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1 The Influence of Noise on Task Entropy1

This section shows the detailed derivations of the conclusion of three kinds of noise on the variations2

of task entropy. As stated in this paper, the noises can be categorized into additive and multiplicative3

noise. We list the original task entropy and rewrite task entropy with additive and multiplicative noise,4

separately.5

The original task entropy is formulated as [17]:6

H(T ;X) = −
∑
Y ∈Y

p(Y |X) log p(Y |X) (1)

The images X in the dataset are supposed to be independent of each other, as are the labels Y .7

However, X and Y are not independent because of the correlation between a data sample X and8

its corresponding label Y , the conditional distribution of Y given X will depend on the joint9

distribution of X and Y . Without knowing the joint distribution of X and Y , we can not determine10

the conditional distribution of Y and X . Here, we make some slacks for the distribution of X and11

Y . We can transform the unknown distributions of X and Y to approximately conform to normality12

by utilizing some techniques, such as Box-Cox transformation, log transform, etc [2] [8]. After13

approximate transformation, the distribution of X and Y can be expressed as:14

X ∼ N (µX ,ΣX),Y ∼ N (µY ,ΣY ) (2)

where15

µX = E[X] = (E[X1],E[X2], ...,E[Xk]])
T

µY = E[Y ] = (E[Y1],E[Y2], ...,E[Yk]])
T

ΣX = E[(X − µX)(X − µX)T ]

ΣY = E[(Y − µY )(Y − µY )T ]

(3)

k is the number of samples in the dataset, and T represents the transpose of the matrix.16

After transformation, the X and Y are subjected to multivairate normal distribution distribution.17

Then the conditional distribution of Y given X is also normally distributed [24] [14], which can be18

formulated as:19

Y |X ∼ N (E(Y |X = x), var(Y |X = x)) (4)
where E(Y |X = x) is the mean of the label set Y given a sample X = x from the dataset, and20

var(Y |X = x) is the variance of Y given a sample from the dataset. The conditional mean21

E[(Y |X = x)] and conditional variance var(Y |X = X) can be calculated as:22

µY |X=x = E[(Y |X = x)] = µY +ΣY XΣ−1
X (x− µX) (5)

23

ΣY |X=x = var(Y |X = x) = ΣY − ΣY XΣ−1
X ΣXY (6)
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Image with Gaussian Noise with Linear Transform with Salt-and-pepper Noise

Figure 1: The influence of noise on the image. From left to right are the original image, the image
with Gaussian noise, overlapping with its own linear transform, and with salt-and-pepper noise,
separately.

where ΣY X and ΣXY are the cross-covariance matrices between Y and X , and between X and Y ,24

respectively, and Σ−1
X denotes the inverse of the covariance matrix of X .25

Now, let Z = Y |X , we shall obtain the task entropy:26

H(T ;X) =−
∑
Y ∈Y

p(Y |X) log p(Y |X)

=− E[log p(Y |X)]

=− E[log[(2π)−k/2|ΣZ |−1/2 exp(−1

2
(Z − µZ)

T
Σ−1

Z (Z − µZ))]]

=
k

2
log(2π) +

1

2
log |ΣZ |+

1

2
E[(Z − µZ)

T
Σ−1

Z (Z − µZ)]

=
k

2
(1 + log(2π)) +

1

2
log |ΣZ |

(7)

where27

E[(Z − µZ)
T
Σ−1

Z (Z − µZ)] =E[tr((Z − µZ)
TΣ−1

Z (Z − µZ))]

=E[tr(Σ−1
Z (Z − µZ)(Z − µZ)

T
)]

=tr(Σ−1
Z (Z − µZ)(Z − µZ)

T
)

=tr(Σ−1
Z ΣZ)

=tr(Ik)

=k

(8)

Therefore, for a specific dataset, we can find that the task entropy is only related to the variance of28

the Z.29

However, as we proactively inject additional information into the latent space, the task entropy30

changes:31 {
H(T ;X + ϵ)

⋆
= H(Y ;X + ϵ)−H(X) ϵ is additive noise

H(T ;Xϵ)
⋆
= H(Y ;Xϵ)−H(X) ϵ is multiplicative noise

(9)

Step ⋆ differs from the conventional definition of conditional entropy, as our method injects the noise32

into the latent representations instead of the original images. If adding noise to the original images,33

then we have the classic definition:34 {
H(T ;X + ϵ) = H(Y ;X + ϵ)−H(X + ϵ) ϵ is additive noise

H(T ;Xϵ) = H(Y ;Xϵ)−H(Xϵ) ϵ is multiplicative noise
(10)

Examples of the influence of various noises on the image level are provided in Fig. 1.35

1.1 Influence of Gaussian Noise on Task Entropy36

Gaussian is one of the most common noises in image processing, and it is an additive noise. The37

Gaussian noise ϵ is subjected to the normal distribution of ϵ ∼ N (µϵ, σϵ) and is independent of X38
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and Y . As we stated that the noise can be added to the original images or injected into the latent39

space, therefore, we discuss the conditions separately.40

1.1.1 Add Gaussian Noise to Original Images41

The task entropy with Gaussian noise is rewritten as:42

H(T ;X + ϵ) = −
∑
Y ∈Y

p(Y |X + ϵ) log p(Y |X + ϵ) (11)

Follow the derivations of the task entropy, we can calculate the task entropy with additive Gaussian43

noise as:44

H(T ;X + ϵ) =−
∑
Y ∈Y

p(Y |X + ϵ) log p(Y |X + ϵ)

=− E[log p(Y |X + ϵ)]

=
k

2
(1 + log(2π)) +

1

2
log |ΣY |X+ϵ|

(12)

where ΣY |X+ϵ = ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y . Since the Gaussian noise is independent of45

X and Y , we have ΣY (X+ϵ) = Σ(X+ϵ)Y = ΣY X . The corresponding proof is:46

Σ(X+ϵ)Y =E [(X + ϵ)− µX+ϵ]E [Y − µY ]

=E [(X + ϵ)Y ]− µY E [(X + ϵ)]− µX+ϵE [Y ] + µY µX+ϵ

=E [(X + ϵ)Y ]− µY E [(X + ϵ)]

=E [XY ] + E [ϵY ]− µY µX − µY µϵ

=E [XY ]− µY µX

=ΣXY

(13)

Thus, the variation of task entropy adding Gaussian noise can be formulated as:47

MI(T , ϵ) =H(T ;X)−H(T ;X + ϵ)

=
1

2
log |ΣY |X | − 1

2
log |ΣY |X+ϵ|

=
1

2
log

|ΣY |X |
|ΣY |X+ϵ|

=
1

2
log

|ΣY − ΣY XΣ−1
X ΣXY |

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |

=
1

2
log

|ΣY − ΣY XΣ−1
X ΣXY |

|ΣY − ΣY XΣ−1
X+ϵΣXY |

(14)

Obviously,48 MI(T , ϵ) > 0 if
|ΣY |X |

|ΣY |X+ϵ| > 1

MI(T , ϵ) ≤ 0 if
|ΣY |X |

|ΣY |X+ϵ| ≤ 1
(15)

To find the relationship between |ΣY |X+ϵ| and |ΣY |X |, we need to determine the subterms in each49

of them. As we mentioned in the previous section, the data samples are independent of each other,50

and so are the labels.51

ΣY =E[(Y − µY )(Y − µY )T ]

=E[Y Y T ]− µY µY
T

=diag(σ2
Y1
, ..., σ2

Yk
)

(16)

where52 {
E [YiYj ]− µYiµYj = 0, i ̸= j
E [YiYj ]− µYiµYj = σ2

Yi
, i = j

(17)
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The same procedure can be applied to ΣY (X+ϵ) and ΣX+ϵ. Therefore, We can obtain that ΣY =53

diag(σ2
Y1
, ..., σ2

Yk
), ΣY (X+ϵ) = diag(cov(Y1, X1 + ϵ), ..., cov(Yk, Xk + ϵ)), and ΣX+ϵ is:54

ΣX+ϵ =


σ2
X1

+ σ2
ϵ σ2

ϵ ... σ2
ϵ σ2

ϵ

σ2
ϵ σ2

X2
+ σ2

ϵ ... σ2
ϵ σ2

ϵ
...

...
...

...
σ2
ϵ σ2

ϵ ... σ2
Xk−1

+ σ2
ϵ σ2

ϵ

σ2
ϵ σ2

ϵ ... σ2
ϵ σ2

Xk
+ σ2

ϵ


=diag(σ2

X1
, ..., σ2

Xk
)Ik + σ2

ϵ1k

(18)

where Ik is a k × k identity matrix and 1k is a all ones k × k matrix. We use U to repre-55

sent diag(σ2
X1

, ..., σ2
Xk

)Ik, and u to represent a all ones vector [1, ..., 1]T . Thanks to the Sher-56

man–Morrison Formula [28] and Woodbury Formula [36], we can obtain the inverse of ΣX+ϵ57

as:58

Σ−1
X+ϵ =(U + σ2

ϵuu
T )−1

=U−1 − σ2
ϵ

1 + σ2
ϵu

TU−1u
U−1uuTU−1

=U−1 − σ2
ϵ

1 +
∑k

i=1
1

σ2
Xi

U−11kU
−1

=λ



1
λσ2

X1

− 1
σ4
X1

− 1
σ2
X1

σ2
X2

... − 1
σ2
X1

σ2
Xk−1

− 1
σ2
X1

σ2
Xk

− 1
σ2
X2

σ2
X1

1
λσ2

X2

− 1
σ4
X2

... − 1
σ2
X2

σ2
Xk−1

− 1
σ2
X2

σ2
Xk

...
...

...
...

− 1
σ2
Xk−1

σ2
X1

− 1
σ2
Xk−1

σ2
X2

... 1
λσ2

Xk−1

− 1
σ4
Xk−1

− 1
σ2
Xk−1

σ2
Xk

− 1
σ2
Xk

σ2
X1

− 1
σ2
Xk

σ2
X2

... − 1
σ2
Xk

σ2
Xk−1

1
λσ2

Xk

− 1
σ4
Xk



(19)

where U−1 = diag((σ2
X1

)−1, ..., (σ2
Xk

)−1) and λ =
σ2
ϵ

1+
∑k

i=1
1

σ2
Xi

.59

Therefore, substitute Equation 19 into |ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |, we can obtain:60

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |

=

∣∣∣∣∣∣∣
σ

2
Y1

... 0
...

. . .
...

0 ... σ2
Yk

−

cov(Y1, X1 + ϵ) ... 0
...

. . .
...

0 ... cov(Yk, Xk + ϵ)

Σ−1
X+ϵ

cov(Y1, X1 + ϵ) ... 0
...

. . .
...

0 ... cov(Yk, Xk + ϵ)


∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣


σ2
Y1

− cov2(Y1, X1 + ϵ)( 1
σ2
X1

− λ
σ4
X1

) ... cov(Y1, X1 + ϵ)cov(Yk, Xk + ϵ) λ
σ2
X1

σ2
Xk

...
...

cov(Yk, Xk + ϵ)cov(Y1, X1 + ϵ) λ
σ2
Xk

σ2
X1

... σ2
Yk

− cov2(Yk, Xk + ϵ)( 1
σ2
Xk

− λ
σ4
Xk

)


∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣

σ2
Y1

− 1
σ2
X1

cov2(Y1, X1)

. . .
σ2
Yk

− 1
σ2
Xk

cov2(Yk, Xk)

+ λ


1

σ4
X1

cov2(Y1, X1) ... 1
σ2
X1

σ2
Xk

cov(Y1, X1)cov(Yk, Xk)

...
...

1
σ2
Xk

σ2
X1

cov(Yk, Xk)cov(Y1, X1) ... 1
σ4
Xk

cov2(Yk, Xk)


∣∣∣∣∣∣∣∣

(20)

We use the notation v =
[

1
σ2
X1

cov(Y1, X1) · · · 1
σ2
Xk

cov(Yk, Xk)
]T

, and V =61

diag( 1
σ2
X1

cov2(Y1, X1), · · · , 1
σ2
Xk

cov2(Yk, Xk)). And utilize the rule of determinants of sums [23],62

then we have:63

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y | =|(ΣY − V ) + λvvT |

=|ΣY − V |+ λvT (ΣY − V )∗v
(21)
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where (ΣY − V )∗ is the adjoint of the matrix (ΣY − V ). For simplicity, we can rewrite64

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y | as:65

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |

=

k∏
i=1

(σ2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

) + Ω
(22)

where Ω = λvT (ΣY − V )
∗
v. The specific value of Ω can be obtained as:66

Ω = λ
[

1
σ2
X1

cov(Y1, X1) · · · 1
σ2
Xk

cov(Yk, Xk)
]V11

. . .
Vkk




1
σ2
X1

cov(Y1, X1)

...
1

σ2
Xk

cov(Yk, Xk)

 (23)

where the elements Vii, i ∈ [1, k] are minors of the matrix and expressed as:67

Vii =

k∏
j=1,j ̸=i

[
σ2
Yj

− 1

σ2
Xj

cov2(Xj , Yj)

]
(24)

After some necessary steps, Equation 23 is reduced to:68

Ω =λ

k∑
i=1

1
σ4
Xi

cov2(Yi, Xi)
∏k

j=1(σ
2
Yj

− cov2(Yj , Xj)
1

σ2
Xj

)

(σ2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

)

=λ

k∏
i=1

(σ2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

) ·
k∑

i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))

(25)

Substitute Equation 25 into Equation 22, we can get:69

|ΣY − ΣY (X+ϵ)Σ
−1
X+ϵΣ(X+ϵ)Y |

=

k∏
i=1

(σ2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

) · (1 + λ

k∑
i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))
)

(26)

Accordingly, |ΣY − ΣY XΣ−1
X ΣXY | is:70

|ΣY − ΣY XΣ−1
X ΣXY | =

k∏
i=1

(σ2
Yi

− 1

σ2
Xi

cov2(Xi, Yi)) (27)

As a result, |ΣY |X+ϵ|
|ΣY |X | is expressed as:71

|ΣY |X |
|ΣY |X+ϵ|

=

∏k
i=1(σ

2
Yi

− 1
σ2
Xi

cov2(Xi, Yi))∏k
i=1(σ

2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

) · (1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))
)

(28)

Combine Equations 28 and 14 together, the mutual information is expressed as:72

MI(T , ϵ) =
1

2
log

∏k
i=1(σ

2
Yi

− 1
σ2
Xi

cov2(Xi, Yi))∏k
i=1(σ

2
Yi

− cov2(Yi, Xi)
1

σ2
Xi

) · (1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))
)

=
1

2
log

1

1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))

(29)

It is difficult to tell that Equation 28 is greater or smaller than 1 directly. But one thing for sure is that73

when there is no Gaussian noise, Equation 28 equals 1. However, we can use another way to compare74

5



the numerator and denominator of Equation 28. Instead, we compare the numerator and denominator75

using subtraction. Let:76

f(σ2
ϵ ) =1− (1 + λ

k∑
i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))
)

=− λ

k∑
i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))

=− σ2
ϵ

1 +
∑k

i=1
1

σ2
Xi

k∑
i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))

(30)

Obviously, the variance σ2
ϵ of the Gaussian noise control the result of f(σϵ), while the mean µϵ has77

no influence. When σϵ approaching 0, we have:78

lim
σ2
ϵ→0

f(σ2
ϵ ) = 0 (31)

To determine if Gaussian noise can be positive noise, we need to determine whether the mutual79

information is large or smaller than 0:80 
|ΣY |X |

|ΣY |X+ϵ| > 1 if f(σ2
ϵ ) > 0

|ΣY |X |
|ΣY |X+ϵ| ≤ 1 if f(σ2

ϵ ) ≤ 0
(32)

Combine the Equations 15 and 32, we can get the conclusion:81 {
MI(T , ϵ) > 0 if f(σ2

ϵ ) > 0
MI(T , ϵ) ≤ 0 if f(σ2

ϵ ) ≤ 0
(33)

From the above equations, the sign of the mutual information is determined by the statistical properties82

of the data samples and labels. Since ϵ2 ≥ 0 and
∑k

i=1
1

σ2
Xi

≥ 0, we have a deep dive into the83

residual part, i.e.,84

k∑
i=1

cov2(Xi, Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

− cov2(Xi, Yi))
=

k∑
i=1

cov2(Xi, Yi)

σ4
Xi

σ2
Yi
(1− ρ2XiYi

)
(34)

where ρXiYi is the correlation coefficient, and ρ2XiYi
∈ [0, 1]. As a result, the sign of the mutual85

information in the Gaussian noise case is negative. We can conclude that Gaussian noise added to the86

images is harmful to the task.87

1.1.2 Inject Gaussian Noise in Latent Space88

In this case, the task entropy is formulated as:89

H(T ;X + ϵ)
⋆
= H(Y ;X + ϵ)−H(X). (35)

Thus, the mutual information of injecting Gaussian noise can be formulated as:90

MI(T , ϵ) =H(Y ;X)−H(X)− (H(Y ;X + ϵ)−H(X))

=H(Y ;X)−H(Y ;X + ϵ)
(36)

Borrow the equations from the case of Gaussian noise added the original image, we have:91

MI(T , ϵ) =H(Y ;X)−H(Y ;X + ϵ)

=
1

2
log

|ΣX ||ΣY − ΣY XΣ−1
X ΣXY |

|ΣX+ϵ||ΣY − ΣY XΣ−1
X+ϵΣXY |

=
1

2
log

1

(1 + σ2
ϵ

∑k
i=1

1
σ2
Xi

)(1 + λ
∑k

i=1
cov2(Xi,Yi)

σ2
Xi

(σ2
Xi

σ2
Yi

−cov2(Xi,Yi))
)

(37)

Obviously, injecting Gaussian noise into the latent space is harmful to the task.92

6



1.2 Influence of Linear Transform Noise on Task Entropy93

In our work, the linear transform noise refers to an image or the latent representation of an image that94

is perturbed by the combination of other images or latent representations of other images.95

1.2.1 Add Linear Transform Noise to Original Images96

The task entropy with linear transform noise can be formulated as:97

H(T ;X +QX) =−
∑
Y ∈Y

p(Y |X +QX) log p(Y |X +QX)

=−
∑
Y ∈Y

p(Y |(I +Q)X) log p(Y |(I +Q)X)
(38)

where I is an identity matrix, and Q is derived from I using elementary row operations. The98

conditional distribution of Y given X +QX is also multivariate subjected to the normal distribution,99

which can be formulated as:100

Y |(I +Q)X ∼ N (E(Y |(I +Q)X), var(Y |(I +Q)X)) (39)
The linear transform on X does not change the distribution of the X . It is not difficult to obtain:101

µY |(I+Q)X = µY +ΣY XΣ−1
X (I +Q)−1((I +Q)X − (I +Q)µX) (40)

102

Σ(Y |(I+Q)X) = ΣY − ΣY XΣ−1
X ΣXY (41)

Thus, the variation of task entropy adding linear transform noise can be formulated as:103

MI(T , QX) =H(T ;X)−H(T ;X +QX)

=
1

2
log |ΣY |X | − 1

2
log |ΣY |X+QX |

=
1

2
log

|ΣY |X |
|ΣY |X+QX |

=
1

2
log

|ΣY − ΣY XΣ−1
X ΣXY |

|ΣY − ΣY XΣ−1
X ΣXY |

=0

(42)

The mutual information of 0 indicates that the implementation of linear transformation to the original104

images could not reduce the complexity of the task.105

1.2.2 Inject Linear Transform Noise in Latent Space106

The mutual information of injecting linear transform noise can be formulated as:107

MI(T , QX)
⋆
=H(Y ;X)−H(X)− (H(Y ;X +QX)−H(X))

=H(Y ;X)−H(Y ;X +QX)

=
1

2
log

|ΣX ||ΣY −ΣY XΣ−1
X ΣXY |

|Σ(I+Q)X ||ΣY − ΣY XΣ−1
X ΣXY |

=
1

2
log

1

|I +Q|2
=− log |I +Q|

(43)

Since we want the mutual information to be greater than 0, we can formulate Equation 43 as an108

optimization problem:109

max
Q

MI(T , QX)

s.t. rank(I +Q) = k

Q ∼ I

[I +Q]ii ≥ [I +Q]ij , i ̸= j

∥[I +Q]i∥1 = 1

(44)
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where ∼ means the row equivalence. The key to determining whether the linear transform is positive110

noise or not lies in the matrix of Q. The most important step is to ensure that I +Q is reversible,111

which is |(I +Q)| ≠ 0. For this, we need to investigate what leads I +Q to be rank-deficient. The112

third constraint is to make the trained classifier get enough information about a specific image and113

correctly predict the corresponding label. For example, for an image X1 perturbed by another image114

X2, the classifier obtained dominant information from X1 so that it can predict the label Y1. However,115

if the perturbed image X2 is dominant, the classifier can hardly predict the correct label Y1. The116

fourth constraint is the normalization of latent representations.117

Rank Deficiency Cases To avoid causing a rank deficiency of I + Q, we need to figure out the118

conditions that lead to rank deficiency. Here we show a simple case causing the rank deficiency.119

When the matrix Q is a backward identity matrix [13],120

Qi,j =

{
1, i+ j = k + 1
0, i+ j ̸= k + 1

(45)

i.e.,121

Q =


0 0 ... 0 0 1
0 0 ... 0 1 0
...

...
...

...
...

0 1 ... 0 0 0
1 0 ... 0 0 0

 (46)

then (I +Q) will be:122

I +Q =


1 0 ... 0 0 1
0 1 ... 0 1 0
...

...
...

...
...

0 1 ... 0 1 0
1 0 ... 0 0 1

 (47)

Thus, I + Q will be rank-deficient when Q is a backward identity. In fact, when the following123

constraints are satisfied, the I +Q will be rank-deficient:124

HermiteForm(I +Q)i = 0, ∃i ∈ [1, k] (48)

where index i is the row index, in this paper, the row index starts from 1, and HermiteForm is the125

Hermite normal form [15].126

Full Rank Cases Except for the rank deficiency cases, I +Q has full rank and is reversible. Since Q127

is a row equivalent to the identity matrix, we need to introduce the three types of elementary row128

operations as follows [29].129

▷ 1 Row Swap Exchange rows.130

Row swap here allows exchanging any number of rows. This is slightly different from the131

original one that only allows any two rows exchange since following the original row swap132

will lead to a rank deficiency. When the Q is derived from I with Row Swap, it will break133

the third constraint. Therefore, Row Swap merely is considered harmful and would degrade134

the deep model.135

▷ 2 Scalar Multiplication Multiply any row by a constant β. This breaks the fourth constraint,136

thus degrading the deep models.137

▷ 3 Row Sum Add a multiple of one row to another row. Then the matrix I +Q would be like:138

I +Q =


1

.
.

.
1

+


1

. β
.

.
1



=


2

. β
.

.
2


(49)
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where β can be at a random position beside the diagonal. As we can see from the simple139

example, Row Sum breaks the fourth constraint and make mutual information smaller than140

0.141

From the above discussion, none of the single elementary row operations can guarantee positive142

effects on deep models.143

However, if we combine the elementary row operations, it is possible to make the mutual information144

greater than 0 as well as satisfy the constraints. For example, we combine the Row Swap and Scalar145

Multiplication to generate the Q:146

I +Q =


1

.
.

.
1

+


−0.5 0.5

. .
. .

. 0.5
0.5 −0.5



=


0.5 0.5

. .
. .

. 0.5
0.5 0.5


(50)

In this case, MI(T , QX) > 0 when Q = −0.5I . The constraints are satisfied. This is just a simple147

case that adding linear transform noise that benefits deep models. Actually, there exists a design148

space of Q that within the design space, deep models can reduce task entropy by injecting linear149

transform noise. To this end, we demonstrate that linear transform can be positive noise.150

1.3 Influence of Salt-and-pepper Noise on Task Entropy151

Salt-and-pepper noise is a common type of noise that can occur in images due to various factors, such152

as signal transmission errors, faulty sensors, or other environmental factors [3]. Salt-and-pepper noise153

is often considered to be an independent process because it is a type of random noise that affects154

individual pixels in an image independently of each other [10].155

1.3.1 Add Salt-and-pepper Noise to Original Images156

The task entropy with salt-and-pepper noise is rewritten as:157

H(T ;Xϵ) =−
∑
Y ∈Y

p(Y |Xϵ) log p(Y |Xϵ) (51)

Since ϵ is independent of X and Y , the above equation can be expanded as:158

H(T ;Xϵ) =−
∑
Y ∈Y

p(Y ,Xϵ)

p(X)p(ϵ)
log

p(Y ,Xϵ)

p(X)p(ϵ)

=−
∑
Y ∈Y

p(Y ,X)p(ϵ)

p(X)p(ϵ)
log

p(Y ,X)p(ϵ)

p(X)p(ϵ)

=−
∑
Y ∈Y

p(Y |X) log p(Y |X)

(52)

where159

p(Xϵ,Y ) =p(Xϵ|Y )p(Y )

=p(X|Y )p(ϵ|Y )p(Y )

=p(X|Y )p(ϵ)p(Y )

=p(X,Y )p(ϵ)

(53)

Therefore, the mutual information with salt-and-pepper noise is:160

MI(T , ϵ) = H(T ;X)−H(T ;Xϵ) = 0 (54)
Salt-and-pepper noise can not help reduce the complexity of the task, and therefore, it is considered a161

type of pure detrimental noise.162
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1.3.2 Add Salt-and-pepper Noise in Latent Space163

The mutual information of injecting salt-and-pepper noise can be formulated as:164

MI(T , ϵ)
⋆
=H(Y ;X)−H(X)− (H(Y ;Xϵ)−H(X))

=H(Y ;X)−H(Y ;Xϵ)

=−
∑
X∈X

∑
Y ∈Y

p(X,Y ) log p(X,Y )−
∑
X∈X

∑
Y ∈Y

∑
ϵ∈E

p(Xϵ,Y ) log p(Xϵ,Y )

=E
[
log

1

p(X,Y )

]
− E

[
log

1

p(Xϵ,Y )

]
=E

[
log

1

p(X,Y )

]
− E

[
log

1

p(X,Y )

]
− E

[
log

1

p(ϵ)

]
=− E

[
log

1

p(ϵ)

]
=−H(ϵ)

(55)

The mutual information is smaller than 0, therefore, the salt-and-pepper is a pure detrimental noise to165

the latent representations.166

From the discussion in this section, we can draw conclusions that Linear Transform Noise can be167

positive under certain conditions, while Gaussian Noise and Salt-and-pepper Noise are harmful168

noise. From the above analysis, the conditions that satisfy positive noise are forming a design space.169

Exploring the positive noise space is an important topic for future work.170

2 Optimal Quality Matrix of Linear Transform Noise171

The optimal quality matrix should maximize the mutual information, therefore theoretically define172

the minimized task complexity. The optimization problem as formulated in Equation 44 is:173

max
Q

− log |I +Q|

s.t. rank(I +Q) = k

Q ∼ I

[I +Q]ii ≥ [I +Q]ij , i ̸= j

∥[I +Q]i∥1 = 1

(56)

Maximizing the mutual information is to minimize the determinant of the matrix sum of I and Q. A174

simple but straight way is to design the matrix Q that makes the elements in I +Q equal, i.e.,175

I +Q =

1/k · · · 1/k
... · · ·

...
1/k · · · 1/k

 (57)

The determinant of the above equation is 0, but it breaks the first constraint of rank(I +Q) = k.176

However, by adding a small constant into the diagonal, and minus another constant by other elements,177

we can get:178

I +Q =


1/k + c1 · · · 1/k − c2

1/k − c2
. . .

...
...

. . . 1/k − c2
1/k − c2 · · · 1/k − c2 1/k + c1

 (58)

Under the constraints, we can obtain the two constants that fulfill the requirements:179

c1 =
k − 1

k(k + 1)
, c2 =

1

k(k + 1)
(59)

Therefore, the corresponding Q is:180

Qoptimal = diag

(
1

k + 1
− 1, . . . ,

1

k + 1
− 1

)
+

1

k + 1
1k×k (60)
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Table 1: Details of ResNet Models. The columns "18-layer", "34-layer", "50-layer", and "101-
layer" show the specifications of ResNet-18, ResNet-34, ResNet-50, and ResNet-101, separately.

Layer name Output size 18-layer 34-layer 50-layer 101-layer
conv1 112 × 112 7 × 7, 64, stride 2

3 × 3, max pool, stride 2

conv2_x 56 × 56
[
3× 3 64
3× 3 64

]
× 2

[
3× 3 64
3× 3 64

]
× 3

[
1× 1 64
3× 3 64
1× 1 256

]
× 3

[
1× 1 64
3× 3 64
1× 1 256

]
× 3

conv3_x 28 × 28
[
3× 3 128
3× 3 128

]
× 2

[
3× 3 128
3× 3 128

]
× 4

[
1× 1 128
3× 3 128
1× 1 512

]
× 4

[
1× 1 128
3× 3 128
1× 1 512

]
× 4

conv4_x 14 × 14
[
3× 3 256
3× 3 256

]
× 2

[
3× 3 256
3× 3 256

]
× 6

[
1× 1 256
3× 3 256
1× 1 1024

]
× 6

[
1× 1 256
3× 3 256
1× 1 1024

]
× 23

conv5_x 7 × 7
[
3× 3 512
3× 3 512

]
× 2

[
3× 3 512
3× 3 512

]
× 3

[
1× 1 512
3× 3 512
1× 1 2048

]
× 3

[
1× 1 512
3× 3 512
1× 1 2048

]
× 3

1 × 1 average pool, 1000-d fc, softmax
Params 11M 22M 26M 45M

Table 2: Details of ViT Models. Each row shows the specifications of a kind of ViT model. ViT-T,
ViT-S, ViT-B, and ViT-L represent ViT Tiny, ViT Small, ViT Base, and ViT Large, separately.

ViT Model Layers Hidden size MLP size Heads Params
ViT-T 12 192 768 3 5.7M
ViT-S 12 384 1536 6 22M
ViT-B 12 768 3072 12 86M
ViT-L 12 1024 4096 16 307M

and the corresponding I +Q is:181

I +Q =


2/(k + 1) · · · 1/(k + 1)

1/(k + 1)
. . .

...
...

. . . 1/(k + 1)
1/(k + 1) · · · 1/(k + 1) 2/(k + 1)

 (61)

As a result, the determinant of optimal I +Q can be obtained by following the identical procedure as182

Equation 21:183

|I +Q| = 1

(k + 1)k−1
(62)

The upper boundary of mutual information of linear transform noise is determined:184

MI(T , QX)upper = (k − 1) log (k + 1) (63)

3 Experimental Setting185

We introduce the implementation details in this part. Model details are shown in Table 1 and 2. The186

image resolution is 224× 224 for all the experiments. Pre-trained models on ImageNet are used as187

Table 3: Variants of ViT with different kinds of noise on TinyImageNet. Vanilla means the vanilla
model without noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to
standard normal distribution. Linear transform noise used in this table is designed to be positive
noise. The difference is shown in the bracket.

Model DeiT SwinTransformer BeiT ConViT
Vanilla 85.02 (+0.00) 90.84 (+0.00) 88.64 (+0.00) 90.69 (+0.00)

+ Gaussian Noise 84.70 (-0.32) 90.34 (-0.50) 88.40 (-0.24) 90.40 (-0.29)
+ Linear Transform Noise 86.50 (+1.48) 95.68 (+4.84) 91.78 (+3.14) 93.07 (+2.38)
+ Salt-and-pepper Noise 84.03 (-1.01) 87.12 (-3.72) 42.18 (-46.46) 89.93 (-0.76)

Params. 86M 87M 86M 86M
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Table 4: ResNet with different kinds of noise on TinyImageNet. Vanilla means the vanilla model
without noise. Accuracy is shown in percentage. Gaussian noise used here is subjected to standard
normal distribution. Linear transform noise used in this table is designed to be positive noise. The
difference is shown in the bracket.

Model ResNet-18 ResNet-34 ResNet-50 ResNet-101
Vanilla 64.01 (+0.00) 67.04 (+0.00) 69.47 (+0.00) 70.66 (+0.00)

+ Gaussian Noise 63.23 (-0.78) 65.71 (-1.33) 68.17 (-1.30) 69.13 (-1.53)
+ Linear Transform Noise 73.32 (+9.31) 76.70 (+9.66) 76.88 (+7.41) 77.30 (+6.64)
+ Salt-and-pepper Noise 55.97 (-8.04) 63.52 (-3.52) 49.42 (-20.25) 53.88 (-16.78)

Table 5: ViT with different kinds of noise on TinyImageNet. Vanilla means the vanilla model
without injecting noise. Accuracy is shown in percentage. Gaussian noise used here is subjected
to standard normal distribution. Linear transform noise used in this table is designed to be positive
noise. The difference is shown in the bracket. Note ViT-L is overfitting on TinyImageNet [6]
[30].

Model ViT-T ViT-S ViT-B ViT-L
Vanilla 81.75 (+0.00) 86.78 (+0.00) 90.48 (+0.00) 93.32 (+0.00)

+ Gaussian Noise 80.95 (-0.80) 85.66 (-1.12) 89.61 (-0.87) 92.31 (-1.01)
+ Linear Transform Noise 82.50 (+0.75) 91.62 (+4.84) 94.92 (+4.44) 93.63 (+0.31)
+ Salt-and-pepper Noise 79.34 (-2.41) 84.66 (-2.12) 87.45 (-3.03) 83.48 (-9.84)

the backbone. We train all ResNet and ViT-based models using AdamW optimizer [22]. We set the188

learning rate of each parameter group using a cosine annealing schedule with a minimum of 1e− 7.189

The data augmentation for training only includes the random resized crop and normalization.190

CNN(ResNet) Setting The training epoch is set to 100. We initialized the learning rate as 0 and191

linearly increase it to 0.001 after 10 warmup steps. All the experiments of CNNs are trained on192

a single Tesla V100 GPU with 32 GB. The batch size for ResNet18, ResNet34, ResNet50, and193

ResNet101 are 1024, 512, 256, and 128, respectively.194

ViT and Variants Setting All the experiments of ViT and its variants are trained on a single machine195

with 8 Tesla V100 GPUs. For vanilla ViTs, including ViT-T, ViT-S, ViT-B, and ViT-L, the training196

epoch is set to 50 and the input patch size is 16× 16. We initialized the learning rate as 0 and linearly197

increase it to 0.0001 after 10 warmup steps. We then decrease it by the cosine decay strategy. For198

experiments on the variants of ViT, the training epoch is set to 100 and the learning rate is set to199

0.0005 with 10 warmup steps.200

4 More Experiment Results201

We show more experiment results of injecting positive noise to other variants of the ViT family,202

such as SwinTransformer, DeiT, ConViT, and BeiT, and implement them on the smaller dataset,203

i.e., TinyImageNet. Note, considering limited computational resources, all the experiments in the204

supplementary are on the TinyImageNet. The strength of positive noise is set to 0.3. The noise is205

injected into the last layer.206

4.1 Inject Positive Noise to Variants of ViT207

As demonstrated in the paper, the positive noise can be injected into the ViT family. Therefore, in208

this section, we explore the influence of positive noise on the variants of the ViT. The positive noise209

used here is identical to that in the paper. For this, we comprehensively compare noise injection to210

ConViT [5], BeiT [1], DeiT [33], and Swin Transformer [20], and comparisons results are reported211

in Tabel 3. As expected, these variants of ViTs get benefit from the positive noise. The additional212

four ViT variants are at the base scale, whose parameters are listed in the table’s last row. For a fair213

comparison, we use identical experimental settings for each kind of experiment. For example, we use214

the identical setting for vanilla ConViT, ConViT with different kinds of noise. From the experimental215

results, we can observe that the different variants of ViT benefit from positive noise and significantly216
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Table 6: Comparison with SOTA methods on Office-Home. The best performance is marked in
red.

Method Ar2ClAr2PrAr2ReCl2ArCl2PrCl2RePr2ArPr2ClPr2ReRe2ArRe2ClRe2PrAvg.
ResNet-50[12] 44.9 66.3 74.3 51.8 61.9 63.6 52.4 39.1 71.2 63.8 45.9 77.2 59.4

MinEnt[11] 51.0 71.9 77.1 61.2 69.1 70.1 59.3 48.7 77.0 70.4 53.0 81.0 65.8
SAFN[37] 52.0 71.7 76.3 64.2 69.9 71.9 63.7 51.4 77.1 70.9 57.1 81.5 67.3

CDAN+E[21] 54.6 74.1 78.1 63.0 72.2 74.1 61.6 52.3 79.1 72.3 57.3 82.8 68.5
DCAN[16] 54.5 75.7 81.2 67.4 74.0 76.3 67.4 52.7 80.6 74.1 59.1 83.5 70.5
BNM [4] 56.7 77.5 81.0 67.3 76.3 77.1 65.3 55.1 82.0 73.6 57.0 84.3 71.1

SHOT[18] 57.1 78.1 81.5 68.0 78.2 78.1 67.4 54.9 82.2 73.3 58.8 84.3 71.8
ATDOC-NA[19] 58.3 78.8 82.3 69.4 78.2 78.2 67.1 56.0 82.7 72.0 58.2 85.5 72.2

ViT-B[6] 54.7 83.0 87.2 77.3 83.4 85.6 74.4 50.9 87.2 79.6 54.8 88.8 75.5
TVT-B[39] 74.9 86.8 89.5 82.8 88.0 88.3 79.8 71.9 90.1 85.5 74.6 90.6 83.6

CDTrans-B[38] 68.8 85.0 86.9 81.5 87.1 87.3 79.6 63.3 88.2 82.0 66.0 90.6 80.5
SSRT-B [32] 75.2 89.0 91.1 85.1 88.3 90.0 85.0 74.2 91.3 85.7 78.6 91.8 85.4

ViT-B+PN (ours) 78.3 90.6 91.9 87.8 92.1 91.9 85.8 78.7 93.0 88.6 80.6 93.5 87.7

improve prediction accuracy. The results on different scale datasets and variants of the ViT family217

demonstrate that positive noise can universally improve the model performance by a wide margin.218

4.2 Positive Noise on TinyImageNet219

We also implement experiments of ResNet and ViT on the smaller dataset TinyImageNet, and the220

results are shown in Table 4 and 5. As shown in the tables, positive noise also benefits the deep221

models on the small dataset. From the experiment results of CNN and ViT family on ImageNet and222

TinyImageNet, we can find that the positive noise has better effects on larger datasets than smaller223

ones. This makes sense because as shown in the section on optimal quality matrix, the upper boundary224

of the mutual information is determined by the size, i.e., the number of data samples, of the dataset,225

smaller datasets have less number of data samples, which means the upper boundary of the small226

datasets is lower than the large datasets. Therefore, the positive noise of linear transform noise has227

better influences on large than small datasets.228

4.3 Positive Noise for Domain Adaptation229

Unsupervised domain adaptation (UDA) aims to learn transferable knowledge across the source and230

target domains with different distributions [25] [35]. There are mainly two kinds of deep neural net-231

works for UDA, which are CNN-based and Transformer-based methods [32] [39]. Various techniques232

for UDA are adopted on these backbone architectures. For example, the discrepancy techniques mea-233

sure the distribution divergence between source and target domains [21] [31]. Adversarial adaptation234

discriminates domain-invariant and domain-specific representations by playing an adversarial game235

between the feature extractor and a domain discriminator [9].236

Recently, transformer-based methods achieved SOTA results on UDA, therefore, we evaluate the237

ViT-B with the positive noise on widely used UDA benchmarks. Here the positive noise is the linear238

transform noise identical to that used in the classification task. The positive noise is injected into the239

last layer of the model, the same as the classification task. The datasets include Office Home [34]240

and VisDA2017 [26]. Office-Home[34] has 15,500 images of 65 classes from four domains: Artistic241

(Ar), Clip Art (Cl), Product (Pr), and Real-world (Rw) images. VisDA2017 is a Synthetic-to-Real242

object recognition dataset, with more than 0.2 million images in 12 classes. We use the ViT-B with a243

16× 16 patch size, pre-trained on ImageNet. We use minibatch Stochastic Gradient Descent (SGD)244

optimizer [27] with a momentum of 0.9 as the optimizer. The batch size is set to 32. We initialized245

the learning rate as 0 and linearly warm up to 0.05 after 500 training steps. The results are shown246

in Table 6 and 7. The methods above the black line are based on CNN architecture, while those247

under the black line are developed from the Transformer architecture. The ViT-B with positive noise248

achieves better performance than the existing works. These results show that positive noise can249

improve model generality, therefore, benefit deep models in domain adaptation tasks.250
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Table 7: Comparison with SOTA methods on Visda2017. The best performance is marked in red.
Method plane bcycl bus car horse knife mcycl person plant sktbrd train truck Avg.

ResNet-50[12] 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
DANN[9] 81.9 77.7 82.8 44.3 81.2 29.5 65.1 28.6 51.9 54.6 82.8 7.8 57.4

MinEnt[11] 80.3 75.5 75.8 48.3 77.9 27.3 69.7 40.2 46.5 46.6 79.3 16.0 57.0
SAFN[37] 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1

CDAN+E[21] 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
BNM [4] 89.6 61.5 76.9 55.0 89.3 69.1 81.3 65.5 90.0 47.3 89.1 30.1 70.4
CGDM[7] 93.7 82.7 73.2 68.4 92.9 94.5 88.7 82.1 93.4 82.5 86.8 49.2 82.3
SHOT[18] 94.3 88.5 80.1 57.3 93.1 93.1 80.7 80.3 91.5 89.1 86.3 58.2 82.9
ViT-B[6] 97.7 48.1 86.6 61.6 78.1 63.4 94.7 10.3 87.7 47.7 94.4 35.5 67.1

TVT-B[39] 92.9 85.6 77.5 60.5 93.6 98.2 89.4 76.4 93.6 92.0 91.7 55.7 83.9
CDTrans-B[38] 97.1 90.5 82.4 77.5 96.6 96.1 93.6 88.6 97.9 86.9 90.3 62.8 88.4

SSRT-B [32] 98.9 87.6 89.1 84.8 98.3 98.7 96.3 81.1 94.9 97.9 94.5 43.1 88.8
ViT-B+PN (ours) 98.8 95.5 84.8 73.7 98.5 97.2 95.1 76.5 95.9 98.4 98.3 67.2 90.0
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