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Generalized News Event Discovery via Dynamic Augmentation
and Entropy Optimization

Anonymous Authors

ABSTRACT
News event discovery refers to the identification and detection
of news events using multimodal data on social media. Currently,
most works assume that the test set consists of known events. How-
ever, in real life, the emergence of new events is more frequent,
which invalidates this assumption. In this paper, we propose a Dy-
namic Augmentation and Entropy Optimization (DAEO) model to
address the scenario of generalized news event discovery, which
requires the model to not only identify known events but also
distinguish various new events. Specifically, we first introduce a
multimodal augmentation module, which utilizes adversarial learn-
ing to enhance the multimodal representation capability. Secondly,
we design an adaptive entropy optimization strategy combined
with a self-distillation method, which uses multi-view pseudo-label
consistency to improve the model’s performance on both known
and new events. In addition, we collect a multimodal news event
discovery (MNED) dataset of 161,350 samples annotated with 66
real-world events. Extensive experimental results on the MNED
dataset demonstrate the effectiveness of our proposed method. Our
dataset is available on https://anonymous.4open.science/r/2FF5.

CCS CONCEPTS
• Information systems→Multimedia information systems; •
Computing methodologies→ Artificial intelligence.

KEYWORDS
Generalized News Event Discovery, Social Media

1 INTRODUCTION
News event discovery aims at automatically identifying and classi-
fying news events from a wide range of data sources. In the age of
social media, it becomes particularly crucial, as platforms like Twit-
ter, Facebook, and others have emerged as primary channels for
news dissemination. Compared to traditional media, news spreads
faster and reaches a wider audience on social media, making the
timely discovery and tracking of news events even more vital. Ap-
plications of news event discovery span various domains, including
crisis management [23], public sentiment monitoring [18], market
analysis [27], and public safety [17]. In these contexts, accurate and
prompt identification of news events can help organizations and
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Figure 1: Different settings for news event discovery. Events 4
and 5 are new events that do not occur in the training set.

individuals respond more swiftly, better understand and analyze
public opinion, and manage information flow more effectively.

The current research [1, 13, 14, 36, 40] in news event discovery
primarily focuses on utilizing multimodal approaches due to the
richer information provided by the multimodal data. However, a
significant limitation of these studies is their reliance on a closed-set
assumption, which greatly diminishes their applicability in prac-
tical scenarios. As illustrated in Figure 1a, under a closed setting,
the focus is mainly on identifying news events that are already
known, like cyclical or long-term events, which have happened
before. This kind of approach falls short when it comes to detecting
novel events that emerge over time. In response to this limitation,
some researchers [24] have proposed shifting towards an open
setting, aiming to identify novel events as they occur as shown
in Figure 1b. Yet, as the volume of new events grows in real life,
merely distinguishing whether an event is unknown or not is often
insufficient. This has led to the exploration of the generalized news
event discovery problem, which seeks to extend beyond the binary
classification of new events as either known or unknown. This
task aims at not only recognizing previously occurred news events
but also differentiating among events that have not yet occurred,
referring to this capability as general category discovery [30]. As
shown in Figure 1c, it requires the model to both identify known
events and categorize new events.

However, the task of generalized news event discovery presents
several challenges. The first challenge lies in dealing with multi-
modal features. When identifying news events, it’s possible that
only one modality, either text or image, provides useful information,
or both modalities offer complementary insights. This variability
requires the effective integration and utilization of each modality,
especially for events that are closely related or similar in nature.
The second challenge involves utilizing knowledge of previously

https://anonymous.4open.science/r/2FF5
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occurred events to identify new events. This necessitates a model
capable of distinguishing subtle differences between known and
new events. Lastly, the challenge of dataset scarcity compounds the
difficulty of this task. A comprehensive dataset, rich in both volume
and variety of events, including temporal information, is crucial
for this task. As illustrated in Figure 1, temporal information plays
a crucial role in the division of datasets. Unfortunately, existing
datasets [14, 24] lack this temporal metadata, leading to the use of
random splits for training and test sets, which can not reflect the
real-world scenario where events unfold over time.

To address the aforementioned challenges, we introduce a Dy-
namic Augmentation and Entropy Optimization (DAEO) model. For
the first challenge, we design a multimodal augmentation module
to learn more robust multimodal event features, which implicitly
leverages the label information of events to learn the relationship
between different modalities. It utilizes adversarial learning to not
only encourage the generation of multimodal features that can
distinguish between different similar events but also ensure the
generated features are as diverse as possible. For the second chal-
lenge, we learn a unified prototypical classification head for all new
and known classes with self-distillation learning. Unlike previous
methods [32] that used entropy maximization for all samples, we
introduce an adaptive entropy optimization technique. Specifically,
we generate various pseudo labels using a multi-view approach,
including single-modal random augmentations (e.g., image augmen-
tations) and outputs from the multimodal augmentation module.
Then, when there is consistency across multiple views, the model
is optimized to minimize entropy, thereby enhancing confidence in
identified known events. Conversely, when views differ, entropy
maximization is employed to encourage further exploration of the
new events. Furthermore, we collect a multimodal news event dis-
covery (MNED) dataset for generalized news event discovery from
Twitter, comprising 161,350 multimodal samples annotated with 66
real-world events. Reflecting the temporal characteristics of news
events, we define and collect three types of news events: short-term,
cyclical, and long-term events. To ensure diversity, each event type
encompasses a broad range of sub-events, including short-term
events like natural and man-made disasters, terrorist attacks; cycli-
cal events such as sporting events, political elections, international
summits; and long-term events covering political conflicts, eco-
nomic/social crises, and environmental/health issues.

The contributions of this paper can be summarized as follows:

• We formulate the task of generalized news event discov-
ery and introduce a Dynamic Augmentation and Entropy
Optimization (DAEO) model designed to tackle this task.

• We propose a multimodal augmentation module and an adap-
tive entropy optimization strategy aimed at improving the
representation of multimodal features and enhancing the
ability to uncover new events, respectively.

• We collect a comprehensive multimodal news event discov-
ery (MNED) dataset deigned for news event discovery, which
encompasses a wide array of events categorized into long-
term, cyclical, and short-term events, providing a rich re-
source for the research community.

• Extensive experimental results on the MNED dataset demon-
strate the effectiveness of our proposed model.

2 RELATEDWORK
2.1 News Event Discovery
The exploration of news event discovery initially stemmed from
the domain of topic detection and tracking [2]. With the rise of the
internet, an increasing number of researchers have shifted their
focus towards utilizing single-modal information present on social
media, such as images or text, to facilitate the discovery of news
events [12, 21, 22, 26, 28, 38]. For instance, Zaharieva et al. [38]
utilized the image information for the detection of specific social
events. Lee et al. [12] employed a naive Bayes multinomial classifier
for identifying distinct trending topics. Despite their contributions,
these single-modal approaches face inherent limitations when com-
pared to analyses that incorporate multimodal data, as accurately
detecting news events often requires a synthesis of various event-
related elements. Therefore, researchers began to delve into news
event discovery based on multimodal data [13, 14, 19, 33–35, 37].
For example, Li et al. [13] proposed a transformer-based condi-
tioned variational autoencoder to jointly model the textual informa-
tion, visual information and label information for incomplete social
event classification. Lin et al. [14] designed a multi-modal fusion
with external knowledge to address the out-of-distribution issue
in news event detection. These approaches, however, assume that
the training and test events remain consistent (i.e., a closed set),
which diminishes their efficacy in the face of new, unseen events.
Recently, Qian et al. [24] introduced an open-world social event
classifer model towards an open setting of news event discovery,
which can not only distinguish already occurred events but also
identify whether an event is unknown when new events emerge.
Nonetheless, the practicality of this approach faces challenges as
the number of new events continuously increases over time, mak-
ing the simple binary distinction between whether an event is new
or not insufficient.

2.2 Generalized Category Discovery
The field of generalized category discovery has recently emerged,
focusing on classifying known categories while also identifying
unseen, new categories. The pioneering work in this domain was
conducted by Vaze et al. [30], who introduced the idea of leverag-
ing a universal feature representation to discover new categories.
Specifically, they proposed fine-tuning a pre-trained DINO ViT [6]
using a combination of one supervised and one self-supervised
contrastive method. This approach is further complemented by a
semi-supervised clustering for label assignment. In addition, the
authors extended UNO [7] and RankStats [8] for this task, which
were originally designed for novel class discovery [7, 39]. However,
these methods employ a two-step training process, involving fea-
ture learning and clustering, which could potentially be sub-optimal.
To address this, Wen et al. [32] suggested parametric approaches
that construct a trainable classifier, enabling the joint optimization
of the entire network. Similar to the idea behind DINO ViT [6], their
method used the generation of pseudo cluster labels to guide the
learning of new categories. This work sparked a series of follow-up
studies [20, 31]. For example, Wang et al. [31] proposed the use of
CLIP-generated text to guide image learning for category discov-
ery. Nevertheless, it is challenging to apply these methods directly
to generalized news event discovery, which involves multimodal
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Figure 2: The framework of the proposed Dynamic Augmentation and Entropy Optimization (DAEO) model.

data and higher-level event labels. This is because these methods
rely on image data and pre-trained models developed primarily for
similar tasks, which emphasizes the need for specialized adaptation
in generalized news event discovery.

3 PRELIMINARIES AND PROBLEM
STATEMENT

Problem1 (GeneralizedNews EventDiscovery).Given a dataset
𝐷 contains two parts: 𝐷𝐿 containing known events and 𝐷𝑈 in-
cluding both known and new events, organized chronologically. A
model is expected to be developed that can accurately categorize
both known and new events in 𝐷𝑈 .

More specifically,𝐷𝐿 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1 constitutes a labeled dataset
containing multimodal instances 𝑥𝑖 , each labeled with 𝑦𝑖 from the
set 𝑌𝐿 of known event categories. 𝐷𝑈 = {(𝑥 𝑗 )}𝑀𝑗=1 represents an
unlabeled dataset with multimodal instances 𝑥 𝑗 , which are to be
associated with labels from an expanded set𝑌𝑈 . The set𝑌𝑈 includes
new, unseen event categories denoted by 𝑌𝑛𝑒𝑤 , and a subset of 𝑌𝐿 ,
designated as 𝑌𝑓 𝑢𝑡𝑢𝑟𝑒 , which represents a subset of 𝑌𝐿 that will
continue to happen in the future. Hence, the relationship 𝑌𝑈 =

𝑌𝑛𝑒𝑤 ∪ 𝑌𝑓 𝑢𝑡𝑢𝑟𝑒 , with 𝑌𝑓 𝑢𝑡𝑢𝑟𝑒 ⊆ 𝑌𝐿 as not all events from 𝑌𝐿 are
expected to reoccur. During training, the model is concurrently
trained on both𝐷𝐿 , to learn from the historical occurrence of events,
and 𝐷𝑈 , to anticipate and categorize future, unseen events.

In addition, in order to ensure that there are enough event types
and relationships that can be used for generalized news event dis-
covery, we define three types of news events based on their temporal
attributes: short-term, cyclical, and long-term events. The following
are the formal definitions:

Definition 1: (Short-termEvent).A short-term event is charac-
terized by its ephemeral nature, typically unfolding and concluding
within a brief time span. Examples of such events include natural
disasters, sudden political upheavals, or unexpected public inci-
dents. These events are transient and unpredictable, hence they

have a high probability of falling into both 𝑌𝐿 \ 𝑌𝑓 𝑢𝑡𝑢𝑟𝑒 (elements
present in 𝑌𝐿 but absent in 𝑌𝑓 𝑢𝑡𝑢𝑟𝑒 ) and 𝑌𝑛𝑒𝑤 since they may not
have occurred in the past or might represent entirely new scenarios.

Definition 2: (Cyclical Event). Cyclical events are those that
occur at regular intervals, marked by their predictability and pe-
riodicity. An example of a cyclical event is the Olympic Games,
which recur on a four-year cycle. These events are anticipated and
are typically encompassed within 𝑌𝑓 𝑢𝑡𝑢𝑟𝑒 due to their recurrent
nature.

Definition 3: (Long-term Event). Long-term events span ex-
tended periods, often unfolding over months, years, or even decades.
Wars, economic recessions, or major policy reforms are examples
of long-term events. These events persist over such durations that
they may be present in both 𝑌𝐿 and 𝑌𝑈 .

4 METHODOLOGY
4.1 Overview of the Framework
As illustrated in Figure 2, our DAEO model begins by leveraging a
pretrained CLIP model [25] to extract features from both images
and texts, which are then concatenated to form multimodal event
features 𝐸. Specifically, to enable self-learning from unlabeled data,
we apply random data augmentation to the images of the input
posts to obtain an augmented post for distillation learning. The mul-
timodal augmentation module then employs adversarial learning
to generate robust multimodal augmented features 𝐸𝐴𝑢𝑔 , which en-
hances the classifier’s ability to distinguish between similar events.
Then, we adopt a multilayer perceptron (MLP) as classifier 𝑓 to
obtain the output. For labeled data, we employ standard supervised
learning techniques using the labels; for unlabeled data, we utilize
distillation learning for training. Additionally, the adaptive entropy
optimization module uses the generated multi-view pseudo-labels
for consistency checking to selectively optimize entropy. This ap-
proach not only encourages the discovery of new events but also
improves the accuracy of known events.
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Figure 3: Multimodal augmentation module.

4.2 Multimodal Event Feature Extraction
According to [30], it is crucial to adopt a robust pretrained model
to discover new category, like DINO ViT [6]. However, most pre-
trained models are primarily focused on image data. Thanks to
the cross-modal alignment training on very large-scale image-text
pairs, CLIP [25] demonstrates strong zero-shot performance, evi-
dencing its powerful generalization capability for multi-modal joint
embedding. Therefore, given an input sample 𝑥𝑖 , we utilize the
pretrained CLIP ViT-B/16 model to generate features for both the
images and texts. These features are then concatenated to form our
multimodal event feature 𝐸𝑖 , which can be represented as:

𝐸𝑖 = 𝐶𝐿𝐼𝑃 (𝑥𝑖 ) . (1)

4.3 Multimodal Augmentation
In generalized news event discovery, it is important for a model to
distinguish similar news events finely, such as different earthquakes
in disaster events. Previous methods [30] utilize the supervised con-
trastive learning and self-contrastive learning method to widen
the decision margins between different categories. However, apply-
ing random data augmentation for contrastive learning on single
modalities, such as text or images, does not seem to enhance model
performance for multimodal data (see Sec. 5.6). A possible reason
is that random augmentation, especially for text, might lead to the
loss of event-related clues, causing negative optimization. For news
event discovery tasks, the relationship between images and text
can be complementary, related, or unrelated.

In our model, we adopt a different approach to learn robust fea-
tures, i.e., the multimodal augmentation module, by generating mul-
timodal augmented features through the adversarial method [15]
at the feature level. On one hand, we aim for the generated multi-
modal augmented features to closely approach the decision bound-
ary, which improves the classifier’s ability to distinguish between
similar events. On the other hand, we strive to ensure that the
generated multimodal features retain the original event semantics,
which prevents negative optimization.

As shown in Figure 3, we employ a Variational Autoencoder
(VAE) model [10] as the generative model, denoted as 𝐺 , which
includes an encoder and a decoder. The VAE model has been proven
effective in generating features. We utilize the KL divergence [9] to
make the encoder’s output as close to a standard Gaussian distribu-
tion as possible, which can be formulated as:

𝐿𝐾𝐿 = − 1
2𝑁

𝑁∑︁
𝑖=1

(
1 + log(𝜎2𝑖 ) − 𝜇

2
𝑖 − 𝜎

2
𝑖

)
(2)

where 𝜇 and 𝜎 are the mean and standard deviation parameters
output by the encoder, respectively. Furthermore, we use a residual
module to retain more of the original multimodal feature semantics.
The augmented features 𝐸𝐴𝑢𝑔

𝑖
can be formulated as:

𝐸
𝐴𝑢𝑔

𝑖
= 𝐺 (𝐸𝑖 ) + 𝐸𝑖 . (3)

For learning to generate robust multimodal augmented features,
we perform the adversarial training consisting of two parts. In the
first part, as shown in Figure 2, we fix the parameters of the mul-
timodal augmentation module 𝐺 and train the CLIP and classifier
model 𝑓 to minimize the cross-entropy loss between the output
and the true event labels, which ensures that augmented features
retain their original semantics. It can be formulated as:

𝐿
𝐴𝑢𝑔

𝐶𝐸
= − 1

𝑁

𝑁∑︁
𝑖=1

ℓ𝑐𝑒 (𝑓 (𝐸𝐴𝑢𝑔𝑖
), 𝑦 (𝑖 )

𝐿
), (4)

where ℓ𝑐𝑒 (·) represents the cross-entropy loss function.
In the second part, as shown in Figure 3, we fix the parameters of

the CLIP and classifier models and train 𝐺 , on one hand, maximize
the cross-entropy loss between the output and the true event labels
to generate more discriminative features closed to the decision
boundary, and on the other hand, minimize the consistency loss
to align the semantics of the augmented and original multimodal
feature outputs. The consistency loss can be formulated as:

𝐿𝐶𝑜𝑛𝑠𝑖𝑠 = − 1
𝑁

𝑁∑︁
𝑖=1

𝑓 (𝐸𝑖 ) log(𝑓 (𝐸𝐴𝑢𝑔𝑖
)) . (5)

To achieve the adversarial goal, we want the optimal parameters
𝜃𝐶𝐿𝐼𝑃 , 𝜃𝐺 and 𝜃 𝑓 to jointly satisfy

(𝜃𝐶𝐿𝐼𝑃 , 𝜃 𝑓 ) = arg min
𝜃𝐶𝐿𝐼𝑃 ,𝜃 𝑓

𝐿
𝐴𝑢𝑔

𝐶𝐸
+ 𝐿𝐶𝐸 , (6)

(𝜃𝐺 ) = argmax
𝜃𝐺

𝐿
𝐴𝑢𝑔

𝐶𝐸
− 𝐿𝐶𝑜𝑛𝑠𝑖𝑠 − 𝐿𝐾𝐿, (7)

𝐿𝐶𝐸 = − 1
𝑁

𝑁∑︁
𝑖=1

ℓ𝑐𝑒 (𝑓 (𝐸𝑖 ), 𝑦 (𝑖 )𝐿 ). (8)

In this way, the generated features 𝐸𝐴𝑢𝑔
𝑖

will be close to the de-
cision boundary, which further helps the classifier 𝑓 to distinguish
the class with some ambiguous decision boundaries.

4.4 Adaptive Entropy Optimization
To identify new categories, we train a unified prototypical classifi-
cation head for all new and known classes using a self-distillation
framework. For self-distillation, we perform simple augmentations
on images to obtain augmented images. Considering the potential
for existing random text augmentation methods to change seman-
tics and cause negative optimization, we compose augmented mul-
timodal data directly from augmented images and original texts.
Through the CLIP model, we obtain two different views of multi-
modal features, 𝐸𝑖 and 𝐸

′
𝑖
. Then, we map these multimodal features

to 𝐾-dimensional vectors as outputs using a function 𝑓 , where
𝐾 = |𝑌𝐿 ∪ 𝑌𝑈 | is the total number of event categories. For labeled
data, we optimize using a cross-entropy function in Eq. 8. For un-
labeled data, we employ self-distillation learning. Specifically, we
first randomly initialize a set of prototypes 𝐶 = {𝑐1, ..., 𝑐𝐾 }, each
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representing one category. During training, we compute the cosine
similarity between the output features and prototypes to obtain
soft labels 𝑝𝑖 /𝑞𝑖 for each view, which can be formulated as:

𝑝
(𝑘 )
𝑖

=

exp
(
1
𝜏 (𝑓 (𝐸𝑖 )/∥ 𝑓 (𝐸𝑖 )∥2)

𝑇 (c𝑘/∥c𝑘 ∥2)
)

∑
𝑘 ′ exp

(
1
𝜏 (𝑓 (𝐸𝑖 )/∥ 𝑓 (𝐸𝑖 )∥2)𝑇 (c𝑘 ′/∥c𝑘 ′ ∥2)

) , (9)

where 𝜏 is a temperature parameter for 𝑝𝑖 and a sharper version
for another view 𝑞𝑖 . The distillation loss can be formulated as:

𝐿𝐷𝑖𝑠𝑡𝑖𝑙𝑙 = − 1
𝑀

𝑀∑︁
𝑖=1

𝑞𝑖 log𝑝𝑖 . (10)

We also adopt a entropy maximization regularizer [4] for the
unsupervised objective, which can be formulated as:

𝐿𝐸𝑁𝑇 = − 1
𝑀

𝑀∑︁
𝑖=1

𝑝𝑖 log 𝑝𝑖 , (11)

However, we found that maximizing entropy, while encouraging the
exploration of new categories, also decreases themodel’s confidence
in known categories, ultimately sacrificing accuracy on known
categories (see Sec. 5.6).

To address this issue, we propose an adaptive entropy optimiza-
tion strategy, aiming for the model to actively explore new cate-
gories while maintaining accuracy on known categories. Specifi-
cally, we use pseudo-label consistency across four views to decide
on entropy optimization. For a sample, on one hand, we gener-
ate two pseudo-labels using 𝑝𝑖 and its augmented view 𝑞𝑖 ; on the
other hand, we generate 𝑝𝐴𝑢𝑔

𝑖
and 𝑞𝐴𝑢𝑔

𝑖
as two additional views to

obtain two more pseudo-labels using the multimodal augmenta-
tion module mentioned earlier, which provides a more challenging
perspective as the generated feature, encouraged by adversarial
learning, are more diverse and hence more discriminative. We then
use a consistency checker to perform consistency checks on the
pseudo-labels from these four different views for entropy optimiza-
tion, which can be formulated as:

𝐿𝐴𝑑𝑎𝑝𝑡 =

{
𝛼𝐿𝐸𝑁𝑇 if 𝑛 = 4
−𝛽𝐿𝐸𝑁𝑇 if 𝑛 < 4

(12)

where 𝑛 represents the number of consistency for the pseudo-labels,
𝛼 and 𝛽 are hyperparameters.

Through this strategy, when the model’s predictions are com-
pletely consistent across different views, we increase the model’s
confidence in its judgment by minimizing entropy; when there is a
discrepancy in the model’s judgments across views, we encourage
further exploration by maximizing entropy as we want the model to
explore new events as much as possible when there is uncertainty,
rather than blindly gravitating towards known events.

4.5 Overall Formulation and Optimization
In this study, we optimize a minimax problem via a straightforward
back-propagation way. To summarize the previous discussions, the
overall objective function of DAEO can be formulated as follows:

(𝜃𝐶𝐿𝐼𝑃 , 𝜃 𝑓 ) = arg min
𝜃𝐶𝐿𝐼𝑃 ,𝜃 𝑓

𝐿
𝐴𝑢𝑔

𝐶𝐸
+ 𝐿𝐶𝐸 + 𝐿𝐷𝑖𝑠𝑡𝑖𝑙𝑙 + 𝐿𝐴𝑑𝑎𝑝𝑡 , (13)

Algorithm 1 DAEO Algorithm
Input: Labeled data: 𝐷𝐿 = {(𝑥𝑖 , 𝑦𝑖 )}𝑁𝑖=1, unlabeled data:
𝐷𝑈 = {(𝑥 𝑗 )}𝑀𝑗=1, the CLIP model, the multimodal augmentation
model 𝐺 and the MLP classifier 𝑓 .
Output: Learned model parameters 𝜃𝐶𝐿𝐼𝑃 , 𝜃 𝑓 and 𝜃𝐺 .
while 𝑡 ≤ MaxIter
1: Compute the multi-modal features 𝐸𝑖 according to Eq. 1.
2: Compute the augmented multi-modal features 𝐸𝐴𝑢𝑔

𝑖
according

to Eq. 3.
3: Compute the pseudo-labels from four different views.
4: Perform a consistency check for these pseudo-labels and

compute the adaptive entropy loss 𝐿𝐴𝑑𝑎𝑝𝑡 according to Eq. 12.
5: Compute the cross-entropy loss 𝐿𝐶𝐸 and 𝐿𝐴𝑢𝑔

𝐶𝐸
and distill loss

𝐿𝐷𝑖𝑠𝑡𝑖𝑙𝑙 according to Eq. 8, Eq. 4 and Eq. 10, respectively.
6: Optimize the objective in Eq. 13.
7: Recompute the multi-modal features 𝐸𝑖 and the augmented

multi-modal features 𝐸𝐴𝑢𝑔
𝑖

according to Eq. 1 and Eq. 3,
respectively.

8: Recompute the cross-entropy loss 𝐿𝐴𝑢𝑔
𝐶𝐸

, KL divergence loss
𝐿𝐾𝐿 and consistency loss 𝐿𝐶𝑜𝑛𝑠𝑖𝑠 according to Eq. 4, Eq. 2 and
Eq. 5, respectively.

9: Optimize the objective in Eq. 14.
end while

(𝜃𝐺 ) = argmax
𝜃𝐺

𝐿
𝐴𝑢𝑔

𝐶𝐸
− 𝐿𝐶𝑜𝑛𝑠𝑖𝑠 − 𝐿𝐾𝐿, (14)

The detailed algorithm for the DAEO method is presented in
Algorithm 1.

5 EXPERIMENT
5.1 Dataset
5.1.1 Collection of News Events. The collection of news events
plays a crucial role in generalized news event discovery, demand-
ing a diverse array of relationships among different news events
to encompass various possibilities. For instance, when using time
as a divider to separate the training and test sets, the relationship
between events can be identical, subset, intersecting, or entirely
distinct, depending on the type and time of the event. In our paper,
we define short-term events, cyclical events, and long-term events,
which are designed to cover various event relationships and align
with real-world scenarios. Specifically, we collect a variety of events
ranging from 2010 to 2023 for each type of event from a crowd-
sourced platformWikipedia, e.g., short-term events include natural,
human-made disasters, etc.; cyclical events encompass sports com-
petitions, political elections, etc.; long-term events involve political
conflicts, social movements, etc. Ultimately, our collection com-
prises 66 news events, including 42 short-term events, 13 cyclical
events and 11 long-term events.

5.1.2 Collection and Statistics of the Dataset. For data collection
and statistics, we select Twitter as our primary source due to its
extensive user base. We employ event-related hashtags and tem-
poral searches to avoid oversimplification of the task. For long-
term events, we sample important sub-events based on Wikipedia,
e.g., “Syrian Civil War” containing “Ghouta Chemical Attack”, “US
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Table 1: Statistic of the MNED dataset.

#Events #Text #Image Average Words #Language
66 161,350 196,543 17.645 63

Table 2: The division of theMNED dataset in the experiments.
‘#New’ refers to the number of new events.

Proportion Training set Test set
#Sample #Event #Sample #Event #New

25% 32,270 27 121,013 55 39
50% 64,540 43 80,675 42 23
75% 96,810 56 40,338 23 10

TroopsWithdrawing fromNorthern Syria”, and so on. Subsequently,
we filter out single-modality data samples and manually verified
the semantic relevance of the samples for the corresponding event,
resulting in a multimodal news event discovery (MNED) dataset of
161,350 samples. Data statistics and sample distribution are shown
in Table 1 and Figure 4. Further details are available in Appendix.

5.1.3 Data Partitioning. Different from other classification tasks,
the generalized news event discovery task inherently involves a tem-
poral dimension. Therefore, we organize all posts chronologically
and then split the dataset into training and test sets based on sequen-
tial proportions. For this purpose, we divide the dataset into training
and test sets by selecting three different time points—corresponding
to 25%, 50%, and 75% of the timeline of the collected data—to de-
termine the chronological length of the training set relative to the
entire dataset. As for the validation set, we allocate 20% of the train-
ing set, chosen randomly across categories. The specifics of this
division are summarized in Table 2.

5.2 Evaluation Metric
To evaluate our model’s performance, we employ a clustering accu-
racy (ACC) followed by [30]. This metric is calculated as follows:

𝐴𝐶𝐶 = max
𝑝∈𝑃 (𝑌𝑈 )

1
𝑀

𝑀∑︁
𝑖=1

1{𝑦𝑖 = 𝑝 (𝑦𝑖 )} (15)

where 𝑃 represents the set of all possible permutations that align
the model’s predicted labels 𝑦𝑖 with the actual ground truth labels
𝑦𝑖 , utilizing the Hungarian method [11] for optimal matching. We
apply this metric across three sets: the complete unlabeled set
denoted as “All”, a subset called “Known” which contains samples
from classes already known to the model, and “New”, comprising
samples from classes not previously seen by the model.

5.3 Implementation Details
We utilize the CLIP ViT-B/16 backbone to train all methods, with
fine-tuning the final block and linear projection layer of the text
and visual encoders. The SGD optimizer [3] is employed with an
initial learning rate of 0.001 and then decayed following a cosine
schedule. The models are trained over 100 epochs with a batch size
of 128. In alignment with [32], the temperature value for distillation
learning is set to 0.1 and the sharper version starts at 0.07, then is

Figure 4: Distribution of the MNED dataset over time.

gradually warmed up to 0.04 using a cosine schedule in the starting
10 epochs. The hyperparameters 𝛼 and 𝛽 are set to 0.03 and 2.3,
respectively. For non-English text, we utilize the Google Translation
API1 to translate the content into English. For posts containing
multiple images, we only use the first image. The process of tuning
and testing is carried out on a separate validation set, facilitating
the selection of the best hyperparameters for optimal performance.
Additionally, more extended experiments are provided in Appendix.

5.4 Baselines
To investigate the effectiveness of our proposed method, we com-
pare it with three different baseline approaches to provide a com-
prehensive evaluation. 1) K-means method [16]. This baseline ex-
tracts the image and text features from the pretrained CLIP model
and concatenates them to form the multimodal features, followed
by the K-means clustering algorithm. 2) novel category discovery
baselines (UNO [7] and RankStats [8]). These are strong baselines
from the field of novel category discovery. Following the setup
in [30], we configure one classification head to the total number of
classes in order to adapt these models to fit the task. 3) the state-of-
the-art methods in generalized category discovery (GCD [30] and
SimGCD [32]). GCD utilizes semi-supervised K-means clustering
based on learned features, and SimGCD employs a parametric clas-
sifier for distillation learning, which has demonstrated impressive
results across various image recognition tasks.

5.5 Comparison with the State of the Arts
Table 3 shows the experimental results of our proposed DAEO
method and other comparison methods on the generalized news
event discovery task. From these results, we observe that: 1) DAEO
outperforms all baselines acrossmost scenarioswith different dataset
proportions, validating the effectiveness of our model for general-
ized news event discovery. It’s noteworthy that when the training
proportion is 25%, our model’s performance does not surpass that
of the K-means baseline. This is because the relatively small amount
of training data, which hinders the model’s ability to learn robust
event features effectively. In fact, the likelihood of encountering
such a limited amount of data is lower in real-world scenarios,
especially with the continuous generation of news events. 2) Em-
ploying K-means clustering directly on features extracted by the
1https://cloud.google.com/translate

https://cloud.google.com/translate
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Table 3: Results on the MNED dataset.

Method 25% 50% 75%
Known New All Known New All Known New All

K-means [16] 0.400 0.433 0.419 0.370 0.446 0.404 0.286 0.320 0.297
RankStats [8] 0.275 0.050 0.147 0.441 0.165 0.320 0.461 0.446 0.457
UNO [7] 0.736 0.176 0.419 0.792 0.277 0.567 0.735 0.450 0.647
GCD [30] 0.464 0.333 0.390 0.463 0.435 0.451 0.450 0.441 0.447
SimGCD [32] 0.706 0.316 0.485 0.535 0.596 0.562 0.705 0.462 0.630
DAEO 0.757 0.409 0.560 0.823 0.622 0.735 0.735 0.629 0.702
Δ +0.052 +0.093 +0.075 +0.287 +0.024 +0.172 +0.029 +0.167 +0.072

Backbone Known New All
ViT-B/32 0.803 0.570 0.701
ViT-B/16 0.823 0.622 0.735
ViT-L/14 0.841 0.611 0.740

(a) Backbone.

Method Known New All
wo Translation 0.819 0.587 0.717
Translation 0.823 0.622 0.735
M-CLIP [5] 0.821 0.621 0.733

(b) Multilingual processing.

Condition Known New All
𝑛 ≥ 2 0.826 0.465 0.668
𝑛 ≥ 3 0.825 0.552 0.706
𝑛 = 4 0.823 0.622 0.735

(c) Condition for 𝐿𝐴𝑑𝑎𝑝𝑡 .

Table 4: Ablation experiments with the proportion of 50%.

Table 5: Ablation study on the different components of our
approach with the proportion of 50%.

# MA Entmin Entmax Adapt Ctr Known New All
1 × ✓ ✓ ✓ × 0.820 0.578 0.715
2 ✓ × ✓ ✓ × 0.807 0.631 0.730
3 ✓ ✓ × ✓ × 0.742 0.220 0.513
4 ✓ × ✓ × × 0.568 0.659 0.608
5 ✓ × × × × 0.793 0.267 0.562
6 ✓ ✓ ✓ ✓ ✓ 0.804 0.620 0.723
7 ✓ ✓ ✓ ✓ × 0.823 0.622 0.735

pretrained CLIP model yields impressive results, underscoring the
significance of utilizing a robust pretrained model. 3) Parametric
learning methods (i.e., SimGCD) outperform non-parametric clus-
tering approaches (i.e., GCD). This is attributed to the joint training
of the entire model, which avoids potentially being sub-optimal.

5.6 Ablation Study
The proposed DAEO model contains different modules. To vali-
date their effectiveness, we conduct ablation studies on these com-
ponents. We denote Multimodal Augmentation as “MA”, the en-
tropy minimization and maximization terms in 𝐿𝐴𝑑𝑎𝑝𝑡 as “Entmin”
and “Entmax”, respectively, and “Adapt” to represent 𝐿𝐴𝑑𝑎𝑝𝑡 , with
“Ctr” indicating self-contrastive learning and supervised contrastive
learning. From the results in Table 5, we have the following obser-
vations: 1) The absence of multimodal augmentation (#1 and #7)
leads to a decrease in accuracy, especially for new events, which
underscores the contribution of the multimodal augmentation mod-
ule in learning more robust features. 2) By comparing #4 and #5, we
note that the entropy maximization term boosts the model’s perfor-
mance on recognizing new events but adversely affects its ability to
identify known events. The inclusion of 𝐿𝐴𝑑𝑎𝑝𝑡 and Entmin (#4 and
#7) not only retains the model’s capacity to recognize new events
but also improves its accuracy on known events. This demonstrates

Table 6: Results of our approach for different event types
with the proportion of 50%.

Type Known New All
Short-term Event 0.891 0.642 0.656
Cyclical Event 0.853 - 0.853
Long-term Event 0.662 0.527 0.600

the efficacy of the adaptive entropy optimization strategy in balanc-
ing the model’s performance across known and new events. 3) The
addition of self-contrastive learning and supervised contrastive
learning (#6 and #7) does not enhance our model’s performance,
which could be attributed to negative optimization introduced by
random augmentations.

In addition, we also investigate the effect of the model’s back-
bone, the handling of multilingual text in the dataset, the conditions
for 𝐿𝐴𝑑𝑎𝑝𝑡 and the performance of our model under different event
types. 1) As shown in Table 4a, employing larger pretrained models
as the backbone improves performance, underscoring the impor-
tance of a robust pretrained model. 2) Regarding multilingual text
processing, we experiment with using the M-CLIP model [5], which
is pretrained on multiple languages. According to the results in
Table 4b, utilizing such model does not outperform a straightfor-
ward approach of employing the Google Translate API for lan-
guage translation, thus we select the translation method. 3) For
the condition of 𝐿𝐴𝑑𝑎𝑝𝑡 , loosening the criteria (i.e., using a consis-
tency threshold across different views to determine entropy mini-
mization/maximization) leads to reduced recognition rates for new
events, as shown in Table 4c. Therefore, we select the condition of
consistency across all views. 4) As shown in Table 6, the model has
a high recognition rate for cyclical events, due to their high degree
of similarity and predictable recurrence. However, for long-term
events, the ongoing evolution of the events makes the recognition
of even known events as challenging as that of short-term events.
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Figure 5: Parameter sensitivity on the MNED dataset with the proportion of 50%.

Figure 6: TSNE visualization of multimodal features from
selected news events with the proportion of 50%.

5.7 Parameter Analysis
To delve into the impact of parameters 𝛼 and 𝛽 on the model’s
performance, we conducted experiments varying 𝛼 from 2.0 to 2.4
and 𝛽 from 0 to 0.04. As depicted in Figure 5, we observe that an
increase in 𝛼 tends to enhance the accuracy for new events at the
expense of slightly reducing accuracy for known events, while 𝛽
exhibits an inverse relationship. Overall, the model demonstrates
moderate sensitivity to these parameters, leading to the selection
of 𝛼 = 2.3 and 𝛽 = 0.01 as the optimal settings.

Regarding the parameter 𝐾 , which denotes the number of proto-
types, we assume that the number of events is known following [32]
in our model. We investigate its effect on our model using different
values. As shown in Figure 5, although the performance on new
events slightly decreases with increasing 𝐾 values, the fluctuation
remains minimal, which shows our model’s robustness to variations
in the number of prototypes.

5.8 Data Visualization
To further investigate the effectiveness of our proposed method, we
employ t-SNE [29] visualization to illustrate the multimodal event
features learned by the model. We select eight similar events, includ-
ing both known and new events, for visualization. As shown in Fig-
ure 6, we have the following observations: 1) Compared to SimGCD,
the features from our proposed method have clearer boundaries
between different events, which proves the effectiveness of our
approach. 2) For similar events, such as attack events, our model
demonstrates a strong capability to differentiate between them,
which is attributed to our multimodal augmentation module that
utilizes adversarial learning to generate discriminative features.

Figure 7: Failure examples of DAEO on the MNED dataset
with the proportion of 50%.

5.9 Case Study
Despite the excellent performance of DAEO, Figure 7 shows three
failure cases from different event types. We observe that their mis-
classification mainly stems from the lack of distinctive elements
in the provided images and texts. Specifically, the first case comes
from the “2020 Beirut Explosion”. Due to the absence of key infor-
mation about the Beirut explosion, the event is mistakenly classified
as a general explosion event. The second case, “FIFA World Cup”,
included a team photo, which is common in other sports events,
such as the “Olympic Games”. The third case, “Hong Kong Protests”,
featured many protesting people, leading the model to mistakenly
categorize it as an attack event. These failure cases illustrate the
complexity and challenges of the generalized news event discovery.

6 CONCLUSION
In this paper, we introduce a Dynamic Augmentation and Entropy
Optimization (DAEO) model designed specifically to tackle the
challenges of generalized news event discovery. A multimodal aug-
mentationmodule is designed to employ adversarial learning to gen-
erate distinctive multimodal features, which improves the model’s
ability to discern between similar event categories. An adaptive en-
tropy optimization strategywith a self-distillationmethod leverages
pseudo-labels from different views to adaptively optimize entropy,
thereby enhancing the model’s ability in recognizing both new and
known events. Additionally, we contribute to the field by introduc-
ing the Multimodal News Event Discovery (MNED) dataset, which
contains various event types and serves as a valuable resource
for researchers. Extensive experiments conducted on the MNED
dataset validate the effectiveness of our proposed model.
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