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A SUPPLEMENTARY DETAILS OF THE
MULTIMODAL NEWS EVENT DISCOVERY
(MNED) DATASET

A.1 Detailed Statistics of the MNED Dataset
As shown in Figure 1 and Figure 2, detailed data statistics are pro-
vided.We observe that the number of events for long-term and cycli-
cal events is significantly higher compared to short-term events,
because they contain many sub-events. By categorizing and col-
lecting these three types of events, our dataset is not only more
closely with real-world scenarios but also better suited for the task
of generalized news event discovery.

A.2 Comparisons with Existing Datasets
Table 1 compares our MNED dataset with other existing datasets.
From this comparison, we have the following observations:

• Most current datasets do not include temporal metadata,
which is a crucial attribute for news event discovery tasks.
This omission is typically because these datasets are designed
for the closed-setting event discovery, where training and
test sets are randomly split based on event categories rather
than by time. In our work, we advocate for splitting train-
ing and test sets based on chronological order, which more
accurately reflects the temporal nature of real-world news
event discovery tasks.

• Most existing datasets have relatively few samples, which
is not conducive to learning news event features effectively.
Events, representing complex semantic entities, require a
substantial number of samples to capture their nuances fully.
For the SED dataset, it includes a large volume of data but
is limited to coarse-grained event labels such as parties and
festivals. In contrast, our dataset not only provides a large
number of more fine-grained event categories but also cate-
gorizes these events into short-term, cyclical, and long-term
events. This categorization is beneficial for models to learn
distinctive features associated with different types of events.

• The majority of existing datasets predominantly consist of
English posts. This is because the collection process inten-
tionally filters out other languages to simplify the analysis.
However, news event discovery tasks inherently involve
events from diverse countries, implying that multiple lan-
guages are common and that the local language of the event
can offer a more authentic perspective for interpreting the
event. Thus, our dataset retains posts in various languages,
which, while increasing the complexity of the task, also pro-
vides multiple viewpoints that aid the model in understand-
ing the event more comprehensively.

Figure 1: Statistics on the number of samples and events in
the MNED dataset.

Figure 2: Statistics for all events in the MNED dataset.

B SUPPLEMENTARY EXPERIMENTS ON THE
EXISTING DATASET

To validate the generalization capability of our proposed Dynamic
Augmentation and Entropy Optimization (DAEO) model, we con-
duct experiments on a public dataset, i.e., the CrisisMMD dataset [1].

B.1 CrisisMMD Dataset
This dataset is a multimodal crisis dataset that encompasses seven
natural disaster events from 2017, including Hurricane Irma, Hurri-
caneMaria, HurricaneHarvey, theMexico earthquake, the Iraq–Iran
earthquakes, the Sri Lanka floods, and the California wildfires. De-
tailed statistics of the dataset are shown in Table 1.
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Table 1: Comparison of existing datasets. (“#” represents the number of samples.)

Dataset Platform #Sample #Event Modality Fine-grained Temporal Metadata Multilanguage Public
CE [13] Twitter 800 2 Single no yes no no
SED [15] Flickr, Youtube 427,370/1,327 21,169 Multiple no yes no yes
ASO [17] Twitter 1,100 3 Single no no no no
OSMNs [3] Twitter 3.5M 20 Single no yes no no
Twevent [7] Wikipedia,Twitter 3.2M/4.3M N.A. Single no no no no
DHS [6] Twitter, Tumblr 2.1M/0.3M 600 Multiple no no no no

PHEME [22] Twitter 2,089 9 Multiple yes no no yes
NED [9] Twitter 17,366 40 Multiple yes no no yes

CrisisMMD [1] Twitter 18,126 7 Multiple yes no no yes
MNED Twitter 161,350 66 Multiple yes yes yes yes

Table 2: Experimental results on the CrisisMMD dataset with closed setting (without new events).

Measure f-CLSWGAN [20] TCGAN [12] CADA-VAE [16] DAVAE [5] MDL-DR [11] Multi-RC [21] SCBD [1] AT-CVAE [8] OWSEC [14] DAEO
Accuracy 0.7582 0.8954 0.7412 0.7977 0.8677 0.8395 0.9366 0.9718 0.9672 0.9722
Macro F1 0.7578 0.8936 0.7406 0.7873 0.8573 0.8223 0.9510 0.9709 0.9709 0.9758

Table 3: The division of the CrisisMMD dataset. ‘#New’ refers
to the number of new events.

Training set Test set
#Sample #Event #Sample #Event #New
6,047 3 10,567 7 4

B.2 Data Partitioning
Given the analysis in A.2, the CrisisMMD dataset lacks temporal
information, which is used for closed-setting event discovery [8].
Therefore, we are not able to divide the training and test sets ac-
cording to time for the generalized news event discovery task. Fol-
lowing [18], we extract the first three categories of events as known
events from the dataset. We set 50% of the data from these cate-
gories for the training set. The remaining 50% of data from these
categories, along with all event samples from the other four cate-
gories, constitute the test set. For the validation set, we select 20%
of the training set, chosen randomly across categories. The specific
partitioning details are depicted in Table 3.

B.3 Performance on the CrisisMMD Dataset
Table 4 shows the experimental results of our DAEO model on the
CrisisMMD dataset. From these results, we observe the following:

• Our model achieves the best performance on this public
dataset compared to othermethods, which validates its strong
generalization ability.

• Our model exhibits high accuracy on known classes on the
CrisisMMD dataset. This is partly due to the use of random
partitioning to define known and unknown events, which
simplifies the task to some extent. This result also under-
scores the importance of partitioning training and test sets
based on time to prevent potential future information leak-
age, which is crucial for realistic event discovery tasks.

Table 4: Results on the CrisisMMD dataset.

Method Known New All
K-means [10] 0.315 0.526 0.375
RankStats [4] 0.854 0.425 0.732
UNO [2] 0.946 0.531 0.828
GCD [18] 0.391 0.462 0.363
SimGCD [19] 0.962 0.610 0.862
DAEO 0.968 0.669 0.883
Δ +0.006 +0.060 +0.021

• Our model also performs well on new categories, indicat-
ing that the features generated by the proposed multimodal
augmentation module are robust even for new events.

B.4 Performance on the CrisisMMD Dataset
under Closed Setting

To validate the effectiveness of our proposed multimodal augmen-
tation module in generating robust features, we also compare its
performance in a closed-setting event discovery scenario. Follow-
ing [8], we divide 70% of the CrisisMMD dataset as the training set,
10% as the validation set, and 20% as the test set. The evaluation
metrics used are accuracy and macro-averaged F1 score.

As shown in Table 2, we have the following observations:
• Our DAEO model outperforms other event discovery meth-
ods, which can be attributed to ourmultimodal augmentation
module that employs adversarial techniques. The adversarial
approach in feature generation effectively enhances the vari-
ability and representational capacity of the features, which in
turn improves the classifier’s ability to discriminate between
different event types accurately.

• Combined with Table 4, we observe that the accuracy for
known events in our model under the generalized setting re-
mains very close to the accuracy under a closed setting, even
after the addition of new events. This is attributed to our
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adaptive entropy optimization strategy, which selectively
optimizes for both known and new events. By maintaining
accuracy for known events while encouraging exploration of
new events, this strategy ensures that the model remains ef-
fective across all categories without compromising its ability
to identify events it has previously learned.
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