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1 APPENDIX
1.1 The effectiveness of each component of

Align-IQA
As reflected in Tab. 1, we conduct individual experiments on the
AI-generated content (AIGC) dataset to analyze the effectiveness
of each component of our proposed Align-IQA. The results demon-
strate that our CGI module effectively incorporates quality-aware
prior knowledge into the general-purpose pre-trained model, guid-
ing it to prioritize extracting quality-aware features over semantic-
aware features. By injecting specializable quality-aware prior knowl-
edge into general-purpose pre-trained models, our Align-IQA al-
lows for different adjustments of features to be consistent with
diverse human preferences for various types of visual content.
Meanwhile, our MSFA module effectively enhances quality-aware
features from a human perception perspective, underscoring the im-
portance of integrating multi-scale information for precise quality
assessment. By simulating the multi-scale mechanism in the human
visual system, our Align-IQA achieves further improvements in
accuracy. Notably, our Align-IQA performs best when combining
the CGI and MSFA modules. This indicates that our approach accu-
rately replicates the functionality of the human eye, considering
numerous intricate factors that impact visual quality perception.

1.2 The effectiveness of different backbone
networks

We conduct comparative experiments on the AIGC dataset (AGIQA-
3K) to evaluate the performance of three different types of back-
bone networks. These include ViT-Tiny/16, ViT-Small/16, and ViT-
Base/16[1]. The input image size for all backbone networks is stan-
dardized at 224×224, with the image patch shape defined as 16×16.
Our results, which are provided in Tab. 2, reveal that utilizing ViT-
Base/16 yield the best performance among the tested backbone
networks. This demonstrates that employing a deeper and wider
backbone network allows for capturing richer quality-aware repre-
sentations, ultimately leading to improved overall performance in
our experiments.

1.3 The effectiveness of different injection
strategies

To evaluate the effectiveness of our CGI module on the AGIQA-3K
dataset, two additional injection strategies [2] (Fig. 1 (a) & (b)) are
selected to introduce guidance tokens into the general-purpose
pre-trained model. One strategy involves the summation of the
input guide and image embedding. The other strategy entails con-
catenating the input guide and image embedding. It is important
to note that for AI-generated images, the input guide is replaced
with the embedding of the visual-semantic relation information
obtained from the vision-language model (e.g., [4]). The perfor-
mance comparison between these two injection strategies and our
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Figure 1: Variants of vanilla injection-structure and our CGI
model.
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Figure 2: Building a feature pyramid on the vanilla ViT. (a)
Using solely the final feature map of the vanilla ViT. (b) Our
MSFA module: the vanilla ViT is artificially segmented into
multiple stages.

Table 1: Comparison of each component of our Align-IQA
on the AGIQA-3K dataset.

CGI MSFA
AGIQA-3K

SRCC PLCC

× × 0.850 0.915
✓ × 0.866 0.918
× ✓ 0.871 0.922
✓ ✓ 0.874 0.924

Table 2: Comparison of different backbone networks em-
ployed by our Align-IQA on the AGIQA-3K dataset.

AGIQA-3K

SRCC PLCC

ViT-Tiny/16 0.836 0.901
ViT-Small/16 0.860 0.914
ViT-Base/16 0.874 0.924

CGI module is presented in Tab. 3. Our analysis reveals that our
1
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Table 3: Comparison of different injection strategies em-
ployed by our Align-IQA on the AGIQA-3K dataset.

AGIQA-3K

SRCC PLCC

VPT-add 0.857 0.915
VPT-concat 0.863 0.920

CGI 0.874 0.924

Table 4: Comparison of different strategies for building a
feature pyramid on the AGIQA-3K dataset.

Strategy Last Map MSFA(4-stages)

SRCC PLCC SRCC PLCC

AGIQA-3K 0.859 0.919 0.874 0.924

CGI module outperforms these alternative injection strategies. This
shows that our approach effectively leverages guidance tokens to
improve the capabilities of general-purpose pre-trained models in
acquiring quality-aware features aligned with human preference
for AI-generated images.

1.4 The effectiveness of different strategies for
extracting multi-scale features

To test the effectiveness of our MSFA model in building a feature
pyramid using the multi-level output of ViT, an additional strategy
[3] (refer to Fig. 2 (a)) is selected for comparison. In this strategy,
only the output from the last layer of ViT is utilized to build the fea-
ture pyramid. The SRCC and PLCC results are summarized in Tab.
4. It is observed that enhanced performance is achieved through the
use of multi-level output for the extraction of multi-scale features.
This suggests that our Align-IQA is capable of more robustly as-
sessing image quality by comprehensively considering the diverse
and informative multi-level features provided by ViT.
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