performed the analysis of gradient
distributions for ViTs. In our investigation, we have analyzed the outputs from the norm1 and norm2
layers within the ViT blocks and have also applied InCo Aggregation to these layers. The selection

21



Published as a conference paper at ICLR 2024

0.0004 0.0002 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Gradient value

0

50

100

150

200

250

300

350

400

D
en

si
ty

0.0001 0.0000 0.0001
300

350

400
Round

10
11
12
13
14
15
16
17
18
19

(a) Block7 norm1 in IID
with homo.

0.0004 0.0002 0.0000 0.0002 0.0004 0.0006 0.0008 0.0010
Gradient value

0

50

100

150

200

250

300

350

D
en

si
ty

0.0001 0.0000 0.0001
250

300

350
Round

10
11
12
13
14
15
16
17
18
19

(b) Block7 norm2 in IID
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(c) Block11 norm1 in IID
with homo.
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(d) Block11 norm2 in IID
with homo.

Figure 13: The gradient distributions from round 10 to 20 of ViTs in IID with homo.
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(a) Block7 norm1 in Non-
IID with hetero.
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(b) Block7 norm2 in Non-
IID with hetero.
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(c) Block11 norm1 in Non-
IID with hetero.
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(d) Block11 norm2 in Non-
IID with hetero.

Figure 14: The gradient distributions from round 10 to 20 of ViTs in Non-IID with hetero.

of norm1 and norm2 layers is motivated by the significance of Layer Norm in the architecture of
transformers (Xiong et al., 2020). Additionally, we have chosen Block7 and Block11 for analysis as,
in the context of heterogeneous models, Block7 is the final layer of the smallest ViTs, while Block11
represents the final layer of the largest ViTs.

From Figure 12a and Figure 12b, we observe that the cross-environment similarities derived from
the shallow layer norm (norm1) are higher compared to those from the deep layer norm (norm2).
Moreover, similar to the analysis conducted for ResNets, we discover that the distributions of norm1
in ViTs exhibit greater smoothness compared to norm2, as depicted in Figure 13 and Figure 14. These
findings reinforce the notion that InCo Aggregation is indeed suitable for ViTs.
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(c) Stage3 conv0 in Non-
IID with hetero with dif-
ferent seed.
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Figure 15: The gradient distributions from round 40 to 50 of ResNets in Non-IID with hetero. (a) and
(b) Stage2 conv0 and conv1. (c) and (d) Stage3 conv0 and conv1 with different seed.

G.4 GRADIENT DISTRIBUTIONS FROM STAGE 2 AND DIFFERENT SEED.
Figure 15a and Figure 15b demonstrate the gradient distributions in Stage 2. In contrast to the
gradient distributions of Stage 3, the differences in gradient distributions across different layers are
less evident for Stage 2. This can be observed from Figure 1a, where the CKA similarity for Stage 2 is
considerably higher than that of Stage 3. The higher similarity indicates that Stage 2 is relatively less
biased and more generalized compared to Stage 3, resulting in less noticeable differences in gradient
distributions. This observation further supports the relationship between similarity and smoothness,
as higher similarity leads to smoother distributions. Moreover, Figure 15c and Figure 15d illustrate
that the gradient distributions still keep the same properties in different random seed, indicating that
the relations between similarity and smooth gradients are not affected by SGD noise.

G.5 OTHER RELATIONS BETWEEN CKA AND THE STATISTICS OF GRADIENTS.
Figure 16 provides an overview of additional relationships between layer similarity and the cross-
environment gradient statistics derived from IID with homo and Non-IID with hetero. We calculate
the difference between gradients from the same layer across these two environments. To clarify the
tendency of similarity for each stage, we normalize the results according to the smallest value within
each stage. As shown in Figure 16, none of these gradient statistics exhibit stronger correlations with
the similarity of gradients compared to the smoothness, discussed in Section 2.2 and Appendix G.3.
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Figure 16: Other relationships between CKA and the cross-environment statistics of gradients from
IID with homo and Non-IID with hetero. We use abbreviations for ”stage” and ”conv,” represented as
”s” and ”c” respectively. For example, ”s2c0” represents stage 2, conv0.
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2.
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(d) The CKA similarity
of IID with homo for
stage 3.
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(e) The CKA similarity of
Non-IID with homo for
stage 0.
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(f) The CKA similarity of
Non-IID with homo for
stage 1.
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(g) The CKA similarity
of Non-IID with homo
for stage 2.
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(h) The CKA similarity
of Non-IID with homo
for stage 3.

Client0 Client1 Client2 Client3 Client4 Client5 Client6 Client7 Client8 Client9
Client_ID

Client0

Client1

Client2

Client3

Client4

Client5

Client6

Client7

Client8

Client9

Cl
ie

nt
 ID

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

(i) The CKA similarity of
Non-IID with hetero for
stage 0.
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(j) The CKA similarity of
Non-IID with hetero for
stage 1.
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(k) The CKA similarity
of Non-IID with hetero
for stage 2.
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(l) The CKA similarity of
Non-IID with hetero for
stage 3.

Figure 17: The CKA similarity of IID with homo, Non-IID with homo and Non-IID with hetero for
ResNets.

G.6 HEATMAPS FOR THE CASE STUDY

In this part, we will show the heatmaps for all stages of ResNets and layer 4 to layer 7 of ViTs
in Figure 17 and Figure 18. These heatmaps are the concrete images for Figure 1. We can see
that the CKA similarity is lower with the deeper stages or layers no matter in ResNets and ViTs.
However, it is notable that the different patterns for CKA similarity between ResNets and ViTs from
the comparison between Figure 17 and Figure 18. To get a clear analysis, we focus on the last stage
of ResNets and layer 7 of ViTs, which are the most biased part of the entire model. Like Figure 17l
in ResNets, almost all clients are dissimilar, while only a part of clients has low similarity in ViTs
from Figure 18l. Along with the experiment results from Table 2, the improvements in ViTs from
FedInCo are modest. One possible reason is that we neglect more biased clients and regard all clients
as having the same level of bias in ViTs, which is a possible improvement for FedInCo.
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(a) The CKA similarity of
IID with homo for layer
4.
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(b) The CKA similarity
of IID with homo for
layer 5.
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(c) The CKA similarity of
IID with homo for layer
6.
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(d) The CKA similarity
of IID with homo for
layer 7.
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(e) The CKA similarity of
Non-IID with homo for
layer 4.
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(f) The CKA similarity of
Non-IID with homo for
layer 5.
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(g) The CKA similarity
of Non-IID with homo
for layer 6.
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(h) The CKA similarity
of Non-IID with homo
for layer 7.
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(i) The CKA similarity of
Non-IID with hetero for
layer 4.
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(j) The CKA similarity of
Non-IID with hetero for
layer 5.
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(k) The CKA similarity
of Non-IID with hetero
for layer 6.
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(l) The CKA similarity of
Non-IID with hetero for
layer 7.

Figure 18: The CKA similarity of IID with homo, Non-IID with homo and Non-IID with hetero for
ViTs.

H MORE DETAILS OF THE EXPERIMENTS

H.1 PROCEDURE FOR INCO AGGREGATION

The pseudo-codes for InCo Aggregation are shown in Algorithm 1. InCo Aggregation is operated in a
server model, indicating that the methods focused on the client can be aligned with InCo Aggregation,
as shown in our experiments.

Algorithm 1 InCo Aggregation (InCoAvg as the example)

Require: Dataset Dk, k ∈ {1, ...,K}, K
clients, and their weights w1, ..., wK .

Ensure: Weights for all clients w1, ..., wK .
1: Server process:
2: while not converge do
3: Receives gtwi

from the sampled client.
4: Parameter aggregation for gtwi

.
5: for each layer lk in the server model do
6: if lk needs cross-layer gradients then
7: gtlk

′
, gtl0

′ ←Normalizes gtlk and
gtl0 .

8: θt, α, β from Theorem 3.1.

9: gt+1
lk

=
(gt

lk

′−θtgt
l0

′
)×(||gt

lk
||+||gt

l0
||)

2 .

10: else
11: gt+1

lk
= gtlk

12: end if
13: wt+1

lk
= wt

lk
+ gt+1

lk
14: end for
15: Sends the updated wt+1

i to sampled
clients.

16: end while
17: Client processes:
18: while random clients i, i ∈ 1, ...,K do
19: Receives model weights wt−1

i .
20: Updates client models wt−1

i to wt
i .

21: Sends gtwi
= wt

i − wt−1
i to the server.

22: end while
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Table 5: Test accuracy of 100 clients and sample ratio 0.1. We shade in gray the methods that
are combined with our proposed method, InCo Aggregation. We show the error bars for InCo
Aggregation in this table.

Base Methods
Fashion-MNIST SVHN CIFAR10 CINIC10

α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0
R

es
N

et

FedAvg 86.7±1.0 87.7±0.6 74.8±3.2 81.6±2.5 52.3±3.4 61.3±3.2 43.1±2.7 49.2±3.1

FedProx 75.1±1.8 76.6±1.5 32.0±2.8 43.7±2.9 19.2±2.2 23.4±2.4 17.4±1.7 19.8±1.4

Scaffold 87.9±0.5 88.0±0.3 76.3±3.4 82.4±3.1 54.3±3.6 61.8±3.0 43.5±2.4 49.4±3.1

FedNova 12.7±0.2 15.6±0.2 13.4± 0.4 15.3±0.3 10.4±0.3 14.3±0.2 12.0±0.3 14.0±0.2

MOON 87.7±0.4 87.5±0.3 72.8±4.3 81.2±3.2 47.2±2.7 58.8±2.6 40.8±2.1 49.2± 1.9

InCoAvg 90.2±1.2 88.4±1.8 87.6±2.8 89.0±2.6 67.8±3.2 70.7±3.4 53.0±3.2 57.5±3.3

InCoProx 88.8±2.3 86.4±3.2 89.0±1.3 90.8±1.2 74.5±2.3 76.8±1.8 59.1±3.2 62.5±2.4

InCoScaffold 88.3±1.4 90.1±1.2 85.4±2.4 87.8±3.5 67.3±3.6 73.8±2.9 53.5±3.3 61.7±3.0

InCoNova 86.6±1.4 87.4±1.3 86.4±2.5 88.4±1.8 62.8±3.9 69.7±4.2 48.0±2.7 54.1±1.7

InCoMOON 89.1±1.3 89.5±1.2 85.6±3.8 89.3±2.0 68.2±3.1 71.8±2.3 54.3±3.0 57.6±2.7

V
iT

FedAvg 92.0±0.7 91.9±0.5 92.4±0.9 93.9±0.8 93.7±1.0 94.2±0.8 83.8±1.4 85.1±0.9

FedProx 89.8±0.5 89.7±0.5 71.4±3.8 81.1±2.9 82.6±3.3 84.7±2.3 67.8±2.8 71.3±3.0

Scaffold 92.0±0.4 92.0±0.5 92.2±0.8 93.8±0.6 93.5±0.7 94.5±0.5 83.3±1.6 85.5±1.2

FedNova 70.3±0.5 76.7±0.4 27.4±0.4 49.8±0.5 30.7±0.3 54.4±0.5 31.6±1.5 50.7±1.3

MOON 92.1±0.3 92.1±0.2 92.5±1.2 93.9±0.9 93.6±0.8 94.6±0.3 84.3±1.6 85.3±1.2

InCoAvg 93.0±0.6 93.1±0.5 94.2±0.6 95.0±0.4 94.6±0.7 95.0±0.6 85.9±1.9 86.8±1.3

InCoProx 92.6±0.3 92.5±0.3 93.9±0.7 94.4±0.6 94.0±1.0 94.8±0.7 85.1±1.4 86.0±0.8

InCoScaffold 92.9±0.3 93.0±0.2 94.0±1.1 94.8±0.6 94.6±0.5 95.0±0.2 85.7±1.3 86.5±1.1

InCoNova 93.1±0.3 93.6±0.3 94.7±0.9 95.6±0.5 94.8±0.4 95.7±0.3 86.2±1.8 88.2±1.0

InCoMOON 92.8±0.5 93.0±0.3 94.7±0.8 95.1±0.5 94.2±0.8 95.1±0.5 86.0±0.9 86.8±1.3

H.2 DATASETS

We conduct experiments on Fashion-MNIST, SVHN, CIFAR-10, and CINIC-10. CINIC-10 is a
dataset of the mix of CIFAR-10 and ImageNet within ten classes. We use 3×224×224 with the ViT
models and 3×32×32 with the ResNet models for all datasets.

H.3 HYPER-PARAMETERS

We deploy stage splitting for ResNets and obtain five sub-models, which can be recognized as
ResNet10, ResNet14, ResNet18, ResNet22, and ResNet26. For the pre-trained ViT models, we
employ layer splitting and obtain five sub-models, which are ViT-S/8, ViT-S/9, ViT-S/10, ViT-S/11,
and ViT-S/12 from the PyTorch Image Models (timm)7. Our implementations of FedAvg, FedProx,
FedNova, Scaffold and MOON are referred to (Li et al., 2022). We use Adam optimizer with
a learning rate of 0.001, β1 = 0.9 and β2 = 0.999, default parameter settings for all methods
of ResNets. The local training epochs are fixed to 5. The batch size is 64 for all experiments.
Furthermore, the global communication rounds are 500 for ResNets, and 200 for ViTs for all datasets.
Global communication rounds for MOON and InCoMOON are 100 to prevent the extreme overfitting
in Fashion-MNIST. The hyper-parameter µ

2 for FedProx and InCoProx is 0.05 for ViTs and ResNets.
We conduct our experiments with 4 NVIDIA GeForce RTX 3090s. All baselines and their InCo
extensions are conducted in the same hyper-parameters. The settings of hetero splitting for ScaleFL
followed the source codes.8

H.4 MODEL SIZES

We demonstrate the model sizes for each client model in Table 7, Table 8, and Table 9.

H.5 ERROR BARS OF INCO AGGREGATION

We illustrate the error bars of InCo Aggregation and the results from model-homogeneous baselines
(not use stage or layer splitting in the model heterogeneous environment) in Table 5. For the model-
heterogeneity methods, we demonstrate the error bars of InCo Aggregation in Table 6. These results
show the stability of InCo Aggregation. In all cases of ResNets and many cases of ViTs, the worst

7https://github.com/rwightman/pytorch-image-models
8https://github.com/git-disl/scale-fl
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Table 6: Test accuracy of model-heterogeneity methods with 100 clients and sample ratio 0.1. We
shade in gray the methods that are combined with our proposed method, InCo Aggregation. We show
the error bars for InCo Aggregation in this table.

Base Splitting Methods
Fashion-MNIST SVHN CIFAR10

α = 0.5 α = 1.0 α = 0.5 α = 1.0 α = 0.5 α = 1.0
R

es
N

et

Hetero
HeteroFL 88.9±1.0 89.7±0.7 90.5±1.6 92.2±1.3 65.2±3.2 68.4±3.6

+InCo 90.0±1.2 90.4±1.1 92.1±1.0 93.5±1.5 68.2±3.8 71.2±3.4

Stage
InclusiveFL 89.1±1.1 89.8±1.0 88.6±2.0 90.0±2.2 65.7±3.5 68.4±3.3

+InCo 90.1±1.5 90.5±1.3 90.6±1.7 90.9±1.9 69.1±2.8 72.3±3.1

Hetero
FedRolex 88.2±1.0 90.2±0.8 90.9±1.3 91.6±1.7 64.7±4.1 72.3±3.0

+InCo 90.4±1.4 91.3±1.1 92.8±1.5 93.4±1.6 67.9±2.9 75.6±2.6

Hetero
ScaleFL 90.9±0.5 91.0±0.4 92.6±1.0 92.9±0.9 71.1±2.9 74.7±3.1

+InCo 91.5±1.0 91.7±1.1 93.4±0.9 93.6±0.9 73.8±3.2 76.1±2.6

N/A AllSmall 83.5±1.7 84.0±1.7 72.1±3.5 81.0±2.9 39.2±2.0 44.9±2.3

N/A AllLarge 91.8±0.5 92.5±0.8 93.4±0.8 93.8±0.5 79.6±2.9 82.5±1.0

Table 7: Model parameters for different architectures of ResNets (Stage splitting).

Sizes
ResNets (Stage splitting)

ResNet10 ResNet14 ResNet18 ResNet22 ResNet26

Params 4.91M (×0.281) 10.81M (×0.619) 11.18M (×0.641) 17.08M (×0.979) 17.45M (×1)
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Figure 19: CKA layer similarity and Heatmaps of ViTs. (a): The layer similarity of different methods.
(b) to (d): Heatmaps for different methods in layer 6 and layer 7.

results of InCo Aggregation are better than the Averaging Aggregation, demonstrating the efficacy of
InCo Aggregation.

H.6 DIFFERENCES BETWEEN ADDING NOISES AND INCO GRADIENTS.
The convergence speed of InCo gradients surpasses that of the other two methods, as illustrated in
Figure 20a. Table 20c demonstrates that InCo gradients outperform other methods across different
datasets. The primary distinction between InCo gradients and adding noises lies in their ability to
determine the precise gradient modification for each node in the model. Gaussian noise lacks the
capability to specify the exact modification required for each node, leading to less controlled and
targeted adjustments. This is evident in Figure 20b, where the Frobenius norm of noises is larger and
exhibits greater instability compared to InCo gradients.

H.7 LAYER SIMILARITY AND HEATMAPS OF VITS

Figure 19 illustrates the layer similarity of the last four layers, along with the corresponding heatmaps
for Layer 6 and Layer 7. Furthermore, Figure 19a demonstrates that InCo Aggregation significantly
enhances the layer similarity, validating the initial motivation behind our proposed method. Addition-
ally, since the disparity in layer similarity between Layer 6 and Layer 7 is minimal, the heatmaps for
these layers do not exhibit significant differences, as depicted in Figure 19b through Figure 19d.
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Table 8: Model parameters for different architectures of ViTs (Layer splitting).

Sizes
ViTs (Layer splitting)

ViT-S/8 ViT-S/9 ViT-S/10 ViT-S/11 ViT-S/12

Params 14.57M (×0.672) 16.34M (×0.754) 18.12M (×0.836) 19.90M (×0.912) 21.67M (×1)

Table 9: Model parameters for different architectures of ResNets (Heterogeneous splitting).

Sizes
ResNets (Hetero splitting)

1⁄16 1⁄8 1⁄4 1⁄2 ResNet26

Params 0.07M (×0.004) 0.28M (×0.016) 1.10M (×0.06) 4.37 (×0.25) 17.45M (×1)

H.8 MORE ABLATION STUDIES AND ROBUSTNESS ANALYSIS.
We conduct additional experiments on different baselines to demonstrate the effectiveness of InCo
Aggregation. Figure 21 to Figure 23 present the results of the ablation study for FedProx, FedNova,
and Scaffold, incorporating InCo Aggregation. These results highlight the efficacy of InCo Aggrega-
tion across different baselines. Additionally, Figure 24 and Figure 25 illustrate the robustness analysis
for FedProx and Scaffold. In Figure 24 and Figure 25, InCoProx and InCoScaffold consistently
obtains the best performances across all settings. These experiments provide further evidence of the
efficiency of InCo Aggregation.

I LIMITATIONS AND FUTURE DIRECTIONS

The objective of this study is to expand the capabilities of model-homogeneous methods to effectively
handle model-heterogeneous FL environments. However, the analysis of layer similarity reveals
that the smallest models do not derive substantial benefits from InCo Aggregation, implying the
limited extensions for these smallest models. Exploring methods to enhance the performance of the
smallest models warrants further investigation. Furthermore, our research mainly focuses on image
classification tasks, specifically CNN models (ResNets) and Transformers (ViTs). However, it is
imperative to validate our conclusions in the context of language tasks, and other model architectures
such as LSTM Hochreiter & Schmidhuber (1997). Additionally, it is important to consider that the
participating clients in the training process may have different model architectures. For example,
some clients may employ CNN models, while others may use Vision Transformers (ViTs). We
believe that it is worth extending this work to encompass a wider range of tasks and diverse model
architectures that hold great value and potential for future research.
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Figure 20: Convergence speeds, Frobenius norm of adding noise and InCo gradients (InCoAvg), and
accuracy results for different datasets. (a): Convergence speeds of HeteroAvg, adding noise and InCo
gradients. (b): Frobenius norm of noise and InCo gradients. (c): Accuracy for different datasets.
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(b) SVHN.
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(c) CIFAR-10.
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(d) CINIC-10.

Figure 21: Ablation studies for InCo Aggregation for FedProx. The federated settings are the same
as Table 2.

InCoNova w/o N w/o O
w/o N&O

HeteroNova

Methods

81
82
83
84
85
86
87
88

Ac
cu

ra
cy

Distribution
=1.0
=0.5

(a) Fashion-MNIST.
InCoNova w/o N w/o O

w/o N&O
HeteroNova

Methods

82
83
84
85
86
87
88
89

Ac
cu

ra
cy

Distribution
=1.0
=0.5

(b) SVHN.
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(c) CIFAR-10.
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(d) CINIC-10.

Figure 22: Ablation studies for InCo Aggregation for FedNova. The federated settings are the same
as Table 2.
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(a) Fashion-MNIST.
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(b) SVHN.
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(c) CIFAR-10.
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Figure 23: Ablation studies for InCo Aggregation for Scaffold. The federated settings are the same as
Table 2.
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Figure 24: Robustness analysis for InCo Aggregation for FedProx in CIFAR-10.
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Figure 25: Robustness analysis for InCo Aggregation for Scaffold in CIFAR-10.
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