
1 CORRECTNESS PROOF FOR LEARNCID
1.1 Setup and Assumptions
Our goal is to recover the causal structure and the Conditional Probability Tables (CPTs) of the variables describing the environment

in which the agents operate. This environment consists of both observable variables and hidden latent variables. We define a set of in-

terventions modeling distribution shifts, and to learn the causal graph, we query an optimal policy oracle associated with one agent to

get the optimal policy for that agent under the specified distribution shift. Observe that this setup is unsuitable for traditional causal dis-

covery algorithms like PC [8] and FCI [7] because we do not have access to the joint probability distribution of the variables or any sample data.

To model the causal relationships in the environment, we use Causal Influence Diagrams (CIDs) [1, 2]. Similar to Influence Diagrams [3],

CIDs are commonly used to reason about decision-making tasks. CIDs further assume that the graph encodes the causal relationships

between the nodes. We denote the set of parents of a node 𝑋 as 𝑃𝑎𝑋 , the set of children as 𝐶ℎ𝑋 , the set of ancestors as 𝐴𝑛𝑐𝑋 , the set of

descendants as 𝐷𝑒𝑠𝑐𝑋 and instantiations of random variables in lower-case.

Definition 1 (Causal influence diagram [1, 2]). A causal influence diagram (CID) is a Causal Bayesian Network𝑀 = (𝐺 = {𝑉 , 𝐸}, 𝑃), where
𝑃 is a joint probability distribution compatible with the conditional independences encoded in 𝐺 . The variables in 𝑉 are partitioned into

decision, utility, and chance variables,𝑉 = (𝐷,𝑈 ,𝐶). Each utility node𝑈𝑖 is associated with a real function 𝑓𝑖 of its parents 𝑓𝑖 : Im(𝑃𝑎𝑈𝑖
) → R.

Each agent may correspond to a different set of decision nodes and have access to a distinct subset of observable variables. A variable

observed by one agent may be latent for another. Additionally, considering a situation where an agent takes more than one decision, the set

of variables that he observes when it takes one decision can differ from the one that he observes when taking another decision.

Following the work of [6], we represent distribution shifts as mixtures of local interventions. Given a random variable 𝑋 with 𝑥1, . . . , 𝑥𝑛
as possible observable values, a local intervention on 𝑋 is a function 𝜎 : 𝑥𝑖 ↦→ 𝑓 (𝑥𝑖 ) that maps each observable value 𝑥𝑖 to a new observable

value 𝑓 (𝑥𝑖 ). In other words, local interventions deterministically reassign a random variable’s outcomes independently of other variables.

Definition 2 (Local intervention [6]). Local intervention 𝜎 on 𝑋 involves applying a map to the states of 𝑋 that is not conditional on any

other endogenous variables, 𝑥 ↦→ 𝑓 (𝑥). We use the notation 𝜎 = 𝑑𝑜 (𝑋 = 𝑓 (𝑥)) (variable 𝑋 is assigned the state 𝑓 (𝑥)). Formally, this is a soft

intervention on 𝑋 that transforms the conditional probability distribution as,

𝑃 (𝑥 | pa𝑋 ;𝜎) :=
∑︁

𝑥 ′
:𝑓 (𝑥 ′ )=𝑥

𝑃 (𝑥 ′ | pa𝑋 ) (1)

In general, a local intervention has limited capacity to model distribution shifts. For instance, it cannot model the shift from a coin that

always lands on heads to a fair coin because a local intervention must deterministically map the observable value ’head’ to another observable

value. Therefore, we now report the concept of a mixture of local interventions [6]. This mixture is a convex combination 𝜎∗ =
∑
𝑖 𝑝𝑖𝜎𝑖 of

local interventions 𝜎𝑖 , where each coefficient 𝑝𝑖 represents the probability that 𝜎𝑖 is used to map the observable value for 𝑋 .

Definition 3 (Mixtures of interventions [6]). A mixed intervention 𝜎∗ =
∑
𝑖 𝑝𝑖𝜎𝑖 for

∑
𝑖 𝑝𝑖 = 1 performs intervention 𝜎𝑖 with probability 𝑝𝑖 .

Formally, 𝑃 (𝑥 | 𝜎∗) = ∑
𝑖 𝑝𝑖𝑃 (𝑥 | 𝜎𝑖 ).

We use optimal policy oracles to formalize the agent’s understanding of optimal behavior under distribution shifts. Let 𝐷 be a decision

variable with observable values 𝑑 ∈ Im(𝐷), given a set of interventions Σ, an optimal policy oracle is a map Π∗
Σ : 𝜎 ↦→ 𝜋𝜎 (𝑑 | 𝑝𝑎𝐷 ) for 𝜎 ∈ Σ,

where 𝜋𝜎 (𝑑 | 𝑝𝑎𝐷 ) is the optimal policy under the distribution shift induced by the intervention 𝜎 .

Definition 4 (Policy oracle). A policy oracle for a set of interventions Σ is a map Π∗
Σ : 𝜎 ↦→ 𝜋𝜎 (𝑑 | 𝑝𝑎𝐷 ) ∀ 𝜎 ∈ Σ, where 𝜋𝜎 (𝑑 | 𝑝𝑎𝐷 ) is an

optimal policy under the intervention 𝜎 .

In our work, we rely on Algorithm 1 from [6], which takes as input a utility function 𝑈 , an optimal policy oracle, an intervention 𝜎 ∈ Σ,
and a parameter 𝑁 that controls the number of samples. For any local intervention 𝜎 ∈ 𝜎𝑌 , let 𝑑 be the deterministic optimal decision under

the shift induced by 𝜎 . By Assumption 9, there exists a hard intervention 𝜎′ such that 𝑑 is no longer optimal. Let 𝑑2 be the deterministic

optimal decision under 𝜎′. Considering the mixture 𝜎 (𝑞) := 𝑞𝜎 + (1 − 𝑞)𝜎′, there exist a value 𝑞𝑐𝑟𝑖𝑡 for 𝑞 such that 𝑑2 and another decision

𝑑1 are both optimal. The algorithm returns 𝑞𝑐𝑟𝑖𝑡 , 𝑑1, and 𝑑2.

Now, we list and motivate our assumptions:

Assumption 1. Given the CID𝑀 = (𝐺 = {𝑉 , 𝐸}, 𝑃) with 𝑉 = (𝐷,𝑈 ,𝐶), the set of nodes and the partition (𝐷,𝑈 ,𝐶) is known.
The set of nodes together with the node partition (𝐷,𝑈 ,𝐶) is known, therefore we know all variables in the system and the type of each

node (decision, utility, or chance).

Assumption 2. The CID is faithful [9] and sufficient [5].

Faithfulness implies that every conditional independence encoded in the graph𝐺 also holds in the joint probability 𝑃 . A set of variables in

a causal model is sufficient when it includes all common causes.

1
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Assumption 3. The CID contains exactly one decision node 𝐷 and one utility node𝑈 .

Despite assumption 3, this algorithm can be applied to multi-decision CIDs. It is possible to find further details in the main paper.

Assumption 4. The Markov blanket of decision node 𝐷 is known. We also know all the edges between these nodes. The CPTs of chance

nodes that are children of 𝐷 are known.

Motivations for Assumption 4 can be found in Section 2.

Assumption 5. All chance nodes are ancestors of𝑈 .

In the presence of chance nodes that are neither ancestors of 𝐷 or𝑈 , these nodes do not have any influence on the decision task. LearnCID

would simply not process those nodes and the related causal structure or CPT would not be recovered.

Assumption 6. The utility function 𝑓 associated with the utility node𝑈 is fully specified.

The utility function’s functional form is known, which tells us all the variables involved in calculating the utility. These variables appear

in the causal graph as parents of the utility node.

Assumption 7. We have access to a set Σ of all possible mixtures of local interventions, along with the optimal policy oracle Π∗
Σ for decision

node 𝐷 .

We consider single-decision, single-utility CIDs. To simplify the proof we assume 𝐷 is a parent of𝑈 . In particular, this plays a role in the

proof of Lemma 1.

Assumption 8. 𝐷 is a parent of𝑈 .

Assumption 9. There exists no 𝑑∗ ∈ 𝐼𝑚(𝐷) such that 𝑑∗ ∈ argmax𝑑 𝑈 (𝑑, 𝑥) ∀𝑥 ∈ 𝐼𝑚(𝑃𝑎𝑈 \ {𝐷}).

When Assumption 6 holds, it is possible to verify if the CID we are considering satisfies Assumption 9 by computing the utility for

different instantiations of variables associated with the parents of𝑈 . Observe that under Assumptions 3, 8 and 9, there must be at least one

chance node that is a parent of 𝑈 , otherwise the utility function would only depend on the decision and therefore there would exist at least

one optimal decision that would violate Assumption 9. We provide a discussion the Assumption 9 and domain dependence in Section 3.

1.2 Proof
Lemma 1. Under Assumptions2,3,6 and 8, given a CID𝑀 = (𝐺, 𝑃), for any given local intervention 𝜎 there is a single deterministic optimal
policy for almost all P, U.

Proof. When 𝐷𝑒𝑠𝑐𝐷 ∩𝐴𝑛𝑐𝑈 = ∅ we can apply Lemma 3 in [6]. Assume 𝐷𝑒𝑠𝑐𝐷 ∩𝐴𝑛𝑐𝑈 ≠ ∅ and 𝐶ℎ𝐷 ∩𝐶 ≠ 𝐶 , let Z = 𝐴𝑛𝑐𝑈 \ 𝑃𝑎𝐷 , and
X = 𝑃𝑎𝑈 Assume ∃𝑑1, 𝑑2 s.t. both are optimal decisions and:

E[𝑢 |𝑃𝑎𝐷 , 𝑑𝑜 (𝐷 = 𝑑1);𝜎] = E[𝑢 |𝑃𝑎𝐷 , 𝑑𝑜 (𝐷 = 𝑑2);𝜎] (2)

Equivalently: ∑︁
𝑧

𝑈 (𝑑1, 𝑥)𝑃 (𝑧, 𝑝𝑎𝐷 |𝑑𝑜 (𝐷 = 𝑑1);𝜎) =
∑︁
𝑧

𝑈 (𝑑2, 𝑥)𝑃 (𝑧, 𝑝𝑎𝐷 |𝑑𝑜 (𝐷 = 𝑑2);𝜎) (3)∑︁
𝑧

𝑈 (𝑑1, 𝑥)𝑃 (𝑧, 𝑝𝑎𝐷 |𝑑𝑜 (𝐷 = 𝑑1);𝜎) −𝑈 (𝑑2, 𝑥)𝑃 (𝑧, 𝑝𝑎𝐷 |𝑑𝑜 (𝐷 = 𝑑2);𝜎) = 0 (4)

Let us define 𝑆1 := Z \𝐶ℎ𝐷 and 𝑃𝑎𝐶𝑖
:= 𝑃𝑎𝐶𝑖

\ {𝐷}. We factorize the joint distribution:

𝑃 (𝑧, 𝑝𝑎𝐷 |𝑑𝑜 (𝐷 = 𝑑1);𝜎) (5)

as: ∏
𝑍𝑖 ∈𝑆1

𝑃 (𝑍𝑖 |𝑝𝑎𝑍𝑖
;𝜎)

∏
𝐶𝑖 ∈𝐶ℎ𝐷

𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖
, 𝑑𝑜 (𝐷 = 𝑑1);𝜎) (6)

Same for 𝑑2. Now, we can rewrite Equation 4 as:∑︁
𝑧

∏
𝑍𝑖 ∈𝑆1

𝑃 (𝑍𝑖 |𝑝𝑎𝑍𝑖
;𝜎)

[
𝑈 (𝑑1, 𝑥)

∏
𝐶𝑖 ∈𝐶ℎ𝐷

𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖
, 𝑑𝑜 (𝐷 = 𝑑1);𝜎)

−𝑈 (𝑑2, 𝑥)
∏

𝐶𝑖 ∈𝐶ℎ𝐷
𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖

, 𝑑𝑜 (𝐷 = 𝑑2);𝜎)
]
= 0

(7)
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Since for all 𝐶𝑖 ∈ 𝐶ℎ𝐷 , 𝐶𝑖 ⊥⊥ 𝐷 |𝑃𝑎𝐶𝑖
in 𝐺𝐷 , then according to rule 2 of do-calculus [5] we can rewrite the equation as:∑︁
𝑧

∏
𝑍𝑖 ∈𝑆1

𝑃 (𝑍𝑖 |𝑝𝑎𝑍𝑖
;𝜎)

[
𝑈 (𝑑1, 𝑥)

∏
𝐶𝑖 ∈𝐶ℎ𝐷

𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖
, 𝐷 = 𝑑1;𝜎)

−𝑈 (𝑑2, 𝑥)
∏

𝐶𝑖 ∈𝐶ℎ𝐷
𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖

, 𝐷 = 𝑑2;𝜎)
]
= 0

(8)

We can define 𝑎(𝑑, 𝑧) := 𝑈 (𝑑, 𝑥)∏𝐶𝑖 ∈𝐶ℎ𝐷 𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖
, 𝑑𝑜 (𝐷 = 𝑑);𝜎).

Observe that: ∑︁
𝑧

∏
𝑍𝑖 ∈𝑆1

𝑃 (𝑍𝑖 |𝑝𝑎𝑍𝑖
;𝜎)

[
𝑎(𝑑1, 𝑧) − 𝑎(𝑑2, 𝑧)

]
= 0 (9)

Is a polynomial equation with variables ∀ 𝑖 . 𝑃 (𝑍𝑖 |𝑝𝑎𝑍𝑖
;𝜎). Also notice that if we rewrite each of these variables using Definition 2

(Local intervention) 𝑃 (𝑍𝑖 |𝑝𝑎𝑍𝑖
;𝜎) = ∑

𝑧′
𝑖
:𝑓 (𝑧′

𝑖
)=𝑧𝑖 𝑃 (𝑐

′
𝑖
|𝑝𝑎𝑍𝑖

) the equation is still a polynomial equation with all the parameters of the CPTs,

excluding those related to the children of 𝐷 , as variables. If the polynomial is not trivial (∃𝑑, 𝑧. 𝑎(𝑑1, 𝑧) − 𝑎(𝑑2, 𝑧) ≠ 0) then the Lebesgue

measure of the solution of this equation is zero [4], and since the set of parameters that allow for multiple optimal solutions has measure

zero along at least one dimension, it follows that the whole set has measure zero.

Now, let us consider when the polynomial is trivial. Then for all 𝑑, 𝑧 we have:

𝑎(𝑑1, 𝑧) − 𝑎(𝑑2, 𝑧) = 0 (10)

𝑈 (𝑑1, 𝑥)
∏

𝐶𝑖 ∈𝐶ℎ𝐷
𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖

, 𝐷 = 𝑑1;𝜎) −𝑈 (𝑑2, 𝑥)
∏

𝐶𝑖 ∈𝐶ℎ𝐷
𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖

, 𝐷 = 𝑑2;𝜎) = 0 (11)

Again, this is a finite number of polynomial equations with some of the network parameters as variables and its coefficients are not trivial

because 𝑑1 ≠ 𝑑2 and because of Assumption 8. Therefore, it is satisfied only on a set of Lebesgue measure zero [4].

Now assume 𝐶ℎ𝐷 ∩𝐶 = 𝐶 , then the factorization of Equation 6 simplifies to:∏
𝐶𝑖 ∈𝐶ℎ𝐷

𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖
, 𝑑𝑜 (𝐷 = 𝑑1);𝜎) (12)

And, by applying rule 2 of do-calculus [5] as before we can rewrite Equation 4 as:

𝑈 (𝑑1, 𝑥)
∏

𝐶𝑖 ∈𝐶ℎ𝐷
𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖

, 𝐷 = 𝑑1;𝜎) −𝑈 (𝑑2, 𝑥)
∏

𝐶𝑖 ∈𝐶ℎ𝐷
𝑃 (𝐶𝑖 |𝑝𝑎𝐶𝑖

, 𝐷 = 𝑑2;𝜎) = 0 (13)

That again is a polynomial equation in some of the network parameters and therefore the set of solutions has Lebesgue measure zero.

Again, since the set of parameters that satisfies Equation 4 has measure zero along at least one dimension, the whole set has measure zero.

This implies that for almost all 𝑃,𝑈 and any given local intervention 𝜎 the optimal decision is unique.

□

Lemma 2. Given a CID 𝑀 = (𝐺, 𝑃), under Assumptions 2∼9, given an optimal policy oracle Π∗
Σ where Σ includes all mixtures of local

interventions on 𝐶 including masking inputs 𝑃𝑎′
𝐷

⊂ 𝑃𝑎𝐷 , then for any given 𝑃𝑎′
𝐷
= 𝑝𝑎′

𝐷
such that 𝑃𝑎′

𝐷
∩ 𝑃𝑎𝑈 = ∅, we can identify:∑︁

𝑧

𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑);𝜎)𝑈 (𝑑, 𝑥) − 𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑′);𝜎)𝑈 (𝑑′, 𝑥) (14)

for 𝑑, 𝑑′ ∈ Im(𝐷) where 𝑑 ≠ 𝑑′ and Z = 𝐶 \ 𝑃𝑎′
𝐷
.

Proof. By Lemma 1, for almost all 𝑃,𝑈 there exist only one decision 𝑑1 = argmax𝑑 E[𝑢 |𝑑𝑜 (𝐷 = 𝑑), 𝑝𝑎′
𝐷
;𝜎] following the shift 𝜎 . Let us

call this decision 𝑑1, it can be identified using the optimal policy oracle Π∗
Σ (𝜎).

Thanks to Assumption 9 we know that for every decision 𝑑 in the context 𝑃𝑎′
𝐷

⊂ 𝑃𝑎𝐷 , there exist at least one instance 𝑐 = (𝑐1, . . . , 𝑐𝑁 ) of
𝐶 where 𝑑 ≠ argmax𝑑 ′ 𝑈 (𝑑′, 𝑥). Mind that we can set the values for 𝑋 as 𝑃𝑎′

𝐷
∩ 𝑃𝑎𝑈 = ∅. So let 𝑥 ′ be the instantiation of 𝑃𝑎𝑈 \ {𝐷} that

satisfies 𝑑1 ≠ argmax𝑑 𝑈 (𝑑, 𝑥 ′), and 𝜎′ be an hard intervention that sets 𝑋 to 𝑥 ′, then there exist 𝑑2 = argmax𝑑 𝑈 (𝑑, 𝑥 ′), with 𝑑2 ≠ 𝑑1. Note

that under an hard intervention like 𝜎′ we have E[𝑢 |𝑑𝑜 (𝐷 = 𝑑), 𝑝𝑎′
𝐷
;𝜎] = 𝑈 (𝑑, 𝑥 ′) where 𝑥 ′ are the values that the variables 𝑃𝑎𝑈 \ {𝐷}

take after the intervention. We can pick 𝜎′ such that it sets 𝑃𝑎′
𝐷
to be the same as in observation.
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(𝐴𝑛𝑐𝐷 ∪ 𝐷𝑒𝑠𝑐𝐷 )𝐶 𝐴𝑛𝑐𝐷 𝐷𝑒𝑠𝑐𝐷

𝐴𝑛𝑐𝑈 (𝐺𝐷 ) (1) (1) (3)

𝐴𝑛𝑐𝑈 (𝐺𝐷 )𝐶 ∅ (2) ∅
Table 1: A partition of the CID’s chance nodes 𝐶 that assigns them to cases in Theorem 1. Cells marked with (1) correspond to
nodes that can be identified by case 1 of Theorem 1 in [6]. Cells with (2) correspond to case 2. Cells with ∅ indicate that either
no nodes fall within that intersection or that those nodes can be pruned since we are not able to learn the structure or the
parameters for those. The cell marked with (3) corresponds to nodes that exist only in the mediated case and were therefore
not considered by the previous paper.

For 𝑞 ∈ [0, 1] consider the joint distribution over 𝐶 under the parametrized family of mixed local interventions 𝜎̃ (𝑞) = 𝑞𝜎 + (1 − 𝑞)𝜎′:

𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑); 𝜎̃ (𝑞)) = 𝑞𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑);𝜎) + (1 − 𝑞)𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑);𝜎′) (15)

From Assumption 9 it follows that 𝑍 := 𝐶 \ 𝑃𝑎𝐷 ≠ ∅. Otherwise the Lemma’s statement would be trivially false. We can write the expected

utility as:

E[𝑈 |𝑝𝑎𝑑 , 𝑑𝑜 (𝐷 = 𝑑); 𝜎̃ (𝑞))] =
∑︁
𝑧

𝑃 (𝑍 = 𝑧 |𝑝𝑎𝐷 , 𝑑𝑜 (𝐷 = 𝑑); 𝜎̃ (𝑞))𝑈 (𝑑, 𝑥) (16)

=
∑︁
𝑧

𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑); 𝜎̃ (𝑞))
𝑃 (𝑃𝑎𝐷 = 𝑝𝑎𝐷 |𝑑𝑜 (𝐷 = 𝑑); 𝜎̃ (𝑞))𝑈 (𝑑, 𝑥) (17)

=
1

𝑃 (𝑃𝑎𝐷 = 𝑝𝑎𝐷 ; 𝜎̃ (𝑞))
∑︁
𝑧

𝑞𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑);𝜎)𝑈 (𝑑, 𝑥) + (1 − 𝑞)𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑);𝜎′)𝑈 (𝑑, 𝑥 ′) (18)

Where in Equation 18 𝑃 (𝑃𝑎𝐷 = 𝑝𝑎𝐷 |𝑑𝑜 (𝐷 = 𝑑); 𝜎̃ (𝑞)) = 𝑃 (𝑃𝑎𝐷 = 𝑝𝑎𝐷 ; 𝜎̃ (𝑞)) according to Rule 3 of do-calculus since 𝐷 ⊥⊥ 𝑃𝑎𝐷 in

𝐺
𝐷
[5]. Note that 𝑑1 is the optimal decision for 𝑞 = 1, but that is not the case for 𝑞 = 0. Therefore there exists 𝑞𝑐𝑟𝑖𝑡 such that for all

𝑞 < 𝑞𝑐𝑟𝑖𝑡 𝑑2 := Π∗
Σ (𝜎̃ (𝑞)) is a decision in the set {𝑑 |𝑑 = argmax𝑑 𝑈 (𝑑, 𝑥 ′)}, and for 𝑞 ≥ 𝑞𝑐𝑟𝑖𝑡 the optimal decision is not in this set. Let

𝑑3 ∉ {𝑑 |𝑑 = argmax𝑑 𝑈 (𝑑, 𝑥 ′)}. Consider the following equation:

E[𝑈 |𝑝𝑎𝐷 , 𝑑𝑜 (𝐷 = 𝑑2); 𝜎̃ (𝑞𝑐𝑟𝑖𝑡 )] − 𝐸 [𝑈 |𝑝𝑎𝐷 , 𝑑𝑜 (𝐷 = 𝑑3); 𝜎̃ (𝑞𝑐𝑟𝑖𝑡 )] = 0 (19)

⇐⇒ 𝑞𝑐𝑟𝑖𝑡

[∑︁
𝑧

𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑2);𝜎)𝑈 (𝑑2, 𝑥) − 𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑3);𝜎)𝑈 (𝑑3, 𝑥)
]
+

+(1 − 𝑞𝑐𝑟𝑖𝑡 ) [𝑈 (𝑑2, 𝑥 ′) −𝑈 (𝑑3, 𝑥 ′)] = 0

(20)

⇐⇒ 𝑞𝑐𝑟𝑖𝑡 =

(
1 −

∑
𝑧 𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑2);𝜎)𝑈 (𝑑2, 𝑥) − 𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑3);𝜎)𝑈 (𝑑3, 𝑥)

𝑈 (𝑑2, 𝑥 ′) −𝑈 (𝑑3, 𝑥 ′)

)−1
(21)

Therefore, since the functional relationship between𝑈 and its parents is known, if we find 𝑞𝑐𝑟𝑖𝑡 we can identify:∑︁
𝑧

𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑2);𝜎)𝑈 (𝑑2, 𝑥) − 𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑3);𝜎)𝑈 (𝑑2, 𝑥) (22)

□

Let 𝐺𝐷 be 𝐺 without the edges leaving 𝐷 , the mediated case allows for 𝐷𝑒𝑠𝑐𝐷 ∩𝐴𝑛𝑐𝑈 (𝐺𝐷 ) ≠ ∅. Consider the partition of 𝐶 proposed in

Table 1, the proof of Theorem 1 in [6] can still be used with minor changes in the mediated case for some of the nodes, but a new case needs

to be introduced for 𝐴𝑛𝑐𝑈 (𝐺𝐷 ) ∩ 𝐷𝑒𝑠𝑐𝐷 .

Theorem 1. For almost all CIDs 𝑀 = (𝐺 = {𝑉 , 𝐸}, 𝑃) satisfying Assumptions 2∼9, and where for each 𝐶𝑖 ∈ 𝐶 , we know a set 𝑃𝑎𝐶𝑖
⊂ 𝑃𝑎𝐶𝑖

and a set of nodes 𝑉𝑘𝑛𝑜𝑤𝑛 ⊂ 𝑉 where 𝐶𝑖 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛 ⇐⇒ 𝑃𝑎𝐶𝑖
= 𝑃𝑎𝐶𝑖

. It is possible to identify 𝐺 and the joint distribution 𝑃 over all the
ancestors of the utility node 𝐴𝑛𝑐𝑈 except 𝐶ℎ𝐷 given {𝜋∗𝜎 (𝑑 |𝑝𝑎𝐷 )}𝜎∈Σ where 𝜋∗𝜎 (𝑑 |𝑝𝑎𝐷 ) is an optimal policy in the domain 𝜎 and Σ is the set of
all mixtures of local interventions.

Proof. Let𝐺𝐷 be𝐺 without the edges leaving 𝐷 . Following the CID’s chance node partition described in Table 1, we consider three cases:
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• [Case 3, 𝐴𝑛𝑐𝑈 (𝐺𝐷 ) ∩ 𝐷𝑒𝑠𝑐𝐷 ]. For the third case, we provide a constructive proof for nodes in 𝐴𝑛𝑐𝑈 (𝐺𝐷 ) ∩ 𝐷𝑒𝑠𝑐𝐷 . We establish this

proof by strong induction. Consider a directed path 𝐶𝑘 → · · · → 𝐶1 where 𝐶1 ∈ 𝑃𝑎𝑈 , ∀ 𝑖 . 𝐶𝑖 ∈ 𝐷𝑒𝑠𝑐𝐷 \𝐶ℎ𝐷 . Assume we know 𝑃𝑎𝐶𝑖

and 𝑃 (𝐶𝑘 |𝑃𝑎𝐶𝑖
) for all 𝑖 = 1, . . . , 𝑘 − 1, we want to learn 𝑃𝑎𝐶𝑘

and 𝑃 (𝐶𝑘 |𝑃𝑎𝐶𝑘
). For each of the nodes 𝑌𝑖 in 𝑌 := 𝐶 \ {𝐶1, . . . ,𝐶𝑘 } we

define the following hard interventions 𝜎𝐶𝑘
(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅) := 𝑑𝑜 (𝑌1 = 𝑦1, . . . , 𝑌𝑖 = 𝜅, . . . , 𝑌|𝑌 | = 𝑦𝑛,𝐶𝑘 = 𝑓 (𝑐𝑘 )) where 𝑦 is an

instantiation for 𝑌 \ {𝑌𝑖 } and 𝜅 one for 𝑌𝑖 . Here 𝑓 (𝐶𝑘 ) is the following local intervention on 𝐶𝑘 :

𝑓 (𝐶𝑘 ) =
{
𝑐′
𝑘
, 𝐶𝑘 = 𝑐′

𝑘

𝑐′′
𝑘
, otherwise

(23)

We also mask all inputs to the policy: 𝑃𝑎′
𝐷
= ∅. Assume 𝐶𝑘 ∉ 𝐶ℎ𝐷 , by Lemma 2 we can identify the following query:∑︁

𝑐

𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑);𝜎𝐶𝑘
(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅))𝑈 (𝑑, 𝑥)−

−𝑃 (𝐶 = 𝑐 |𝑑𝑜 (𝐷 = 𝑑′);𝜎𝐶𝑘
(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅))𝑈 (𝑑′, 𝑥) =

(24)

∑︁
𝑐𝑘

· · ·
∑︁
𝑐1

∏
𝑗=1,...,𝑘

𝑃 (𝐶 𝑗 = 𝑐 𝑗 |𝑝𝑎𝐶 𝑗
, 𝑑𝑜 (𝐷 = 𝑑);𝜎𝐶𝑘

(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅))𝑈 (𝑑, 𝑥)−

−
∏

𝑗=1,...,𝑘

(𝐶 𝑗 = 𝑐 𝑗 |𝑝𝑎𝐶 𝑗
, 𝑑𝑜 (𝐷 = 𝑑);𝜎𝐶𝑘

(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅))𝑈 (𝑑′, 𝑥)
(25)

According to Rule 3 of do-calculus [5], since 𝐷 ⊥⊥ 𝐶1, . . . ,𝐶𝑘 |𝑌 in 𝐺
𝑌
the expression in Equation 25 is equal to:

=
∑︁
𝑐𝑘

· · ·
∑︁
𝑐1

∏
𝑗=1,...,𝑘

𝑃 (𝐶 𝑗 = 𝑐 𝑗 |𝑝𝑎𝐶 𝑗
;𝜎𝐶𝑘

(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅)) [𝑈 (𝑑, 𝑥) −𝑈 (𝑑′, 𝑥)] (26)

=
∑︁
𝑐𝑘

𝑃 (𝐶𝑘 = 𝑐𝑘 |𝑝𝑎𝐶𝑘
;𝜎𝐶𝑘

(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅))𝛽 (𝑐𝑘 ) (27)

=
∑︁
𝑐𝑘

𝑃 (𝐶𝑘 = 𝑐𝑘 |𝑝𝑎𝐶𝑘
)𝛽 (𝑐𝑘 ) (28)

where:

𝛽 (𝑐𝑘 ) :=
∑︁
𝑐𝑘−1

· · ·
∑︁
𝑐1

∏
𝑗=1,...,𝑘−1

𝑃 (𝐶 𝑗 = 𝑐 𝑗 |𝑝𝑎𝐶 𝑗
;𝜎𝐶𝑘

(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅)) [𝑈 (𝑑, 𝑥) −𝑈 (𝑑′, 𝑥)] (29)

This result is analogous to the one for Case 1. In Equation 28, following the definition of the intervention 𝜎𝐶𝑘
(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅),

we have 𝑃 (𝐶𝑘 = 𝑐′
𝑘
|𝑝𝑎𝐶𝑘

;𝜎𝐶𝑘
(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅)) = 𝑃 (𝐶𝑘 = 𝑐𝑘 |𝑝𝑎𝐶𝑘

) and 𝑃 (𝐶𝑘 = 𝑐′′
𝑘
|𝑝𝑎𝐶𝑘

;𝜎𝐶𝑘
(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅)) = 1 − 𝑃 (𝐶𝑘 =

𝑐′
𝑘
|𝑝𝑎𝐶𝑘

;𝜎𝐶𝑘
(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅)) = 𝑃 (𝐶𝑘 = 𝑐𝑘 |𝑝𝑎𝐶𝑘

). Therefore there is only one parameter to be identified. If 𝐶𝑘 ∉ 𝑉𝑘𝑛𝑜𝑤𝑛 , we

can repeat this procedure with a different leave-one-out intervention for each potential parent 𝑌𝑖 of 𝐶𝑘 and different 𝑐𝑘 . If for some

configuration of 𝜅1, 𝜅2 and 𝑐𝑘 we have 𝑃 (𝐶𝑘 = 𝑐′
𝑘
|𝑝𝑎𝐶𝑘

;𝜎𝐶𝑘
(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅1)) ≠ 𝑃 (𝐶𝑘 = 𝑐′

𝑘
|𝑝𝑎𝐶𝑘

;𝜎𝐶𝑘
(𝑌 \ 𝑌𝑖 = 𝑦,𝑌𝑖 = 𝜅2)) then

𝑌𝑖 ∈ 𝑃𝑎𝐶𝑘
. We can exclude from this search all nodes in 𝑃𝑎𝐶𝑘

, since we already know they are parents of 𝐶𝑘 . If 𝐶𝑘 ∈ 𝑉𝑘𝑛𝑜𝑤𝑛 we can

skip this step since we already know 𝑃𝑎𝐶𝑘
. Then, for each instantiations of the variables in 𝑃𝑎𝐶𝑘

and each 𝑐𝑘 ∈ Im(𝐶𝑘 ) we repeat the
procedure and recover all the parameters for 𝐶𝑘 .

And now we describe the necessary modification to the cases covered in [6] (Case 1 and 2 in Table 1):

(1) 𝐴𝑛𝑐𝑈 (𝐺𝐷 ) ∩
[
(𝐴𝑛𝑐𝐷 ∪ 𝐷𝑒𝑠𝑐𝐷 )𝐶 ⊔𝐴𝑛𝑐𝐷

]
. The identification problem for nodes in this set is described in Theorem 1 Case 1 of [6].

The proof is based on strong induction on 𝑘 for directed paths 𝐶𝑘 → · · · → 𝐶1 where 𝐶1 ∈ 𝑃𝑎𝑈 , where for all 𝑖 = 1, . . . , 𝑘 we have

𝐶𝑘 ≠ 𝐷 . The procedure to incorporate prior knowledge is the same as the one specified in the proof for Case 3.

(2) 𝐴𝑛𝑐𝑈 (𝐺𝐷 )𝐶 ∩ 𝐴𝑛𝑐𝐷 . This case corresponds to Theorem 1 Case 2 of [6]). The original proof considered strong induction on 𝑘 for

directed paths𝐶𝑘 → · · · → 𝐶1 where𝐶1 ∈ 𝑃𝑎𝐷 . Again, the procedure to incorporate prior knowledge is the same as the one specified

in the proof for Case 3.

□

2 NON-IDENTIFIABILITY OF 𝐶ℎ𝐷 AND THEIR CPTS
Nowwe prove that, under the same assumptions made for the previous results,𝐶ℎ𝐷 cannot be uniquely determined in general. This motivates

the LearnCID assumption requiring knowledge of the children of 𝐷 , their CPTs, and their parents.

Theorem 2. Let𝑀 = (𝐺 = {𝑉 , 𝐸}, 𝑃) be a single decision/single utility CID, assume we know 𝐷,𝑈 ,𝐶 , and 𝑃𝑎(𝑈 ), 𝑃𝑎(𝐷). Let Σ be the set of all
mixtures of local interventions, Π∗

Σ be the optimal policy oracle. Then in general𝐶ℎ𝐷 can not be uniquely determined for a set of parameters with
a strictly positive Lebesgue measure.
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𝑋

𝑈𝐷

Figure 1: CID where 𝑋 ∉ 𝐶ℎ𝐷 .

Proof. Consider the following counterexample:

For the CID described in Figure 1, 𝑋 ∉ 𝐶ℎ(𝐷). Let 𝑋, 𝐷 be binary, and 𝑃 (𝑋 = 0) = 0.1, 𝑃 (𝑋 = 1) = 0.9. Let 𝑈 := 𝑋 AND 𝐷 . In this case

the optimal decision 𝑑∗ is 1. The set of local interventions Σ contains 𝜎1 := 𝑑𝑜 (𝑋 = 1), 𝜎0 := 𝑑𝑜 (𝑋 = 0), and the parametrized famility of

mixtures 𝜎 (𝑞) := 𝑞𝜎1 + (1 − 𝑞)𝜎0 with 𝑞 ∈ [0, 1]. Therefore, the policy oracle Π∗
Σ returns 𝑑∗ = 0 for 𝜎0, 𝑑

∗ = 1 for 𝜎1, and for 𝜎 (𝑞) return
𝑑∗ = 0 for 𝑞 < 0.5, 𝑑∗ = 1 for 𝑞 > 0.5 and could return any policy for 𝑞 = 0.5.

Now consider the CID described in Figure 2 and the CPT in Table 2, and let 𝑈 and Σ be the same as in the previous example. Again,

the optimal decision is 𝑑∗ = 1 and again the policy oracle Π∗
Σ returns 𝑑∗ = 0 for 𝜎0, 𝑑

∗ = 1 for 𝜎1, and for 𝜎 (𝑞) return 𝑑∗ = 0 for 𝑞 < 0.5,

𝑑∗ = 1 for 𝑞 > 0.5 and could return any policy for 𝑞 = 0.5. So it is impossible to distinguish between the two models.

𝑋

𝑈𝐷

Figure 2: CID where 𝑋 ∈ 𝐶ℎ𝐷 .

𝐷 𝑋 𝑃 (𝑋 | 𝐷)
0 0 0.5

0 1 0.5

1 0 0

1 1 1

Table 2: Conditional probabilities of 𝑋 given 𝐷 for the CID where 𝐷 ∈ 𝐶ℎ𝐷 .

Also observe that this stays true if in the first CID we set 𝑃 (𝑋 = 1) ∈ (0.5, 1] and in the second CID we set 𝑃 (𝑋 = 1|𝐷 = 1) ∈ (0.5, 1] and
𝑃 (𝑋 = 0|𝐷 = 0) ∈ [0, 𝑃 (𝑋 = 1|𝐷 = 1)). So the set where 𝐶ℎ𝐷 can not be uniquely determined has strictly positive Lebesgue measure. □

We also show that unlike for other chance nodes, the CPT of the children chance variables of the decision node can not be fully estimated

in the general case. It might be possible to estimate only those parts of the CPT that correspond to decisions that are optimal for some

distribution shift 𝜎 , but not for the others.

Corollary 3 (of Lemma 2). Let𝑀 = (𝐺 = {𝑉 , 𝐸}, 𝑃) be a single decision/single utility CID, assume we know 𝐺 . Let Σ be the set of all mixtures
of local interventions, Π∗

Σ be the optimal policy oracle. Then by using the identification result of Lemma 2, in general the CPTs for 𝐶 ∩𝐶ℎ𝐷 can
not be uniquely determined for a set of parameters with a strictly positive Lebesgue measure.

Proof. Consider the CID described in Figure 2 with the CPT described in Table 3. Assume Im(𝐷) = {0, 1, 2} and that we don’t know

the CPT for 𝑋 . The set of local interventions Σ contains 𝜎1 := 𝑑𝑜 (𝑋 = 1), 𝜎0 := 𝑑𝑜 (𝑋 = 0), and the parametrized famility of mixtures

𝜎 (𝑞) := 𝑞𝜎1 + (1 − 𝑞)𝜎0 with 𝑞 ∈ [0, 1]. Therefore, the policy oracle Π∗
Σ returns 𝑑∗ = 0 for 𝜎0, 𝑑

∗ = 1 for 𝜎1, and for 𝜎 (𝑞) return 𝑑∗ = 0 for

𝑞 < 0.5, 𝑑∗ = 1 for 𝑞 > 0.5 and could return any policy for 𝑞 = 0.5.
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𝐷 𝑋 𝑃 (𝑋 | 𝐷)
0 0 0.5

0 1 0.5

1 0 0

1 1 1

2 0 0.4

2 1 0.6

Table 3: Conditional probabilities of 𝑋 given 𝐷 , this time Im(𝐷) = {0, 1, 2}.

𝐷 𝑋 𝑈

𝐷 𝑋 𝑃 (𝑋 |𝐷)
0 0 0.5

0 1 0.5

1 0 0

1 1 1

𝐷 𝑋 𝑃 ′ (𝑋 |𝐷)
0 0 0

0 1 1

1 0 1

1 1 0

𝐷 𝑋 𝑈 (𝑋 |𝐷)
0 0 0

0 1 1

1 0 0

1 1 2

Figure 3: An example CID to show that in the mediated case domain dependence does not imply Assumption 9. Starting from
the left, a specification of the utility function associated with node𝑈 , the example’s CID, and the two CPTs for 𝑋 before the
distribution shift (𝑃 ) and after the distribution shift (𝑃 ′).

Therefore, for all 𝜎 ∈ Σ we have that the deterministic policy corresponding to 𝑑 = 3 is never selected by the policy oracle Π∗
Σ (𝜎). Since

the identification result of Lemma 2 includes only probabilities 𝑃 (𝐶 |𝑑𝑜 (𝐷 = 𝑑′);𝜎) where 𝑑′ is an optimal solution for some 𝜎 selected by

the policy oracle, it means that in particular, we can’t identify 𝑃 (𝑋 |𝑑𝑜 (𝐷 = 3)) = 𝑃 (𝑋 |𝐷 = 3) or more in general the part of the CPT for

chance variables that are children of 𝐷 that correspond to solutions that are never optimal regardless of the intervention 𝜎 . □

3 DOMAIN DEPENDENCE IN MEDIATED TASKS
Previous results [6] show that for unmediated decision tasks domain dependence implies Assumption 9. Here we show that this implication

does not hold in the mediated case. Moreover, we prove that Assumption 9 implies domain dependence in the mediated case and therefore

that Assumption 9 is equivalent to domain dependence in the unmediated case, which is a subcase of the mediated one. We report the

definition of Domain dependence.

Definition 5 (Domain dependence [6]). There exists 𝑃 (𝐶 = 𝑐) and 𝑃 ′ (𝐶 = 𝑐) compatible with 𝑀 such that 𝜋∗ = argmax𝜋 E𝜋
𝑃
[𝑈 ] =⇒

𝜋∗ ≠ argmax𝜋 E𝜋
𝑃 ′ [𝑈 ].

Consider the example described in Figure 3. Let 𝑈 (𝑑, 𝑥) := 2 if 𝑑 = 𝑥 = 1, 𝑈 (𝑑, 𝑥) := 1 if 𝑑 = 0 and 𝑥 = 1, and 0 otherwise. For the

distribution 𝑃 the only optimal policy corresponds to always choosing 𝐷 = 1 because 𝑋 will always correspond to 1 and therefore the

expected utility is 2. But this policy is no longer optimal under 𝑃 ′ because 𝑋 will always be observed as 0 and the expected utility is 0 while

for example a policy that always chooses 𝐷 = 0 corresponds to an expected utility of 1. Therefore domain dependence holds, but at the same

time, Assumption 9 does not hold because 𝑑∗ = 1 ∈ argmax𝑑 𝑈 (𝑑, 𝑥) for all 𝑥 ∈ Im(𝑋 ). Therefore, domain dependence ≠⇒ Assumption 9

in the general mediated case.

Now we prove that Assumption 9 implies domain dependence in the mediated case, and consequently is equivalent to domain dependence

in the unmediated case.

Theorem 4. Let𝑀 = (𝐺, 𝑃) be a mediated CID. Assumption 9 =⇒ Domain dependence.

Proof. Assume ∀ 𝑃 ′ (𝐶 = 𝑐) compatible with 𝑀 we have 𝜋∗ ∈ argmax𝜋 E[𝑈 ] = argmax𝜋 E𝜋
𝑃 ′ [𝑈 |𝑑𝑜 (𝐷 = 𝜋 (𝑑 |𝑝𝑎𝐷 )), 𝑝𝑎𝐷 ]. Let

𝑑 ∈ Im(𝐷) be a decision s.t. 𝜋∗ (𝑑 |𝑝𝑎𝐷 ) > 0. For Assumption 9 there exist a non-empty set 𝑋𝑑 := {𝑥 |𝑑 ∉ argmax𝑑 ′ 𝑈 (𝑑′, 𝑥)}. Let 𝑑∗, 𝑥∗ ∈
argmax𝑑 ′,𝑥∈𝑋𝑑

𝑈 (𝑑′, 𝑥). We can write 𝑥∗ as (𝑥∗
1
, . . . , 𝑥∗𝑛) where {𝑥∗𝑖 }

𝑛
𝑖=1

are instantiations of the random variables {𝑋1, . . . , 𝑋𝑛} = 𝑃𝑎𝑈 \ {𝐷}
and 𝑛 := |𝑃𝑎𝑈 \ {𝐷}|. Now, we want to define an alternative distribution 𝑃 ′ compatible with𝑀 by updating the CPTs of the variables corre-

sponding to the parents of𝑈 . For each 𝑋 𝑗 ∈ 𝑃𝑎𝑢 \ {𝐷} let 𝑝𝑎1
𝑗
, . . . , 𝑝𝑎

|𝑃𝑎𝑋𝑗
|

𝑗
be instantiations of parents of 𝑋 𝑗 . Let 𝑥

𝑖
𝑗
be an observable value

for the variable 𝑋 𝑗 . We set 𝑃 (𝑥𝑖
𝑗
|𝑝𝑎1

𝑗
, . . . , 𝑝𝑎

|𝑃𝑎𝑋𝑗
|

𝑗
) = 𝜖

𝑝𝑎1
𝑗
,...,𝑝𝑎

|𝑃𝑎𝑋𝑗
|

𝑗
,𝑥𝑖

𝑗

if 𝑥𝑖
𝑗
≠ 𝑥∗

𝑗
and 𝑃 (𝑥𝑖

𝑗
|𝑝𝑎1

𝑗
, . . . , 𝑝𝑎

|𝑃𝑎𝑋𝑗
|

𝑗
) = 1 −∑

𝑙≠𝑖 𝜖
𝑝𝑎1

𝑗
,...,𝑝𝑎

|𝑃𝑎𝑋𝑗
|

𝑗
,𝑥𝑙

𝑗

if

𝑥𝑖
𝑗
= 𝑥∗

𝑗
. We repeat this procedure for all combinations of 𝑥𝑖

𝑗
and 𝑝𝑎1

𝑗
, . . . , 𝑝𝑎

|𝑃𝑎𝑋𝑗
|

𝑗
. We call the set of these epsilon parameters

∑
. To preserve
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faithfulness we require the epsilon parameters to be pair-wise distinct. Observe that if we also require all epsilon 𝜖 ∈ ∑
to be 0 <≪ 1 and

0 <
∑
𝜖∈∑ 𝜖 ≤ 1 then we obtain valid CPT parameters for the CID. We repeat the CPT update for all variables {𝑋1, . . . , 𝑋𝑛}.

Observe that assuming 𝜋∗ ∈ argmaxE𝜋
𝑃 ′ [𝑈 ] for all 𝑃 ′ compatible with𝑀 implies that ∀ 𝜋 ′ and 𝑃 ′ compatible with𝑀 we have:

E𝜋
∗

𝑃 ′ [𝑈 ] − E𝜋
′

𝑃 ′ [𝑈 ] ≥ 0 (30)

⇐⇒ E𝑃 ′ [𝑈 | 𝑑𝑜 (𝐷 = 𝜋∗ (𝑑 | 𝑝𝑎𝐷 ) =, 𝑝𝑎𝐷 ] − E𝑃 ′ [𝑈 | 𝑑𝑜 (𝐷 = 𝜋 ′ (𝑑 | 𝑝𝑎𝐷 ), 𝑝𝑎𝐷 ] ≥ 0 (31)

Let 𝜋 ′ be a deterministic policy where 𝑑∗ is always selected and 𝑋 := 𝑃𝑎𝑈 \ {𝐷} with 𝑥 instantiation of 𝑋 .

⇐⇒ E𝑃 ′ [𝑈 | 𝑑𝑜 (𝐷 = 𝜋∗ (𝑑 | 𝑝𝑎𝐷 ) =, 𝑝𝑎𝐷 ] − E𝑃 ′ [𝑈 | 𝑑𝑜 (𝐷 = 𝑑∗), 𝑝𝑎𝐷 ] ≥ 0 (32)

⇐⇒
∑︁
𝑑 ′

𝜋∗ (𝑑′ | 𝑝𝑎𝐷 )
∑︁
𝐶𝑖 ∈C

∏
𝑗

𝑃 (𝐶𝑖 = 𝑐 𝑗 | 𝑝𝑎𝐶𝑖
)𝑈 (𝑑′, 𝑥) −

∑︁
𝐶𝑖 ∈C

∏
𝑗

𝑃 (𝐶𝑖 = 𝑐 𝑗 | 𝑝𝑎𝐶𝑖
)𝑈 (𝑑∗, 𝑥) ≥ 0 (33)

Now we compute the limit for all

∑ ∋ 𝜖 → 0:

lim∑∋𝜖→0

E𝜋
∗

𝑃 ′ [𝑈 ] − E𝜋
′

𝑃 ′ [𝑈 ] = (34)

=
∑︁
𝑑 ′

𝜋∗ (𝑑′ | 𝑝𝑎𝐷 )𝑈 (𝑑′, 𝑥∗) −𝑈 (𝑑∗, 𝑥) (35)

=𝜋∗ (𝑑 | 𝑝𝑎𝐷 )𝑈 (𝑑, 𝑥∗) +
∑︁
𝑑 ′≠𝑑

𝜋∗ (𝑑′ | 𝑝𝑎𝐷 )𝑈 (𝑑′, 𝑥) −𝑈 (𝑑∗, 𝑥∗) ≤ (36)

≤𝜋∗ (𝑑 | 𝑝𝑎𝐷 )𝑈 (𝑑, 𝑥∗) +𝑈 (𝑑∗, 𝑥∗)
[∑︁
𝑑 ′≠𝑑

𝜋∗ (𝑑′ | 𝑝𝑎𝐷 ) − 1

]
(37)

where in the last passage we used the fact that 𝑑∗ ∈ argmax𝑑 ′ 𝑈 (𝑑′, 𝑥∗).

= −
[∑︁
𝑑 ′≠𝑑

𝜋∗ (𝑑′ | 𝑝𝑎𝐷 ) − 1

]
𝑈 (𝑑, 𝑥∗) +𝑈 (𝑑∗, 𝑥∗)

[∑︁
𝑑 ′≠𝑑

𝜋∗ (𝑑′ | 𝑝𝑎𝐷 ) − 1

]
(38)

=𝜋∗ (𝑑 | 𝑝𝑎𝐷 )
(
𝑈 (𝑑∗, 𝑥∗) −𝑈 (𝑑, 𝑥∗)

)
< 0 (39)

The last expression is strictly negative because we assumed 𝜋∗ (𝑑 | 𝑝𝑎𝐷 ) > 0 and 𝑥∗ ∈ 𝑋𝑑 , therefore 𝑑 ∉ argmax𝑑 ′ 𝑈 (𝑑′, 𝑥∗) while
𝑑∗ ∈ argmax𝑑 ′ 𝑈 (𝑑′, 𝑥∗). Since E𝜋∗

𝑃 ′ [𝑈 ] − E𝜋
′

𝑃 ′ [𝑈 ] is a polynomial in the parameters

∑
, we can apply the theorem of permanence of sign

and therefore ∃𝜖∗ ∈ ∑
s.t. the inequality 30 is false. Therefore ∃𝑃 ′ compatible with 𝑀 s.t. 𝜋∗ ∉ argmax𝜋 E𝜋

𝑃 ′  . It follows that domain

dependence holds. □

From Theorem 4 it directly follows that for unmediated decision tasks, which are a subcase of the family of mediated decision tasks,

domain dependence is equivalent to Assumption 9. This provides us with a very straightforward way to verify domain dependence in these

tasks.

Corollary 5. Let𝑀 = (𝐺, 𝑃) be an unmediated CID. Assumption 9 is equivalent to Domain dependence.

Proof. In the unmediated case the implication Domain dependence =⇒ Assumption 9 is proven in [6]. Since the unmediated case is a

subcase of the mediated case, from Theorem 4 it directly follows that Assumption 9 =⇒ Domain dependence. Therefore the two statements

are equivalent. □
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