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Algorithm 1: CFBD

input : Image encoder f;; text encoder fr; pre-trained mapping network F'; training epochs
T; training dataset D = {(I;, Ti)}i\il; poison subset number ¢; probability threshold
~; z threshold -, ; number of distributions in GMM K.

output: Identified benign pairs {Dgy,, Dy, } and poisoned pairs {Ds,,, D, }; well-trained encoder
Jrand fr.

/* Coarse—grained detection %/
for (I;,T;) € D do
Produce synthetic caption 7. > Eq. (I).
Calculate cross-modality similarity s¢ and s?. > Eq. (3).
Calculate cross-modality consistency ¢;. > Eq. ().
end
Fit GMM with K Gaussian distributions on {c; }¥ ;.
N < Gaussian distribution with minimum mean.
Dy, + pairs with probability higher than y% being generated from N
D,, < pairs with top-q c.
Ds <D\ Dy \ Dy.
/+ Fine—grained detection */
for (1;,7;) € D, do
\ Calculate average textual correlation z; > Eq. (6).
end
D,y + pairs with z larger than .
/* Train CLIP model */
fort < 1toT do
‘ Train fr, f7 on {Db, Dsb} with Loprp.
end

A ALGORITHM OUTLINE

With these newly proposed stages, we can summarize our CFBD method in Algorithm The
algorithm, in lines 1-5, illustrates the process of calculating cross-modality consistency for each pair
in the dataset. In lines 6-7, we fit the GMM on the collected consistency values and choose the
Gaussian distribution with minimum mean for identifying benign subset. Subsequently, the dataset
is split into benign, poisoned and suspicious subsets in lines 8-10. Later we calculate average textual
correlation for each pair in the suspicious subset in lines 11-13. The benign pairs and poisoned pairs
in suspicious subset are identified in lines 14-15. Upon the completion of the fine-grained detection
stage, as presented in lines 16-18, we train the CLIP model on all benign pairs identified in two
detection stages.

B RELATED WORKS

B.1 MULTIMODAL CONTRASTIVE LEARNING

MCL achieves a remarkable success by contrastive pre-training on large-scale image-caption pairs,
such as CLIP [Radford et al. (2021a), ALIGN /Jia et al.| (2021), and BASIC |Pham et al.| (2023)).
CyCLIP|Goel et al.[(2022) improves the representations by symmetrization of the similarity between
the two mismatched image-caption pairs, as well as the similarity between the image-image pair
and the caption-caption pair. SLIP Mu et al.|(2022a)) improves the performance by maximizing the
agreement between two augmented image features using SimCLR [Chen et al.|(2020al), and matching
the augmented image features with their caption pair. However, these aforementioned MCL methods
have been proved to be extremely vulnerable to various types of backdoor attacks.
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B.2 BACKDOOR ATTACKS AND DEFENSE AGAINST MCL

In the context of MCL, attackers [Liang et al.| (2024d); [Liu et al.[ (2023c(f); Liang et al.| (2024a3b))
conduct backdoor attacks by embedding imperceptible triggers in image-caption pairs, altering cap-
tion labels to poison targets, as seen in methods such as BadNets|Gu et al.|(2017) with unnoticeable
triggers, Blended |Chen et al.| (2017) which blends the trigger pattern with the original image, and
advanced techniques such as SIG|Barni et al.|(2019) and ISSBA |L1 et al.[(2021b). These attacks trick
the model into classifying trigger-containing images as the intended target of the attacker. Given the
sophistication and stealthiness of these attack strategies, especially when involving facial images|Liu
et al.| (2000); [Tang & Li| (2004) and associated labels, they not only pose a threat to the security of
models but also amplify concerns around face privacy (Chen et al|(2023); [Liang et al.| (2022b); [Li
et al.| (2023a); (Guo et al.| (2023); |Dong et al.| (2023) and highlight the urgent need for robust de-
fenses Sun et al.| (2023); [Liu et al.[(2023b); |[Liang et al.| (2023)); [Wang et al.| (2022a:b)) against both
backdoor and adversarial attacks|Liu et al.|(2020b; 2019); [Wei et al.|(2018)); Liang et al.[(2022cfa));
Wang et al.| (2023a)); [Liu et al.| (2023a); He et al.| (2023b); [Liu et al.| (2023e); [He et al.| (2023a);
Liu et al.| (2021); |Lou et al.| (2024); Liu et al.| (2020a), underlining the critical intersection of model
security with user privacy. To combat these threats, researchers have developed detection and mit-
igation strategies. [Feng et al.| (2023) proposed an encoder-based approach to identify and reverse
trigger effects in poisoned models. Meanwhile, |Bansal et al.[(2023) offers a backdoor fine-tuning
strategy that uses clean data sets to disrupt backdoor pathways, albeit at the potential cost of reduced
classification accuracy. |Yang et al.[(2023c)) have investigated the efficacy of using a surrogate CLIP
model, pre-trained on extra benign pairs, to identify and discard poisoned image-caption pairs during
the training process of CLIP models. [Yang et al.|(2023a) aims to disassociate the poisoned image-
caption pairs during pre-training by matching the image representations with the nearest neighbors
of their captions, and matching the caption representations with the nearest neighbors of their image.
Yang et al.|(2023b)) leverages unimodal contrastive learning on each modality separately, classify-
ing the data into “safe” and “risky” subsets to enhance security. [Liang et al.| (2024c)) strengthens
backdoor shortcuts to discover suspicious samples through overfitting training prioritized by weak
similarity samples. Despite such advancements, these techniques still struggle to accurately identify
poisoned data and prevent the injection of backdoors in the trained model.

C IMPLEMENTATION DETAILS

In summary, we use the framework PyTorch [Paszke et al.[(2019) to implement all the experiments.
Note that the experiments are run on 4 NVIDIA 4090 GPUs.

C.1 MODEL ARCHITECTURE

Our models use the same architecture as the original CLIP model presented in|Radford et al.[(2021al)
with a ResNet-50 image encoder (38,316,896 parameters) and a transformer-based text encoder with
a projection layer (63,690,240 parameters) to match the image embedding dimension of 1024. We
use a weight decay for all the parameters during training, except for batch/layer norm, bias, and logit
scale parameters. It should be noted that the detection process of CFBD is not designed for specific
backbone network in the CLIP model, and can be readily applied to other CLIP variants such as
BLIP|Li et al.|(2022a) and SigLIP Zhai et al.|(2023).

C.2 OTHER IMPLEMENTATION DETAILS
For our detection, the hyperparameters K, Y%, q and +, are set to 5, 90%, 50, and 0.8 empiri-
cally, according to the guideline explained in Section In each experiment, the model is trained

on the identified benign pairs for 30 epochs with a batch size of 128, using the AdamW opti-
mizer |Loshchilov & Hutter| (2019) with a learning rate of le-5.

D MORE DETECTION RESULTS ON DIFFERENT CLIP VARIANTS

The ablation study focuses on evaluating the performance of various CLIP-based models in terms
of CA and ASR under different attack types. As shown in Table[6] we compared five different mod-
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Attack Types
BadNets Blended Trojan ISSBA WaNet
Methods CA(M) ASR()[JCA() ASR()[CA() ASR(D[CAM ASR@{) [CA() ASR()
CLIP-ViT-B/32 59.74 0.00 59.99 0.00 59.44 0.00 59.67 0.00 59.11 0.00
CLIP-ViT-B/16 63.74 0.00 63.99 0.00 63.44 0.00 63.67 0.00 63.11 0.00

SLIP-ViT-B/16Mu et al.|(2022b) 63.42 0.00 62.82 0.00 63.16 0.00 62.54 0.00 63.04 0.00
DeCLIP-ViT-B/32|Li et al.|(2022b) | 63.42 0.00 62.82 0.00 63.16 0.00 62.54 0.00 63.04 0.00
DeCLIP-ResNe50|Li et al.|(2022b) | 62.50 0.00 62.12 0.00 61.33 0.00 61.27 0.00 61.77 0.00

Table 6: Zero-shot model performance on ImageNet1K and ASR results of CFBD with other CLIP
variants.

els: CLIP-ViT-B/32, CLIP-ViT-B/16, SLIP-ViT-B/16, DeCLIP-ViT-B/32, and DeCLIP-ResNet50,
across five attack types: BadNets, Blended, Trojan, ISSBA, and WaNet. For all models, the ASR
consistently remained at 0%, demonstrating strong robustness against all attack types.

In terms of CA, CLIP-ViT-B/16 achieved the highest performance across all attack scenarios, with an
average CA of around 63.79%, slightly outperforming the other models. CLIP-ViT-B/32, while per-
forming lower than its B/16 counterpart, maintained a stable CA across different attack types, with
values averaging close to 59.59%. SLIP-ViT-B/16 and DeCLIP-ViT-B/32 demonstrated very simi-
lar CA performance, both maintaining CA in the range of 62.5%-63.4%, while DeCLIP-ResNet50
exhibited slightly lower CA performance, averaging around 61.2%. In short, the detection method
proves universally applicable and effective across different CLIP variants, ensuring both security
and performance consistency.

E MORE DETECTION RESULTS ON OTHER DATASETS

In this section, we provide the detection result of CFBD with different datasets, including COCO
Chen et al.[(2015) and Flickr-PASCAL |Young et al.| (2014); Rashtchian et al.| (2010). We strictly
follow the dataset setting from the |Yang et al.| (2023c) and apply different attack methods on these
datasets. As can be seen in Table[7, CFBD achieves 0.9999 of AUROC score for all attacks, which
strongly proved the effectiveness of CFBD on different data distribution.

Attack Types
Methods BadNets | Blended | Trojan | ISSBA | WaNet SIG
Flickr-PASCAL | 0.9999 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
COCO 0.9999 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999

Table 7: AUROC results of CFBD on other datasets.

F STRESS TEST OF CFBD ON THE HIGH POISON RATE

In previous experiments, the poison rate was capped at a maximum of 0.06% for a fair and straghtfor-
war comparison. However, to better understand the robustness of the algorithm in more challenging
scenarios, we now propose a stress test where the poison rate is significantly increased. This section
aims to investigate how higher poison rates impact the algorithm’s ability to detect poisoned data.
Specifically, we will incrementally raise the poison rate to 10%, assessing whether the detection per-
formance degrades and if there are thresholds where the algorithm becomes less effective. As can
be clearly seen from Table [§] CFBD maintains a AUROC score close 1 when gradually increasing
the poison rates, indicating a strong robustness to the amount of the poison data.

G DISTRIBUTION OF CROSS-MODALITY SIMILARITY AND CONSISTENCY
FOR BENIGN PAIRS AND POISONED PAIRS

The distribution of cross-modality consistency is presented in Figure [/a from which two observa-
tions can be found. First, the consistency values ¢ of poisoned pairs are universally higher than that
of benign pairs, and there is large overlapping region between the distributions of them and sim-
ple threshold is not adequate for a precise separation. We also provide the distribution of average
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Attack Types
Poison Rate | BadNets | Blended | Trojan | ISSBA | WaNet | SIG
2% 0.9999 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
4% 0.9999 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
6% 0.9999 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
8% 0.9999 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999
10% 0.9999 0.9999 | 0.9999 | 0.9999 | 0.9999 | 0.9999

Table 8: AUROC results of CFBD with different poison rates.

textual correlation in Figure[7b] It is observed that average textual correlation can achieve better de-
tection efficiency compared with that of cross-modality consistency. Besides, with average textual
correlation, there is a threshold that can accurately discriminate the poisoned and benign pairs.

5 le2 ‘ 5 le2
W Clean mm Clean
Poison Poison
4 - =+ Threshold
n %]
(] (]
o 3 a
€ IS
& 2 A
H# #
1 .
0 m
5 0.0 2.5 5.0 7.5

(b)

Figure 7: (a) distribution of ¢ for poisoned and benign pairs(coarse-grained result). (b) distribution
of z for poisoned and benign pairs (fine-grained result). Compared with Fig. [7a] poisoned samples
and clean samples are better separated in the fine-grained detection stage.

H RUNTIME

With the equipment as mentioned in Appendix[C| we give the runtime for each stage in Table[9} It is
noted that CFBD detects poisoned pairs before training the CLIP, and it takes only 5 and 6 minutes
to execute coarse-grained and coarse-to-fine grained detection, which is marginally trivial compared
to the 11.5 hours required to train the CLIP model.

Stage Time
coarse-grained detection 5 mins
coarse-to-fine grained detection | 6 mins
Training CLIP with CFBD 11.7 hrs
Training CLIP 11.5 hrs

Table 9: Runtime of different processes.

I ETHIC STATEMENT

DNNs have been widely and successfully adopted in many mission-critical applications. Accord-
ingly, their security is of great significance. The existence of backdoor threats raises serious concerns
about using third-party models under the machine learning as a service (MLaaS) setting. In this pa-
per, we propose a simple yet effective detection method for backdoor attacks in MCL scenario.
Accordingly, this work has no ethical issues since it does not reveal any new security risks and is
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purely defensive. However, we need to notice that CFBD can only be used to detect poisoned pairs
in the dataset whereas it does not eliminate the intrinsic backdoor vulnerability of poisoned models.
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