
A Appendix

A.1 Petri Nets formalism

Petri Nets (PNs), directional graphs consisting place and transition nodes, model concurrent systems
with synchronous and asynchronous processes. Places are system states; transitions are points in the
process where a user or an agent interacts with the system to perform an action and transition the
system to the next state. Edges determine the dependencies between nodes. At execution time, PNs
have tokens that propagate through the net between places. When a token reaches a place adjacent
to a transition, if the transition is enabled and fires, the token is consumed, and new one is placed
at the successor place. Token placement determines the system state. PNs easily model different
dependencies: sequential, concurrent, choice, fork, join, mutual exclusion etc. In PNs with colors
(CPN) [14] tokens are assigned a value, and Hierarchical PNs [11] replace subnets with transitions.

We focus on tasks that are compositions of subtasks, sets of primitives that need to be completed in
order to proceed to the next stage. A primitive is a (simple or serial) workflow-net with colors and
multiple places/transitions where there is no parallelism (see Figure 2a). They can be combined in
parallel or serial using another transition. The set of colors, C, represents data semantics that agent
needs to place in the environment to complete the task (i.e. flight departure or return dates). We
assume that for each color in C there is at least one primitive associated with it. Let PC be set of all
primitives wrt color set C. For example, primitives are widgets that correspond to different ways of
inputting departure date (as a fill-in field, or a selection from a calendar). Primitives contain an initial
place (a state before the agent manipulates the environment), manipulation sequence, and end place
(a state of the environment post interaction). In the instance of departure field primitive, an initial
place is an empty date field, and the end place is date field with a departure field from the profile
(Figure 2a). In the form filling task, agent needs to complete all the relevant fields before proceeding
to the submit button that presents the next page. To that end, we introduce a gate, a special transition
state that completes a phase and moves the system to the next (e.g. move between the pages in web
navigation, or move between rooms in navigation tasks). We also partition the primitives in active,
which make progress towards task completion, and inactive that are distractions and do not contribute
towards the progress. Learnable compositional tasks, used here, is a family of a directed acyclic
hyper PNs with colors induced with a set of primitives PC and the following properties. PN has
at least one gate. All primitives sampled from PC must be reachable from a gate, but only active
primitives must be predecessors to a gate. A page is a subnet consisting of all primitives leading out
of a gate.

Learnable tasks described above map compositional tasks to POMDP (O,A, T,R) that define RL
navigation agents, and generator architecture which allows the generator to generate tasks only with
the structure defined by PN.

POMDP hidden state is a PN configuration computed as location of all tokens. The POMDP transition
function maps directly to place! transition! next place in PN. Observations consist of the set of
colors, which provide the data for the task and are renderings of all primitives in a current page. Each
transition node in PN task maps to a POMDP action. Available actions directly match to enabled
transitions. Each action is represented as a tuple (element, field) that denotes acting on the element
using the field as an input; i.e. typing the value of the field into the element. Finally, the rewards
associated with the transitions as follows. At every time step a transition fires. Agent receives a small
penalty each timestep to encourage efficient navigation. Emission of new tokens after a successful
firing results in a positive potential-based reward for the agent, normalized over the total number
of transitions. Agents receive a task success reward (1.0 or -1.0) when PN reaches the final state
or times out. As an example, consider a flight booking task where the agent is given an instruction
{"Departure Date": "Friday", Destination Airport: "Los Angeles (LAX)"}. The
agent first picks a field (e.g. destination airport) and finds the corresponding text box in the page; then
the corresponding value (“Los Angeles (LAX)") is typed into the text box. If this value is correct, the
agent receives a positive reward of 1/2 where 2 is the number of fields in the instruction. Learner
RL agent is parameterized by a network ⇡(at|st;⇥i), that maps an observation st to output action
distribution to maximize the cumulative discounted reward, i.e., O =

PT
t=0 �

t
rt where rt is the

reward at time step t, � is a discount factor, and T is the length of an episode.

To create generator the networks fP and fL build the task by sampling next primitive ai directly from
the PN set of primitives, and its page locations bi. Given the structure of the compositional task that

14

Login Address Payment Shopping Flight
CoDE 92% 98% 93% 95% 95%

CoDE (� = �0.2,↵ = 0.8) 86% 100% 90% 96% 87%
CoDE (� = 0.2,↵ = 0.8) 57% 24% 22% 33% 10%

CoDE (� = �0.2,↵ = 0.9) 82% 94% 82% 88% 70%
CoDE (� = 0.2,↵ = 0.9) 50% 28% 43% 25% 15%
CoDE (M = 4,↵ = 0.8) 66% 71% 69% 71% 49%
CoDE (M = 4,↵ = 0.9) 84% 96% 94% 91% 85%
CoDE (M = 6,↵ = 0.8) 62% 47% 65% 39% 27%
CoDE (M = 6,↵ = 0.9) 60% 68% 54% 69% 34%

Table 3: Ablation study of CoDE using different � = � and ↵ hyper-parameters. Using positive
� = � gives more conservative designs, CoDE is robust to different ↵ values, and using larger number
of episodes M gives worse performance.

we used here, location and identity of each primitive is determined with its id, page location, and
time step. Compositional tasks with different topologies will need more sub-networks to determine
the location of the selected primitive.

PNs define the structure of learnable tasks induced with primitives, and map directly to POMDPs.
The PN formalism allows us to reason about and sample related tasks in a principled way. POMDPs
define a learning problem for the RL agent, which acts on the PNs to complete the task. Our goal is
to train a single RL agent that solves the set of POMDPs. In the rest of the paper, generator designs
PN compositional task and the corresponding POMDP, and the learner agent learns to solve it.

A.2 Probability of successfully reaching the goal in a Chain MDP

Consider the following chain MDP (Figure 3) where the agent starts at the leftmost state (s0), can
move right or left, the goal (g = sN) is the rightmost state, and the reward is {+1, -1} depending on
if the goal is reached within N + 2L steps. Let’s assume that initially, p is the probability of taking a
right action. Reaching the goal at state N via random exploration is

Preach(N) =
LX

t=0

P (N+t right action and t left action) (5)

=
LX

t=0

C(N + 2t, t)pN+t(1� p)t (6)

= p
N

LX

t=0

C(N + 2t, t)(p(1� p))t (7)

 p
N (1 + p� p

2)L (8)

where L � N and the last line comes from (1 + x)n =
P

C(n, k)xk, C(n+ 2k, k) � C(n, k) for
every n > 0. In the simplest case where L = 0, this becomes pN .

A.3 Additional Experiments

In Table 3, we present ablation studies for various hyper-parameters in CoDE. We experiment with
positive and negative reward thresholds � = � and different numbers of rollouts M per training
iteration. For each ablation, we also sample ↵ from {0.8, 0.9}.

� = � is an important hyper-parameter that needs careful tuning for the best performance but CoDE
still outperforms baselines for different values. We observe that using a relatively high reward
threshold (0.2) causes the adversary to become more conservative and increase complexity only
when navigators are performing very strongly. Using a larger number of episodes can decrease
performance.

15

Figure 8: Training workflow. The adversary unrolls an environment, adding one element at the time
of each page. That environment is passed on to a population of navigation agents under training. The
navigators collect several episodes in the environment and their returns. The weight of the navigator
agents are updated w.r.t. their returns. And the adversary weights are updated w.r.t. regret estimate
and budget estimate using the best performing agent.

A.4 Training flow

In Figure 8, we illustrate the high level workflow of the CoDE.

A.5 Distribution of Primitives During Training

During training, the distribution of primitives become more skewed towards active primitives early
on (as shown in Figure 6d), but as the environments get more challenging, more passive primitives
are introduced as well (Figure 9). What we observe from the histograms in Figure 9 is that new
primitives are slowly introduced while the ranking of the primitives is also slightly changed.

A.6 Active and Passive Primitive Frequencies

In Figure 10, we present frequencies of active and passive primitives during training. With CoDE
number of both active and passive primitives increase resulting in more complex websites.

A.7 Creating primitives from DOM templates

In Algorithm 2, we outline the process for generating a new primitive from a given DOM HTML
template. A DOM template is a piece of self-contained HTML with variables. We generate new
primitives by assigning values to variables in DOM templates.

A.8 Detailed Results on Test Environments

We detail the aggregated results in Figure 7 and present performance of agents across tasks and
difficulty levels (Figure 11). On the easiest level of tasks, CL achieves slightly lower performance
than CoDE early in the training while as the task difficulty increases, the gap becomes more apparent.

A.9 cMiniGrid Details

In cMiniGrid, we use 5 different subtask primitives (Figure 12): (i) Pickup the key, (ii) Open the door,
(iii) Pickup the ball, (iv) Open the box, and (v) Drop the ball. The adversary designs a grid by selecting

16

(a) Early

(b) Middle

(c) Late

Figure 9: Histograms of primitives from early, middle, and late snapshots of the training.

17

(a) Active Primitives (b) Passive Primitives

Figure 10: Frequencies of active and passive primitives during training.

Algorithm 2: Generating a new primitive from a DOM HTML template.
Input:D = (Dn, De): A DOM template, an HTML sub-tree with elements Dn and edges De

Input:V ⇢ Dn: A list of elements that correspond to variables in Dn

Input:Av,i: A list of variables Av,i for an element v 2 Dn

for v 2 V . Iterate over elements.

do
Flip a coin. If it is heads, Dn � Dn \ {v}. . Add/remove an element.

for v 2 Dn . Iterate over elements.

do
for a 2 Av,i . Iterate over variables for element v.

do
Flip a coin. If it is heads, sample and assign a value for a. . Add/remove an variable.

If there is at least one variable remaining for element v, Dn � Dn \ {v}.

a set of subtasks and cMiniGrid stitches them together according to the global subtask workflow.
In Figure 12, we present the global subtask workflow and a sample design. In this example, the
adversary selects pickup key, pickup ball, and open box subtasks. The sample workflow is generated
from the set of subtasks while respecting the global workflow. Finally, cMiniGrid randomly places
corresponding objects and the agent to empty cells in the grid. We assume that there is only a single
room in the grid and the goal is always included in the set of subtasks. We use the global subtask
workflow as our testbed to evaluate the performance of the population of agents.

Different from designing web pages, the order of subtasks has no effect in cMiniGrid. The adversary
network is similar to the one used in gMiniWoB except that there are no predictions for number of
cells and cell locations as objects are randomly assigned to cells. To train the population of agents, we
use a 3-layer Convolutional Neural Network (CNN) for image and a 2-layer Multi Layer Perceptron
(MLP) for position observations, respectively. A final 2-layer MLP is applied to image and position
encodings to generate a distribution over actions. We use ReLU activations in both networks.

A.10 Comparison of ↵ in budget weighting

In Figure 13, we plot results where CoDE is trained with different ↵ weights. We observe that as
the ↵ increases, we get consistent improvements illustrating the importance of the novel budget loss.
With very small ↵, the performance also degrades over time as the adversary is not able to adapt to
skill level of agents.

A.11 Web Environment Design Primitives

In Table 4, we present the list of design primitives, corresponding templates, types, and descriptions.

18

Design Primitives and Their Descriptions
Design Primitive Design Template Active/Passive Description

addressline1 input active Main address information
addressline2 input active Secondary address information

cabin multi-selection active Multiple cabin options
captcha input active Captcha information

carousel carousel passive Items with images in a carousel with
previous and next buttons

cart cart passive Items in a product cart with promo
code information

cc multi-selection active Multiple credit card type options
cccvv input active Credit card CVV information

ccexpdate input active Credit card expiration date informa-
tion

ccnumber input active Credit card number information
city input active City address information

dealmedia media passive Product media with image, label,
and link

deck deck passive Multiple product decks with image,
label, and link

departureairport input active Departure airport information
departuredate input active Departure date information

destinationairport input active Destination airport information
destinationdate input active Destination date information

firstname input active First name information
flighttype multi-selection active Multiple flight type options

footer footer passive Footer with links and information
forgotpassword link passive Link with forgot password context
forgotusername link passive Link with forgot username context

fullname input active First and last name information
header label passive Generic header

header_login label passive Header for login form
header_select_items label passive Header for item selection

inpgroup input passive Generic input with default search
context

lastname input active Last name information
navbar navigation bar passive A navigation bar with a menu

next_checkout button passive Next button with checkout context
next_login button passive Next button with login context

next_login_page button passive Next button with login context
numberofpeople multi-selection active Multiple number of people options

password input active Password information
rememberme selection active Checkbox with remember me con-

text
state input active State information

stayloggedin selection active Checkbox with stay logged in con-
text

submit button passive Submit button
username input active Username information

zipcode input active Zipcode information

Table 4

19

difficulty level = 1 difficulty level = 2 difficulty level = 3 difficulty level = 4

Lo
gi

n
En

te
rA

dd
re

ss
En

te
rP

ay
m

en
t

Sh
op

pi
ng

Fl
ig

ht
B

oo
ki

ng

Figure 11: Task success rate comparison of CoDE and baseline models on test environments with
increasing difficulty levels. From left to right, columns correspond to increasing difficulty. From top
to bottom, rows correspond to different test environments.

(a) Global Subtask Workflow (b) Sample Design Workflow

Figure 12: The global subtask workflow (a) and a sample design (b). Sample design respects the
dependency structure in the global subtask workflow.

A.12 List of Test Environments

In Figure 15, we present screenshots of the testing environments with the hardest difficulty levels.
While “Login”, “Enter Address”, “Enter Payment”, and “Flight Booking” are single page environ-
ments, “Shopping” is a multi-page environment where an agent needs to first navigate the home page
and then solve “Login” and “Enter Address” tasks.

A.13 Example web page designs

In Figure 16, we present more screenshots of generated pages by the adversary from including
multi-page websites. They cover a very broad spectrum of complexities and DOM tree structures. As
an example, two web pages on the top right both have "City", "CVV", and "Address" elements but
with different orders. This allows the web navigation agents to observe a website in multiple different
ways for better generalization.

20

(b) Difficulty level 1 (c) Difficulty level 2

(d) Difficulty level 3 (e) Difficulty level 4

Figure 13: Aggregated task success rate comparison of CoDE trained with different ↵ weights. CoDE yields
the best performance with a strong ↵ illustrating the importance of the introduced budget mechanism for the
compositional task design in web navigation.

(a) Login (b) Enter Address (c) Enter Payment (d) Flight Booking

Figure 14: Screenshots of single page test environments.

A.14 Implementation Details on Web navigation and adversary networks

Following [17], we design web navigation agent networks as DOM and profile encoders with pairwise
similarity scoring. Each web navigation agent policy network has 104501 parameters.

In Figure 17, we detail the adversary network architecture for a single design action with the
parameters used in this work. We use 100 dimensions for hidden vectors for all dense layers as well
as the LSTM network. Every dense layer is stacked twice and tanh activation function is applied on

21

(a) Home Page (b) Login Page (c) Address Page

Figure 15: Screenshots of multi-page “Shopping” environment. The “Shopping” environment is
composed of a complex home page and additional “Login” and “Enter Address” pages.

22

Figure 16: Screenshots of sample pages generated by the adversary.

23

Observation
 [1 x 100]

LSTM
[2 x 100 x 400]

f0
Initial

observation
encoder

[100 x 100]

fK

[100 x 100]

[100 x 10]Number of
pages

prediction
network

p(number of pages)

fL

[100 x 100]

[100 x 10]
fP

[100 x 100]

[100 x 41]

p(page location) p(primitive)

Page
location

prediction
network

[100 x 100]

Primitive
prediction
network

f I

[10 x 100]

[100 x 50]

Next state input for
LSTM

[41 x 100]

[100 x 50]

concat

Output
encoder
network

Figure 17: Adversary network architecture. Each box corresponds to a dense layer with the shape of
the corresponding linear transformation matrix. Each dense layer also includes a bias vector with the
same size as the columns of the corresponding matrices.

the output of all non-final dense layers. Total number of parameters for the adversary policy network
is 152461.

For both cMiniGrid and gMiniWoB tasks, we use � = � = 0.0 for reward thresholds and M = 2
based on a hyper-parameter search (see Appendix A.3).

A.15 Limitations

One limitation of our method is that the difficulty objective in Eq. 2 is based on the number of
primitives N added to the compositional task. It may not always be the case that difficulty is a direct
function of the number of primitives, and in that case the difficulty objective would not generalize to
those types of tasks. As an alternative incentive, we provide the population-based regret (PopRegret).
Although the empirical results show that optimizing for PopRegret alone learns much more slowly, it
is more environment-agnostic and could be useful for a range of tasks.

A second limitation of our method is that it still requires building an environment-specific rendering
function that can translate the generator’s actions into a feasible compositional task (e.g. by linking
web pages together). We rely on pre-defined primitives for each environment to enable the adversary
to construct the tasks.

A.16 Broader Impact

The immediate application of this work is to train RL agents to complete web navigation tasks for
users. This could free up time for people, because instead of manually clicking through websites
to perform tasks such as flight booking, they could simply issue a language query such as “Book
me a flight to San Francisco on Tuesday". We do not foresee that this application would lead to
job automation, since by its nature web-based form-filling is a task that does not require interacting
with a person. More broadly, enabling RL agents to better perform compositional tasks could be a

24

step towards future applications such as autonomous driving and household robotics. Each of these
applications comes with both potential harms (such as job automation) and benefits (such as increased
efficiency, or improved elder care).

25

	Introduction
	Related work
	Compositional tasks problem definition
	Environment generation with minimax regret analysis
	Compositional Design of Environments (CoDE)
	Benchmark environments
	Evaluations
	Results

	Broader impact, limitations, and future work
	Conclusion
	Appendix
	Petri Nets formalism
	Probability of successfully reaching the goal in a Chain MDP
	Additional Experiments
	Training flow
	Distribution of Primitives During Training
	Active and Passive Primitive Frequencies
	Creating primitives from DOM templates
	Detailed Results on Test Environments
	cMiniGrid Details
	Comparison of in budget weighting
	Web Environment Design Primitives
	List of Test Environments
	Example web page designs
	Implementation Details on Web navigation and adversary networks
	Limitations
	Broader Impact

