
A Implementation Details

We build upon the codebases of PDM-C [4] and nuPlan [3] for this work. We modify PDM-C [4]
by adding additional longitudinal velocities and lateral offsets to the reference path. In addition,
we generate additional trajectory proposals by modulating min gap to lead agents, headway time,
maximum acceleration and maximum deceleration. In total, we generate 150 proposals per timestep.
We train BehaviorNet for 10 epochs using the Adam optimizer [40] with a learning rate of 5e→5.
We select a map context of radius R = 100m. We present BehaviorNet’s architecture in Figure 6.

Past Trajectories

Map Data

1D CNN and FPN

Map Featu
res

Θ1

Θ2

Θn

…

GCN

Inputs
Agent Features

Agent-Map 
Feature Fusion

Figure 6: BehaviorNet Architecture. BehaviorNet uses past trajectories and map context to predict
future agent behaviors parameterized as IDM controls. Following LaneGCN [41], we use a graph
convolutional network (GCN) to extract map features from the lane graph. Next, we extract agent
features from past trajectories. We then use LaneGCN’s Agent-Map Feature Fusion to model inter-
actions between agents and the map. Lastly, we pass these agent-map features through an MLP to
predict IDM controls.

B Visualizing the Quality of Log-Specific Target IDM Parameters

We visualize the min-gap distribution of Log-BehaviorNet’s rollouts in Figure 7 and find that our
model more closely matches the distribution of real driving logs compared to IDM.

PIT

SIN

SIN

PIT

R
ea

l D
riv

in
g 

Lo
g

PIT

B
eh

av
io

r W
or

ld

Minimum Gap Between Agents

Distance (m)

D
ef

au
lt 

ID
M

 W
or

ld

SIN

Figure 7: Log-BehaviorNet Rollouts Closely Re-
semble Real-World Distributions. We compare the
gap between the ego-vehicle and lead agent (min-gap)
in PIT (Pittsburgh) and SIN (Singapore) across a) real-
world logs, b) Default IDM (a reactive world model
optimized over the entire dataset), and c) our pro-
posed scenario-specific world model used in Adap-

tiveDriver. We observe that our model’s min-gap dis-
tribution closely aligns with the real-world distribu-
tion, outperforming prior methods, as shown in Ta-
ble 2.

C AdaptiveDriver-Hybrid: Combining Open-Loop Forecasting with
Closed-Loop Planning

We evaluate several rule-based and learning-based planners on the nuPlan test set in Table 2 of the
main paper. We extend these results by also evaluating on the OLS metric in Table 6. First, we
note that rule-based planners like IDM and PDM-C outperform prior learning-based methods like

12



Model City OLS NR-CLS R-CLS

Raster Model [32] All 70.82 69.66 67.54
LaneGCN [41] All 74.34 63.59 62.29
UrbanDriver [7] All 80.98 63.27 61.02
IDM [5] All 37.89 70.39 72.42
PDM-O [4] All 82.02 52.80 57.23
PlanTF [42] All 89.18 84.83 76.78
PDM-C [4] All 66.78 92.51 91.79
LLM-Assist [43] All - 93.05 92.20
PlanAgent [38] All - 93.26 92.75

AdaptiveDriver w/ City-BehaviorNet (Ours) All 64.82 92.97 93.28
AdaptiveDriver w/ Log-BehaviorNet (Ours) All 64.03 93.15 93.49

Table 6: Additional nuPlan Benchmark Results. We extend benchmarking from Table 2 of the main pa-
per by adding OLS metric results for completeness. We evaluate rule-based and learning-based planners on
Val14 benchmark. In contrast to Table 2, where rule-based planners like IDM and PDM-C outperform prior
learning-based methods like Raster Model, LaneGCN, and UrbanDriver on NR-CLS and R-CLS, learning
based planners outperforms rule-based methods on OLS. Following prior work [4], we build a hybrid model
that combines AdaptiveDriver with PDM-O, outperforming all prior work on NR-CLS and R-CLS, with sig-
nificantly improved performance (compared to AdaptiveDriver) on OLS. We refer the reader to nuPlan [3] for
metric definitions.

Raster Model, LaneGCN, and UrbanDriver on NR-CLS and C3. In contrast, learning-based plan-
ners like PDM-O and UrbanDriver outperforms rule-based planners on OLS. We observe the same
trend with our proposed models: AdaptiveDriver w/ City-BehaviorNet and AdaptiveDriver w/ Log-
BehaviorNet achieve OLS scores of 65.42 and 64.29 respectively, while PDM-O and UrbanDriver
achieve OLS scores of 80.01 and 73.37 respectively.

Similar to PDM-H [4], we construct a hybrid model that combines AdaptiveDriver’s predictions
for short horizon planning (first two seconds) and PDM-O’s predictions for long-term waypoints
(greater than two seconds). This hybrid model (AdaptiveDriver-Hybrid w/ Log-BehaviorNet) out-
performs all other methods on NR-CLS and R-CLS metrics and achieves competitive performance
on OLS metric.

D BehaviorNet Regression Baseline

In the main paper, we train BehaviorNet with a K-way softmax loss to predict agent behaviors as
IDM parameters from one of K behavioral clusters. However, instead of discretizing BehaviorNet’s
predictions into one of K classes, one can train a regressor to directly predict IDM control param-
eters. We ablate the training of BehaviorNet as a regressor in Table 7. Notably, the performance
of AdaptiveDriver w/ Log-BehaviorNet (Regressor) is competitive with AdaptiveDriver w/ Log-
BehaviorNet (Classifier). However, we posit that training BehaviorNet to directly predict control
parameters may generalize better to larger numbers of behavioral clusters.

Model City NR-CLS R-CLS

AdaptiveDriver w/ Log-BehaviorNet (Classifier) All 95.15 95.35
AdaptiveDriver w/ Log-BehaviorNet (Regressor) All 95.20 95.27

Table 7: Regression Baseline. We frame BehaviorNet’s training objective as a K-way classification task to
predict agent behavior as IDM controls in the main paper. Instead, one could train a regressor to directly predict
control parameters. We note that AdaptiveDriver w/ Log-BehaviorNet (Regressor)’s performance (R-CLS of
95.27) is competitive to that of the baseline (R-CLS of 95.35) on the mini val-set.

13



E Limitations and Future Work.

Don’t City-Specific Models Add Complexity and Limit Generalization? No! Most autonomy
stacks are already city-specific because they make use of city-specific maps. In practice, the over-
head of adding additional behavior parameters per city is minimal. More importantly, we demon-
strate that AdaptiveDriver captures prototypical agent behaviors (e.g., aggressive vs. passive) that
can generalize to never-before-seen cities.

What about Pedestrians and Cyclists? For simplicity, AdaptiveDriver only predicts reactive world
model rollouts for cars. Pedestrians and cyclists use constant velocity rollouts (like in PDM-C).
Future work should integrate reactive policies for cars, cyclists and pedestrians to better represent
multi-agent interactions.

When does AdaptiveDriver Fail? Since our world models build on IDM’s PID controller, we in-
herit its flaws. We note that IDM can be too conservative (when it mistakes a parked vehicle for a
lead vehicle and stops) or too aggressive (when traveling at high speeds along a curve. Secondly,
IDM only interacts with the lead vehicle, limiting multi-agent reasoning. Although we primarily fo-
cus on building city-specific and log-specific world models using the IDM, modeling agent-specific
behavior models can potentially yield better performance. Future work should explore alternative
optimization functions to maximize distribution similarity between real driving logs and simulated
rollouts for learning control parameters. We include additional videos on our project page.

Directly Predicting Control Parameters vs. Directly Predicting Agent Behaviors. Directly pre-
dicting control parameters allows our world model to more accurately simulate multi-agent interac-
tions in rollouts, improving proposal scoring. Further, relying on a motion controller allows us to
more easily capture nuanced behaviors that may be difficult to learn like speeding up when merging
in rollouts. However, relying on a rule-based controller for rollouts also implies that we inherit its
limitations. Moreover, unlike learning-based approaches that directly predict agent behaviors, our
approach may not significantly improve with more data. Given enough data and the right learning
objectives, we posit that methods that directly predict agent behaviors may be able to mimic the
characteristics of MPC-based controllers.

Rollout Accuracy vs. Runtime of BehaviorNet. BehaviorNet is limited by IDM’s lateral capa-
bility, preventing it from simulating multi-agent interactions like lane changes and lane merges. In
theory, one could use more sophisticated controllers that allow for lange changes and merges that
differ from the reference path (like the controller in PDM-C). Alternatively, one could replace a
motion controller with an ego-forecaster such as MTR++ [44] or QCNet [45]. We believe both
directions are fruitful paths forward for building better world models. In practice, we find that a
simple IDM-based world model already achieves state-of-the-art performance. Moreover, similar to
PDM-C’s constant velocity world model, our rule-based rollouts allow AdaptiveDriver to operate
with lower latency. In contrast, running a SOTA trajectory prediction model at every timestep will
significantly increase the latency of proposal scoring and is likely prohibitively slow for practical
applications.

Learning-Based Rollouts Have Higher Latency We benchmark the latency of PDM-C and Adap-
tiveDriver on 1 RTX 3090 GPU with a batch size of 1 in Table E. Notably, BehaviorNet only in-
creases AdaptiveDriver’s runtime by 17ms compared to PDM-C.

Model Latency (ms)

PDM-C 232
AdaptiveDriver w/ Log-BehaviorNet 249

Table 8: Latency Analysis. We compare the latency of PDM-C and AdaptiveDriver w/ Log-BehaviorNet.
Unsurprisingly, we find that AdaptiveDriver is slower than PDM-C due to our learning-based rollouts.

14


