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Align-IQA: Aligning ImageQuality Assessment Models with
Diverse Human Preferences via Customizable Guidance

Anonymous Author(s)

ABSTRACT
The alignment of the image quality assessment (IQA) model with
diverse human preferences remains a challenge, owing to the vari-
ability in preferences for different types of visual content, including
user-generated and AI-generated content (AIGC), etc. Despite the
significant success of existing IQA methods in assessing specific vi-
sual content by leveraging knowledge from pre-trained models, the
intricate factors impacting final ratings and the specially designed
network architecture of these methods result in gaps in their ability
to accurately capture human preferences for novel visual content.
To address this issue, we propose Align-IQA, a novel framework
that aims to generate visual quality scores aligned with diverse
human preferences for different types of visual content. Align-IQA
contains two key designs: (1) A customizable quality-aware guid-
ance injection module. By injecting specializable quality-aware
prior knowledge into general-purpose pre-trained models, the pro-
posed module guides the acquisition of quality-aware features and
allows for different adjustments of features to be consistent with
diverse human preferences for various types of visual content. (2)
A multi-scale feature aggregation module. By simulating the multi-
scale mechanism in the human visual system, the proposed module
enables the extraction of a more comprehensive representation of
quality-aware features from the human perception perspective. Ex-
tensive experimental results demonstrate that Align-IQA achieves
comparable or better performance than SOTA methods. Notably,
Align-IQA outperforms the previous best results on AIGC datasets,
achieving PLCC of 0.890 (+3.73%) and 0.924 (+1.99%) on AGIQA-1K
and AGIQA-3K. Additionally, Align-IQA reduces training parame-
ters by 72.26% and inference overhead by 78.12% while maintaining
SOTA performance.

CCS CONCEPTS
• Computing methodologies→ Computer vision tasks.

KEYWORDS
Image quality assessment, AI-generated content, human prefer-
ences, customizable guidance
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Figure 1: Comparison of existing “pre-training and fine-
tuning" strategies ((a) and (b)) for NR-IQAwith our Align-IQA
(c).

1 INTRODUCTION
Image quality assessment (IQA) is an indispensable requirement
in the fields of image processing and computer vision [35]. It fo-
cuses on dealing with different types of visual content, including
natural images [30] that have undergone specific treatments such
as compression, blurring, noise, etc., user-generated content (UGC)
(e.g., images captured through smartphones) [20], and the more
recent popularity of AI-generated content (AIGC) (e.g., images pro-
duced using text-to-image models) [16]. Over the past few decades,
considerable efforts have been invested in proposing various IQA
methods. Depending on the necessity of reference images, they can
be broadly classified into full-reference IQA (FR-IQA)[25], reduced-
reference IQA (RR-IQA)[48], and no-reference IQA (NR-IQA)[19].
In real-world scenarios where reference images are unavailable,
NR-IQA is preferred.

In recent years, deep learning-based NR-IQA methods [2, 38, 45]
have demonstrated superior performance in evaluating authenti-
cally distorted images compared to traditional methods, such as
NR-IQA based on natural scene statistics (NSS) [24, 34]. However,
their generalization abilities are constrained by the limited size
of existing IQA datasets. For instance, the largest authentic IQA
dataset, FLIVE[41], encompasses approximately 40,000 distorted
images sourced from real-world scenarios. In contrast, the largest
image recognition dataset, ImageNet [4], contains more than 14
million labeled images. Accordingly, existing IQA datasets are too
small to reflect the diversity and complexity of real-world distor-
tions adequately.

Researchers propose a range of “pre-training and fine-tuning"
strategies to address the problem of limited IQA dataset size. As de-
scribed in Fig. 1 (a), a straightforward way [1, 32] is to directly fine-
tune models that are pre-trained on large-scale non-IQA datasets
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(e.g., ImageNet) for leveraging knowledge from other computer vi-
sion tasks (e.g., image recognition). Nonetheless, it should be noted
that these pre-trained models are not specifically designed for IQA,
and they focus more on learning semantic-aware representations
rather than quality-aware representations. As depicted in Fig. 1
(b), another popular way [22, 29, 47] is to perform quality-aware
pre-training, by generating numerous distorted images to simulate
real-world degradation processes. Subsequently, a model is pre-
trained to identify the distortion type (and level) of these images
using self-supervised learning. Since the pre-trained models have
already acquired robust quality-aware representations, they could
be easily transferred to the downstream NR-IQA task. However,
training from scratch requires a lot of training time and computing
resources. For instance, a quality-aware pre-training approach [47]
based on MoCo-v2[7], takes 75 hours to train ResNet-50 [8] on Im-
ageNet (regenerated by adding synthetic distortions to the image),
using 8 Nvidia V100 GPUs.

In summary, we identify three challenges. Firstly, the limited size
of the IQA dataset presents difficulties in acquiring a substantial
amount of training data. Secondly, there is a struggle to make the
pre-trained model pay more attention to extracting quality-aware
features rather than semantic-aware features while maintaining
computational efficiency. Thirdly, due to the variability in human
preferences, it is difficult for existing IQA methods to generate qual-
ity scores consistent with diverse human preferences for different
types of visual content.

To solve these challenges, we propose Align-IQA, a novel NR-
IQA framework aimed at generating visual quality scores aligned
with diverse human preferences for various types of visual content.
First, we design a customizable quality-aware guidance injection
module that integrates specializable quality-aware prior knowledge
into general-purpose pre-trained models (e.g., vanilla ViT), where
the model is frozen and only a few parameters are introduced for
injection. For natural and UGC images, the characteristics of human
visual system (HVS) (e.g., visual saliency [33]) are utilized to guide
the pre-trained models in learning quality-aware features. In the
case of AIGC images, guidance is provided by the visual-semantic
relation information obtained from vision-languagemodels. Second,
since there are numerous visual natures to affect human percep-
tion of image quality [12], we further design a multi-scale feature
aggregation module. By simulating the multi-scale mechanism in
the HVS, the module enables the extraction of a more compre-
hensive representation of quality-aware features from the human
perception perspective. Specifically, we combine depth-wise sep-
arable and dilated convolution, to implement multi-scale feature
extraction with a small number of model parameters. Finally, we
conduct extensive evaluation and analysis to verify the efficiency
and effectiveness of the proposed two designs in Align-IQA. The
experimental results show that Align-IQA achieves comparable or
better performance than SOTA methods. The main contributions
of Align-IQA are summarized as follows:

• We explore a novel NR-IQA model for generating visual
quality scores aligned with diverse human preferences for
different types of visual content. By using the proposed cus-
tomizable quality-aware guidance injection module, our
method ensures integrating personalized quality-aware

prior knowledge into pre-trained models in the frozen state
to obtain various quality-aware features for different types
of visual content.

• We design a novel multi-scale feature aggregation module.
By simulating the multi-scale mechanism in the HVS, the
module enables the extraction of a more comprehensive
representation of quality-aware features from the human
perception perspective. Furthermore, by leveraging depth-
wise dilated separable convolution, themodule allowsmulti-
scale features to be obtained with only a small number of
model parameters.

• Extensive experimental results demonstrate that Align-IQA
achieves comparable or better performance than SOTA
methods. Notably, Align-IQA outperforms the previous best
results on AIGC datasets, achieving PLCC of 0.890 (+3.73%)
and 0.924 (+1.99%) on AGIQA-1K and AGIQA-3K. Further-
more, Align-IQA reduces training parameters by 72.26%
and inference overhead by 78.12% while maintaining SOTA
performance.

2 RELATEDWORK
The focus of IQA is on extracting quality-aware features aligned
with human preference. Before the rise of deep learning, hand-
crafted feature engineering dominated the field of NR-IQA. The
most common approach for manually extracting quality-aware fea-
tures is to build NSS models. The assumption underlying this is
that the feature distribution of undistorted natural scene images
adheres to certain statistical regularities, which are corrupted by
various distortions [28]. Therefore, the quality of distorted images
can be quantified by modeling distortion-sensitive statistics of nat-
ural scenes, including discrete wavelet transform coefficients [34],
locally normalized luminance coefficients [23], and correlation co-
efficients of subbands [24], etc. Besides, some methods [37, 40] have
also made beginning efforts to explore the automatic extraction of
quality-aware features from distorted images, typically relying on
visual codebooks.

Recently, a variety of deep learning-based methods have been
further developed to better automatically extract quality-aware
features, significantly improving performance in evaluating real-
world distortions. In the pioneering work [11], a shallow network
of only one convolutional layer is used for NR-IQA. Naturally,
later works transition the network architecture from shallow to
deep [2, 21]. Because of its non-local self-attention mechanism,
ViT was recently adopted to design the NR-IQA model [12, 39].
Concurrently, the CLIP-based method [45] is also sprouting up,
based on a language and vision model [27] can exploit the label
semantic.

In addition to well-designed models for extracting quality-aware
features, a few studies pay special attention to solving the main
challenge of deep learning-based NR-IQA methods: the limited size
of existing IQA datasets. Among them, some [22, 29, 47] attempt
to perform quality-aware pre-training via self-supervised learning
(e.g., contrastive learning [3]), based on the large-scale IQA-related
dataset created by synthesizing the distorted image. Meanwhile,
others [1, 32] resort to directly fine-tuning the model pre-trained
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Figure 2: The overall architecture of Align-IQA. First, the input image is passed through the patch embedding layer to obtain
image embedding. Among these, image embedding is fed into 𝐿 transformer layers. Then, customizable quality-aware prior
knowledge is mapped to a feature embedding of 𝐷 dimensions through an additional patch embedding layer, in conjunction
with image embedding to the customizable guidance injector (CGI) for generating and injecting the specializable guidance
into the transformer blocks for guiding the ViT to focus more on extract quality-aware features rather than semantic-aware
features. The multi-scale feature aggregator (MSFA) extracts and integrates multi-scale features from the multi-level outputs of
ViT. Finally, the global-local quality-aware features are sent to the dual-branch predictor for final quality prediction.

on large-scale non-IQA datasets, aiming to leverage the knowledge
from other computer vision tasks.

We summarize the differences between Align-IQA and the above-
mentioned methods. First, different from contrastive learning-based
methods [22, 29, 47], Align-IQA does not require re-training from
scratch on plenty of IQA-related images, thus avoiding significant
computational overhead for re-training. Second, in contrast to meth-
ods [1, 32], Align-IQA allows the pre-trained model to prioritize
the acquisition of quality-aware features over semantic-aware fea-
tures, boosting the ability of the model to learn quality-aware rep-
resentations. Furthermore, by introducing customizable guidance,
Align-IQA generates visual quality scores consistent with diverse
human preferences for different types of visual content.

3 PROPOSED METHOD
3.1 Overall Architecture
The proposed Align-IQA is designed to generate visual quality
scores aligned with diverse human preferences for different types
of visual content. Specifically, for natural and UGC images, the char-
acteristics of HVS (e.g., visual saliency [33]) are utilized to guide the
pre-trained models in learning quality-aware features. In the case
of AIGC images, guidance is provided by the visual-semantic rela-
tion information obtained from vision-language models (e.g., [36]).
Align-IQA maintains the transformer encoder of general-purpose
pre-trained ViT in a frozen state and contains only a limited set
of tunable parameters to learn quality-aware features from the
frozen image embedding, guided by customizable quality-aware
prior knowledge. The overall architecture of our Align-IQA is illus-
trated in Fig. 2.

From a hierarchical perspective, we propose the framework of en-
coder - [customizable guidance injector] - [multi-scale feature
aggregator] - dual-branch predictor. The encoder is a vanilla
ViT, which consists of a patch embedding layer followed by 𝐿 trans-
former layers (see Fig. 2(a)). We design a novel customizable guid-
ance injector, as depicted in Fig. 2(b), to inject quality-aware prior
knowledge into ViT. Additionally, we propose a novel multi-scale
feature aggregator, shown in Fig. 2(c), which extracts multi-scale
features from the multi-level outputs of ViT and fuses them to gen-
erate global-local quality-aware features. Finally, the global-local
quality-aware features are sent to the dual-branch predictor for
obtaining the final quality score.

3.2 Customizable Guidance Injector
Due to the variability in human preferences for different types
of visual content, we propose the customizable guidance injector
(CGI). The main goal of CGI is to incorporate specializable quality-
aware prior knowledge into the input of transformer layers, thereby
preserving the original architecture of ViT. Notably, through the
implementation of CGI, Align-IQA can effectively guide the general-
purpose pre-trained ViT to focus more on extracting quality-aware
features rather than semantic-aware features. As depicted in Fig. 2,
the proposed CGI is integrated into each layer of the backbone net-
work. Formally, providing token sequences {𝐸𝑙

𝑖𝑚𝑔
, 𝐸𝑝𝑟𝑖𝑜𝑟 } consist

of the frozen image embedding 𝐸𝑙
𝑖𝑚𝑔

and tunable feature embedding
𝐸𝑝𝑟𝑖𝑜𝑟 mapped by quality-aware prior knowledge. The designed
CGI to generate guidance with these token sequences, the process

3
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can be written as:

𝑃𝑙 = 𝐵𝑙
(
𝐸𝑙𝑖𝑚𝑔, 𝐸𝑝𝑟𝑖𝑜𝑟

)
, 𝑙 = 1, 2, . . . , 𝐿 (1)

where 𝐵𝑙 denotes the 𝑙-th CGI block. In this way, CGI makes full use
of quality-aware prior knowledge to generate effective guidance.

The detailed design of CGI is depicted in Fig. 2 (b), our CGI
has two input branches for introducing the token sequences of
the frozen image embedding 𝐸𝑙

𝑖𝑚𝑔
and tunable feature embedding

𝐸𝑝𝑟𝑖𝑜𝑟 , respectively. Specifically, for the 𝑖-th transformer layer of
ViT, we take the tunable feature embedding 𝐸𝑝𝑟𝑖𝑜𝑟 as the query,
and the frozen image embedding 𝐸𝑙

𝑖𝑚𝑔
as the key and value. We use

multi-head self-attention to incorporate tunable feature embedding
𝐸𝑝𝑟𝑖𝑜𝑟 into the frozen image embedding 𝐸𝑙

𝑖𝑚𝑔
, which can be written

as:

𝐸 𝑗𝑞 =𝑊𝑗𝑞

(
𝑛𝑜𝑟𝑚

(
𝐸𝑝𝑟𝑖𝑜𝑟

) )
(2)

𝐸 𝑗𝑘 , 𝐸 𝑗 𝑣 =𝑊𝑗𝑘

(
𝑛𝑜𝑟𝑚

(
𝐸𝑙𝑖𝑚𝑔

))
,𝑊𝑗 𝑣

(
𝑛𝑜𝑟𝑚

(
𝐸𝑙𝑖𝑚𝑔

))
(3)

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸 𝑗𝑞, 𝐸 𝑗𝑘 , 𝐸 𝑗𝑣) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
𝐸𝑇
𝑗𝑞
𝐸 𝑗𝑘√︁
𝑑𝑘

)
𝐸 𝑗𝑣 (4)

𝑃𝑙 = 𝐶𝑜𝑛𝑐𝑎𝑡 (ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2, . . . , ℎ𝑒𝑎𝑑ℎ)𝑊 𝑜 (5)

𝐸𝑙𝑖𝑚𝑔 = 𝐸𝑙𝑖𝑚𝑔 + 𝛾𝑖𝑃
𝑙 (6)

where 𝑛𝑜𝑟𝑚 (·) is LayerNorm,𝑊𝑗𝑞 ,𝑊𝑗𝑘 ,𝑊𝑗 𝑣 ,𝑊 𝑜 are projection
functions, ℎ = 8, ℎ𝑒𝑎𝑑 𝑗 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐸 𝑗𝑞, 𝐸 𝑗𝑘 , 𝐸 𝑗 𝑣), 𝑑𝑘 is the dimen-
sion of the key. Furthermore, we apply a learnable parameter 𝛾𝑖 to
balance the tunable guidance embedding 𝑃𝑙 and the frozen image
embedding 𝐸𝑙

𝑖𝑚𝑔
, which is initialized as 7.68× 10−3. As a result, the

feature distribution of 𝐸𝑙
𝑖𝑚𝑔

is not significantly altered because of
the injection of quality-aware prior knowledge, thereby optimizing
the utilization of the pre-trained weights of ViT.

3.3 Multi-Scale Feature Aggregator
In the human visual system, there are numerous visual natures to
affect human perception of image quality. To better predict quality
scores from the human perception perspective, we propose the
multi-scale feature aggregator (MSFA). In particular, ViT is divided
uniformly into 𝑁 (usually 𝑁 = 4) blocks, each block containing
𝐿/𝑁 transformer layers. After injecting quality-aware prior knowl-
edge into ViT, we obtain four output features, 𝐸3

𝑖𝑚𝑔
,𝐸6
𝑖𝑚𝑔

,𝐸9
𝑖𝑚𝑔

,𝐸12
𝑖𝑚𝑔

,
by processing the frozen image embedding 𝐸𝑙

𝑖𝑚𝑔
through the trans-

former layers of blocks 1, 2, 3, and 4. Then, we apply a module that
combines depth-wise separable convolution and dilated convolu-
tion to extract multi-scale features. In this way, by replacing the
standard convolution with depth-wise dilated separable convolu-
tions, our MSFA significantly reduces the number of parameters
and computational costs. As shown in Fig. 2 (c), the proposed MSFA
consists of three main components: (i) depth-wise dilated separa-
ble convolution operations that capture multi-scale features; (ii) a
cross-level aggregation operation for synthesizing cross-level fea-
tures; (iii) a 1×1 convolution operation for the fusion of multi-scale
features and cross-level features.

Concretely, there is a 1 × 1 standard convolution and three 3 × 3
depth-wise dilated separable convolutions, which capture local
features of different receptive fields by setting different dilation
rates (𝑟3 = 3, 𝑟6 = 2, 𝑟9 = 1, respectively). By introducing spatial
inductive bias towards the enrichment of local information. Multi-
scale features can be obtained using the following equation:

𝐹
𝑗
𝑖𝑚𝑔

=


𝐶𝑜𝑛𝑣𝑟

𝑗

𝑑𝑤

(
𝐶𝑜𝑛𝑣𝑝𝑤

(
𝐸
𝑗
𝑖𝑚𝑔

))
, 𝑗 = 3, 6, 9

𝐶𝑜𝑛𝑣𝑝𝑤

(
𝐸
𝑗
𝑖𝑚𝑔

)
, 𝑗 = 12

(7)

where 𝐶𝑜𝑛𝑣𝑝𝑤 indicates a 1 × 1 point-wise convolution for dimen-
sionality reduction, 𝐶𝑜𝑛𝑣𝑟

𝑑𝑤
indicates a 3 × 3 depth-wise dilated

convolution for capturing multi-scale feature, 𝑟 indexes the dilation
rate.

Furthermore, we utilize a cross-level aggregation operation to
fuse cross-level features across multiple levels of ViT. This process
is described as follows:

𝐶𝑜𝑛𝑐𝑎𝑡

[
𝐸3𝑖𝑚𝑔, 𝐸

6
𝑖𝑚𝑔, 𝐸

9
𝑖𝑚𝑔, 𝐸

12
𝑖𝑚𝑔

]
−→ 𝐹𝑐𝑟𝑜𝑠𝑠𝑖𝑚𝑔 (8)

𝐹𝑐𝑟𝑜𝑠𝑠𝑖𝑚𝑔 = 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒

(
𝐶𝑜𝑛𝑣𝑅1×1

(
𝐴𝑣𝑔𝑃𝑜𝑜𝑙

(
𝐹𝑐𝑟𝑜𝑠𝑠𝑖𝑚𝑔

)))
(9)

where 𝐴𝑣𝑔𝑃𝑜𝑜𝑙 (·) is global average pooling, 𝐶𝑜𝑛𝑣𝑅1×1 (·) indicates
a 1 × 1 convolution with ReLU activation function, 𝑈𝑝𝑠𝑎𝑚𝑝𝑙𝑒 (·)
indexes the bilinear interpolation.

After that, we apply a convolution to coordinate multi-scale
branches and the cross-level branch obtaining the integrated global-
local quality-aware feature 𝐹𝑖𝑚𝑔 . The process is formulated as:

𝐶𝑜𝑛𝑐𝑎𝑡

[
𝐹 3𝑖𝑚𝑔, 𝐹

6
𝑖𝑚𝑔, 𝐹

9
𝑖𝑚𝑔, 𝐹

12
𝑖𝑚𝑔, 𝐹

𝑐𝑟𝑜𝑠𝑠
𝑖𝑚𝑔

]
−→ 𝐹𝑖𝑚𝑔 (10)

𝐹𝑖𝑚𝑔 = 𝐶𝑜𝑛𝑣1×1
(
𝐹𝑖𝑚𝑔

)
(11)

where 𝐶𝑜𝑛𝑣1×1 (·) indicates a 1 × 1 convolution function to fuse
the multi-scale features and cross-level features.

3.4 Prediction
When assessing the quality of images, human observers tend to
focus on conspicuous regions of the images, e.g., sharp edges. As a
result, different image patches usually have diverse quality scores.
To tackle the problem of different image patches exerting varying
influences on the final quality score of the entire image, Align-
IQA adopts the dual-branch structure of patch-weighted quality
prediction, as delineated in AHIQ [14]. We obtain the final predicted
quality score by the following equation:

𝑆 =

∑𝑁
𝑖=1𝑤𝑖𝑠𝑖∑𝑁
𝑖=1𝑤𝑖

(12)

where 𝑁 denotes the number of patches for a single image, 𝑠𝑖
denotes the quality score of the 𝑖-th patch, 𝑤𝑖 denotes the corre-
sponding weight.

3.5 Interpretation of Align-IQA
As shown in Fig. 3, we visualize the feature maps of vanilla ViT
and the proposed Align-IQA. We perform visualization analyses
on a fast-fading distorted image and a JPEG compression distorted
image, both of which are derived from the LIVE dataset. Compare
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Figure 3: Visualization of the feature maps from different
stages in vanilla ViT and Align-IQA, respectively.

the outputs from each block in ViT with the corresponding out-
puts from each block of Align-IQA, the feature maps 𝐹 3

𝑓 𝑓
/𝐹 3

𝑗𝑝𝑒𝑔

to 𝐹 12
𝑓 𝑓
/𝐹 12

𝑗𝑝𝑒𝑔
increasingly concentrate on the target instance and

exhibit enhanced visual-linguistic alignment within the semantic
space, while the feature maps 𝐹 3

𝑓 𝑓
/𝐹 3

𝑗𝑝𝑒𝑔
to 𝐹 12

𝑓 𝑓
/𝐹 12

𝑗𝑝𝑒𝑔
do not demon-

strate an increasing focus on semantic information, instead, they
exhibit a balanced focus on both semantic elements and peripheral
details such as edges. It indicates that CGI effectively injects quality-
aware prior knowledge into ViT, thereby guiding it to prioritize
the acquisition of quality-aware features over semantic-aware fea-
tures. Impressively, unlike 𝐹𝑎𝑙𝑙

𝑓 𝑓
and 𝐹𝑎𝑙𝑙

𝑗𝑝𝑒𝑔
, in 𝐹𝑎𝑙𝑙

𝑓 𝑓
and 𝐹𝑎𝑙𝑙

𝑗𝑝𝑒𝑔
, regions

of interest are more diffuse and broad, extending far beyond the
semantic space itself, which indicates that MSFA can effectively
capture global and local information, thereby enriching the rep-
resentation of quality-aware features from the human perception
perspective.

4 EXPERIMENTS
4.1 Experimental Setups
4.1.1 Datasets. We evaluate the performance of Align-IQA on
eight publicly available IQA datasets, including synthetic datasets
such as LIVE [30], CSIQ [15], TID2013 [26], and KADID-10K [18],
authentic datasets like CLIVE [6] and KonIQ-10K [9], as well as
AIGC datasets like AGIQA-1K [46] and AGIQA-3K [16]. LIVE con-
sists of 779 distorted images generated from 29 reference images
using five distortion types. CSIQ contains 866 distorted images ob-
tained from 30 reference images. TID2013 consists of 3,000 distorted
images sourced from 25 reference images, covering 24 distortion

types. KADID-10K contains 10125 images synthetically distorted
using 25 different distortions on 81 reference images. CLIVE com-
prises 1,162 real-world distorted images captured by various mobile
devices. KonIQ-10K contains 10,073 images with diverse authentic
distortions. AGIQA-1K consists of 1,080 images generated by two
text-to-image (T2I) models. AGIQA-3K contains 2,982 AI-generated
images produced by six T2I models. For each IQA dataset, 80% of the
distorted images contained in it are randomly selected for training
and the rest 20% are used to test.

4.1.2 Metrics. Spearman’s Rank-Order Correlation Coefficient (SR-
CC) and Pearson’s Linear Correlation Coefficient (PLCC) are em-
ployed as metrics to evaluate the performance of Align-IQA. They
measure prediction monotonicity and precision, respectively. For
both two metrics, their values are in the range of [0,1]. When the
value of SRCC or PLCC is closer to 1, it indicates a stronger positive
correlation between the predicted quality score of an IQA method
and the ground-truth quality score.

4.1.3 Implementations. During the training phase, our proposed
model Align-IQA is trained for 300 epochs with a batch size of 4.
The adamW optimizer with a weight decay of 10−5 is employed.
The learning rate is initialized with 10−4 and scheduled by the
cosine annealing strategy. Since we use ViT-Base/16 [5] model pre-
trained on ImageNet as the backbone network of Align-IQA, we
randomly crop all input images into three sub-images with a size of
224 × 224. The training loss is computed by the mean square error
loss. During the test phase, we randomly crop each image 20 times,
and the final quality score is calculated as the mean of the quality
scores from each cropped sub-image. The above implementations
are all completed using Python and PyTorch on 2 Nvidia A100
GPUs.

4.2 Comparisons with the SOTAs
For synthetic and authentic datasets, we compare the proposed
method with six fully fine-tuned NR-IQA models, including LIQE
[45], MANIQA [39], MUSIQ [12], UNIQUE [44], KonCept[9], and
HyperIQA[31], two quality-aware pre-trained models, including
Re-IQA [29], and CONTRIQUE [22], two well-designed CNN-based
models, including NSSADNN [38], and WaDIQaM-NR [2], as well
as two hand-crafted feature-based models, including BIECON [13],
and HOSA [37]. We report the SRCC and PLCC results in Tab. 1.
For AIGC datasets, the comparison results are reported in Tab. 2
and Tab. 3. From the results, we draw some conclusions. First, the
quality-aware pre-training strategy enables CONTRIQUE and Re-
IQA to outperform well-designed CNN-based WaDIQaM-NR, as
well as UNIQUE based on a general-purpose pre-trained model.
Second, by introducing textual modal information, LIQE performs
much better than CONTRIQUE and Re-IQA on CLIVE and KonIQ-
10K datasets. Furthermore, Align-IQA outperforms CONTRIQUE,
Re-IQA, LIQE, transformer-based MANIQA, and MUSIQ, as well as
AIGC-related PSCR[42] and TIER[43] on the various datasets, which
verifies the effectiveness of our Align-IQA, injecting quality-aware
prior knowledge into the general-purposed pre-trained model and
extracting multi-scale quality-aware features. Notably, our Align-
IQA uses significantly fewer training parameters (35.43 M) than
the latest quality-aware pre-trained models and fully fine-tuned
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Table 1: Performance comparisons between the proposed Align-IQA and existing SOTA NR-IQA methods on the LIVE, CSIQ,
TID2013, KADID-10K, CLIVE, and KonIQ-10K datasets. The best and the second-best performance results are marked in
boldface.

Method

Synthetic Distortions Authentic Distortions

LIVE CSIQ TID2013 KADID-10K CLIVE KonIQ-10K

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

HOSA[37] 0.946 0.947 0.741 0.823 0.735 0.815 0.618 0.653 0.640 0.678 0.780 0.795
BIECON[13] [13] 0.961 0.962 0.815 0.823 0.717 0.762 - - 0.595 0.613 - -
WaDIQaM-NR[2] 0.954 0.963 - - 0.761 0.787 - - 0.671 0.680 0.739 0.761
NSSADNN [38] 0.984 0.986 0.927 0.893 0.910 0.844 - - 0.813 0.745 - -
CONTRIQUE[22] 0.960 0.961 0.942 0.955 0.843 0.857 0.934 0.937 0.845 0.857 0.894 0.906

Re-IQA[29] 0.970 0.971 0.947 0.960 0.804 0.861 0.872 0.885 0.840 0.854 0.914 0.923
HyperIQA[31] 0.962 0.966 0.923 0.942 0.840 0.858 0.852 0.845 0.859 0.882 0.906 0.917
KonCept[9] 0.673 0.619 0.631 0.645 - - 0.503 0.515 0.778 0.799 0.911 0.924
UNIQUE[44] 0.961 0.952 0.902 0.921 - - 0.884 0.885 0.854 0.884 0.895 0.900
MUSIQ [12] 0.837 0.818 0.697 0.766 - - 0.572 0.584 0.785 0.828 0.915 0.937
MANIQA[39] 0.982 0.983 0.961 0.968 0.937 0.943 0.944 0.946 0.890 0.910 0.920 0.943
LIQE[45] 0.970 0.951 0.936 0.939 - - 0.930 0.931 0.904 0.910 0.919 0.908

Align-IQA 0.985 0.987 0.975 0.981 0.955 0.960 0.928 0.932 0.905 0.916 0.923 0.932

Table 2: Performance comparisons on the AGIQA-1K dataset.
The best and the second-best performance results aremarked
in boldface.

Method AGIQA-1K
SRCC PLCC

ResNet50[46] 0.637 0.732
StairIQA[46] 0.550 0.609
MGQA[46] 0.601 0.676

WaDIQaM-NR[2] 0.728 0.779
CONTRIQUE[22] 0.793 0.858

PSCR[42] 0.843 0.840
TIER[43] 0.827 0.830

Align-IQA 0.855 0.890

models, while achieving higher PLCC value on the CSIQ dataset, as
shown in Fig. 4. Additionally, Align-IQA outperforms the previous
best results on AIGC datasets, achieving PLCC of 0.890 (+3.73%)
and 0.924 (+1.99%) on AGIQA-1K and AGIQA-3K.

4.3 Cross-Dataset Validation
To demonstrate the generalization ability of our Align-IQA, we
conduct cross-dataset tests. Specifically, HOSA [37] and WaDIQaM-
NR [2] are selected for comparison, with the SRCC results presented
in Tab. 4. Among the synthetic cross-dataset validations, Align-IQA
achieves the highest performance. With the help of quality-aware
prior knowledge and multi-scale mechanism in the HVS, Align-
IQA can accurately evaluate the quality of images with unseen
distortion types. Cross-dataset validation shows that our Align-IQA
effectively alleviates the problem of limited IQA dataset size.

Table 3: Performance comparisons on the AGIQA-3K dataset.
The best and the second-best performance results aremarked
in boldface.

Method AGIQA-3K
SRCC PLCC

DBCNN[16] 0.821 0.876
CLIPIQA[16] 0.843 0.805
CNNIQA[16] 0.748 0.847

WaDIQaM-NR[2] 0.219 0.393
CONTRIQUE[22] 0.807 0.887

PSCR[42] 0.850 0.906
TIER[43] 0.825 0.882

Align-IQA 0.874 0.924

Table 4: Comparison of SRCC results on cross-dataset valida-
tions.

Train Test HOSA WaDIQaM-NR Align-IQA

LIVE CSIQ 0.596 0.704 0.813
TID2013 0.470 0.462 0.612

CSIQ LIVE 0.786 - 0.938
TID2013 0.341 - 0.582

TID2013 LIVE 0.844 0.817 0.908
CSIQ 0.609 0.690 0.703

4.4 Ablation Studies
4.4.1 The effectiveness of each component of Align-IQA. As re-
flected in Tab. 5, we undertake individual experiments to ana-
lyze the effectiveness of each component of our proposed method.
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Figure 4: Comparison of our Align-IQA with LIQE, Re-IQA,
and MANIQA on Params, GFLOPs ( obtained by the python
module “thop"), and PLCC.

The results demonstrate that our CGI module effectively incorpo-
rates prior knowledge into the general-purpose pre-trained model,
thereby guiding it to focus more on extracting quality-aware fea-
tures rather than semantic-aware features. Moreover, our MSFA
model successfully enriches quality-aware features from the human
perception perspective, highlighting the significance of integrating
multi-scale information for accurate quality assessment. By simulat-
ing the multi-scale mechanism in the HVS, our Align-IQA achieves
a further improvement in accuracy.

4.4.2 The effectiveness of different backbone networks. We conduct
comparative experiments with three types of backbone networks
and the results are provided in Tab. 6. The backbone networks
used for experiments include ViT-Tiny/16, ViT-Small/16, and ViT-
Base/16[5]. For all backbone networks, the input image size is set
to 224 × 224, and the shape of the image patch is defined as 16 × 16.
It can be found that using ViT-Base/16 works best. This means
that using a deeper and wider backbone provides more space to
capture richer quality-aware representations, thereby improving
performance.

4.4.3 The effectiveness of different injection strategies. To evalu-
ate the effectiveness of our CGI module, two additional injection
strategies [10] (Fig. 5 (a) & (b)) are selected to introduce guidance
tokens into the general-purpose pre-trained model. One strategy
involves the summation of the input guide and image embedding.
The other strategy entails concatenating the input guide and image
embedding. It should be noted that the input guide is replaced with
the embedding of visual saliency. The performance comparison
between these two injection strategies and the CGI module is de-
picted in Tab. 7. It is observed that our CGI module achieves the
best performance.

4.4.4 The effectiveness of different strategies for extracting multi-
scale features. To test the effectiveness of our MSFA in building a
feature pyramid using the multi-level output of ViT, an additional
strategy [17] (refer to Fig. 7 (a)) is selected for comparison. In this
strategy, only the output from the last layer of ViT is utilized to build
the feature pyramid. The SRCC and PLCC results are summarized
in Table 8. It is observed that enhanced performance is achieved

Encoder Layer

Encoder Layer lE

1lE +

(a) VPT-add

Encoder Layer

Encoder Layer

(b) VPT-concat

lE

1lE +

Encoder Layer

Encoder Layer lE

1lE +

(c) CGI

    Injector

    Injector    1lP +

lP

Figure 5: Variants of vanilla injection-structure and our CGI.

Table 5: Comparison of each component of our Align-IQA
on the KADID-10K dataset.

CGI MSFA
KADID-10K

SRCC PLCC

× × 0.907 0.909
✓ × 0.914 0.918
✓ ✓ 0.928 0.932

Table 6: Comparison of different backbone networks em-
ployed by our Align-IQA on CLIVE and KADID-10K datasets.

CLIVE KADID-10K

SRCC PLCC SRCC PLCC

ViT-Tiny/16 0.875 0.891 0.852 0.850
ViT-Small/16 0.888 0.900 0.899 0.898
ViT-Base/16 0.905 0.916 0.928 0.932

Table 7: Comparison of different injection strategies em-
ployed by our Align-IQA on CLIVE and KADID-10K datasets.

CLIVE KADID-10K

SRCC PLCC SRCC PLCC

VPT-add 0.592 0.620 0.472 0.506
VPT-concat 0.896 0.901 0.886 0.890

CGI 0.905 0.916 0.928 0.932

through the use of multi-level output for the extraction of multi-
scale features. Notably, the sum of SRCC and PLCC values increases
by 9.46% and 9.04% in the CSIQ and CLIVE datasets, respectively.
This indicates that our Align-IQA can assess image quality more
robustly, by comprehensively considering the multi-level features
of ViT.

4.5 Visualization
Fig. 6 depicts the visual results of the feature maps from VPT-add,
VPT-concat, vanilla ViT, and our Align-IQA. We perform visual-
ization analyses on a fast-fading distorted image 𝐼𝑓 𝑓 and a JPEG
compression distorted image 𝐼 𝑗𝑝𝑒𝑔 , both of which are derived from
the LIVE dataset. As can be seen, when vanilla ViT handles the

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

JPEG Compressed ImageFast-Fading Image

ViT Align-IQA ViT Align-IQAVPT-concatVPT-add VPT-concatVPT-add

(a) (b) (c) (d) (e) (f) (g) (h)

3
ffF

6
ffF

9
ffF

12
ffF

12ˆ
ffF

9ˆ
ffF

6ˆ
ffF

3ˆ
ffF

3
jpegF

6
jpegF

6
jpegF

9
jpegF 12ˆ

jpegF

9ˆ
jpegF

6ˆ
jpegF

3ˆ
jpegF

jpegIffI

3

ff
F

6

ff
F

9

ff
F

12

ff
F

12

ff
F

9

ff
F

6

ff
F

3

ff
F

12
jpegF

9
jpegF

6
jpegF

3
jpegF 3

jpegF

6
jpegF

9
jpegF

12
jpegF

Figure 6: Visualization of the featuremaps fromdifferent stages inVPT-add, VPT-concat, vanilla ViT, andAlign-IQA, respectively.

   Transformer Block

   Transformer Block

   Transformer Block

   Transformer Block     

   Transformer Block

   Transformer Block

   Transformer Block

   Transformer Block

(a) Last Map (b) MSFA (4-stages)

M
u
lti-scale S

tru
ctu

re

M
u
lti-scale S

tru
ctu

re

1B

2B

3B

4B

1B

2B

3B

4B

Figure 7: Building a feature pyramid on the vanilla ViT. (a)
Using solely the final feature map of the vanilla ViT. (b) Our
MSFA: the vanilla ViT is artificially segmented into multiple
stages.

Table 8: Comparison of different strategies for building a
feature pyramid on LIVE, CSIQ, TID2013, andCLIVE datasets.

Strategy Last Map MSFA(4-stages)

SRCC PLCC SRCC PLCC

LIVE 0.981 0.978 0.985 0.987
CSIQ 0.885 0.902 0.975 0.981

TID2013 0.911 0.922 0.955 0.960
CLIVE 0.820 0.850 0.905 0.916

fast-fading and JPEG compression distortions, most of the features
𝐹
𝑗

𝑓 𝑓
and 𝐹

𝑗
𝑗𝑝𝑒𝑔

extracted at the same stage are similar. The same
observation is noted for VPT-add and VPT-concat. For example, the
corresponding lines of (a) and (e) are similar respectively, as do the
second, third, and fourth lines of (b) and (f). However, the features
𝐹
𝑗

𝑓 𝑓
and 𝐹 𝑗

𝑗𝑝𝑒𝑔
extracted by our Align-IQA at the same stage exhibit

significant variance for different types of distorted images. This is
consistent with each distortion type having its own specific way of
affecting image quality, indicating that our Align-IQA can extract
discriminative features to accurately describe different types of
distortion.

5 CONCLUSION
In this work, we propose Align-IQA, a novel NR-IQA framework
that aims to generate visual quality scores aligned with human
preferences for different types of visual content. First of all, we
propose a customizable guidance injection module. By injecting
specializable quality-aware prior knowledge into general-purpose
pre-trained models, the proposed module guides the acquisition of
quality-aware features consistent with diverse human preferences
for various types of visual content. Second, we propose a multi-
scale feature aggregation module. By simulating the multi-scale
mechanism in the HVS, the proposed module enables the extraction
of a more comprehensive representation of quality-aware features
from the human perception perspective. Furthermore, by leveraging
depth-wise dilated separable convolution, the proposed module
achieves high computation efficiency. Finally, we conduct extensive
experiments on eight IQA datasets. The results show that Align-
IQA achieves comparable or better performance than SOTA NR-
IQA methods. Notably, Align-IQA outperforms the previous best
results on AIGC datasets, achieving PLCC of 0.890 (+3.73%) and
0.924 (+1.99%) on AGIQA-1K and AGIQA-3K. Meanwhile, Align-IQA
achieves SOTA performance while reducing training parameters
by 72.26%. We anticipate that this work motivates more insights
on integrating professional prior knowledge into general-purpose
pre-trained models, improving the performance and interpretability
of downstream IQA tasks.
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