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Abstract. Alzheimer’s Disease (AD) is a significant neurodegenerative
disorder. Detecting AD early is essential for effective management and
improving the quality of life for both patients and their families. Recent
advancements in medical imaging technology have introduced neuroimaging-
based methods for early AD diagnosis. However, the challenges in early
AD detection suggest that using a single modality dataset in deep learn-
ing (DL) studies, particularly neuroimaging, might not yield precise pre-
dictions of AD progression compared to integrating data from multiple
imaging modalities. Utilizing information from multi-modal data fusion
can enhance the detection of subtle changes and biomarkers, leading to
more reliable and accurate diagnosis. In our study, we develop an auto-
mated multimodal system that integrates MRI and PET images at an
intermediate fusion level, facilitating the early diagnosis of Alzheimer’s
disease. This fusion approach eliminates the need for extensive prepro-
cessing steps that are typically required in image fusion methods. Our
proposed methodology outperforms previous studies in differentiating be-
tween individuals with Alzheimer’s disease and cognitively normal (CN)
individuals, achieving an AUC score of 97.67% and an accuracy (ACC)
of 95.24%.

Keywords: Alzheimer’s Disease · Neuroimaging Features · 3D Image
Classification.

1 Introduction

Alzheimer’s Disease (AD) is a severe neurodegenerative disease. Early identifica-
tion of AD is crucial for effective management and enhancement of the quality of
life of both patients and their families. Unfortunately, most existing diagnostic
techniques rely on subjective assessments of behavioral and cognitive symptoms,
leading to potential unreliability and misdiagnosis. In recent years, advances in
medical imaging technology have led to the emergence of neuroimaging-based
methods for the early diagnosis of AD. However, these methods often rely on
analyzing a single modality, which may fail to capture the full complexity of the
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disease. Multimodal data fusion has been proposed as a promising approach to
address this limitation by combining the information from different modalities.

In a clinical setting, AD is typically diagnosed by systematically examining
various aspects of a patient’s multiple modalities [23]. These aspects are com-
monly derived from the diverse information sources of patients, including neu-
roimaging data, gene sequence data, profile data, and clinical mental state scale
data. In contrast to the classification of AD based solely on single-modal neu-
roimaging, enhanced performance can be attained through the utilization of mul-
timodal classification, involving the integration of diverse information sources.
Investigating the synergies among various multimodal neuroimaging modalities
significantly contributes to the identification of pathological processes in neu-
rological disorders. This technique has been applied in image classification [25,
29] and image registration [10]. The motivation for engaging in multimodal fu-
sion stems from two primary advantages: first, the potential for more robust
predictions through the observation of the same phenomenon across multiple
modalities [5]; and second, the extraction of complementary information from
diverse modalities to enhance the precision of classification results [4].

The multimodal framework comprises essential components that are primar-
ily structured at three key levels. The initial level, known as the integration
level, involves defining various modalities of data intended for fusion. Thus, at
this stage, a determination is made regarding what should be fused. The subse-
quent level is the fusion methodology, encompassing the approach employed to
combine the identified data guided by the chosen fusion strategy. In the litera-
ture, fusion strategies are classified into three groups: early fusion, also known as
feature-level fusion, is the process of merging multimodal data by concatenating
its features into a vector, which is subsequently inputted into a machine learning
model. Intermediate fusion that integrates feature representations gained from
one modality at the intermediate layers of a neural network with feature rep-
resentations learned from other modalities is referred to as joint fusion. Late
fusion involves decision-level fusion, in which a distinct model is trained for each
modality and the predictions of all models are subsequently integrated to create
a final decision. The final level in the framework is the knowledge level, where
the final results of the diagnosis are obtained.

Numerous studies have focused on the fusion of diverse modalities for AD
diagnosis. Notably, Dwivedi et al. [9], Dong et al. [8], Xu [26], Ning [19], Hao
[12], and Zhang [27] have introduced methodologies primarily focused on neu-
roimaging features, particularly utilizing MRI and PET modalities. Similarly,
Khvostikov et al. [14], Kang [13], and Aderghal et al. [2] have directed their
attention to the fusion of neuroimaging data, specifically from sMRI and DTI
scans. In addition to these, Zuo et al. [30] integrated sMRI, PET, and fMRI
data, while Choi and Jin [7] used flurodeoxyglucose and florbetapir PET. Peng
et al. [21] combined sMRI, PET, and genetic data, and Lee et al. [17] integrated
cognitive performance, demographic information, CSF, and MRI imaging data.

In reviewing these studies, it is evident that the most frequently fused modal-
ities are MRI and PET, indicating their prominent role in multimodal investi-
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gations within this research domain. Various approaches to fusing MRI and
PET volumes have been explored in the literature. For example, Song et al. [22]
introduced a framework for AD diagnosis using a feature-fusion approach to ex-
tract semantic information from 3D MRI and PET volumes. They also proposed
an image fusion method that outperformed their initial approach by reducing
the number of model parameters using a single composite image, although it
required multistep preprocessing. Castellano et al. [6] developed a dual branch,
multimodal diagnostic model for Alzheimer’s Disease using 3D MRI and amyloid
PET scans in parallel, demonstrating that these modalities provide complemen-
tary insights that enhance predictive accuracy. However, limitations include the
selection of only 50 slices from the axial plane, potentially missing comprehen-
sive spatial information, and a loss of temporal resolution in PET scans due to
frame averaging.

Kong et al. [16] similarly employed an image fusion technique, while Venu-
gopalan et al. [24] utilized 3D CNNs to extract features from MRI and PET data,
demonstrating improved performance over traditional fusion methods despite be-
ing limited by dataset sizes. In contrast to CNN-based methods, transformers
leverage the self-attention mechanism to capture long-range dependencies within
multimodal features. Zhang et al. [28] introduced a model comprising three com-
ponents: dual 3D CNN encoders for MRI and PET modalities, a Multimodal
Transformer Encoder, and a classification head. They employed a feature fusion
strategy that utilized a transformer-based cross-attention mechanism to fuse fea-
tures more effectively. Furthermore, Miao et al. [18] utilized a transformer-based
approach for multimodal multiscale fusion networks for the diagnosis of AD by
fusing neuroimaging data.

In this study, we developed an automated multimodal system that integrates
MRI and PET images at an intermediate fusion level, facilitating the early di-
agnosis of AD. This fusion method requires minimal preprocessing compared to
traditional image-fusion techniques. Our approach surpasses previous studies in
distinguishing between AD and CN individuals.

2 Methodology

To preserve modality-specific information for both modalities, we introduced a
heuristic intermediate feature fusion framework that can capture complementary
information from PET and MRI modalities independently. The components of
the proposed feature fusion framework are shown in Figure 1., which illustrates
the intermediate feature fusion approach that preserves modality-specific infor-
mation while enabling the effective integration of MRI and PET features for
classification. The first level of our framework identifies the modalities to be
integrated. We then applied preprocessing steps from a streamlined pipeline to
MRI and PET scans separately, preparing the data for feature extraction. In
the feature extraction step, a 3D pre-trained deep learning model was used as a
feature extractor for each modality. Subsequently, we employed an intermediate
feature fusion approach by leveraging the feature maps extracted from the pre-
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vious step and processing them for input into the classification network. Finally,
a small and simple 3D CNN network was used as a classification network for the
effective classification of the AD stages.

Fig. 1. The proposed intermediate feature fusion framework, highlights the stages of
modality integration, feature extraction, and classification.

2.1 Dataset

Our study concentrated on the ADNI dataset (adni.loni.usc.edu), which is widely
used to address this problem. We specifically implemented our experiments using
structural MRI and 18-fluorodeoxyglucose (FDG)-PET modalities, which are
commonly employed noninvasive methods for capturing the characteristics of
brain tissue. We collected 3D data from subjects who underwent scans using
both of these modalities.

First, we filtered the participants to include only those with data available
on both PET and MRI during the same visit and scanning period. In total,
253 subjects participated in this experiment, contributing to a dataset of 822
scans. We aimed to mitigate the risk of data leakage by considering only the
first or baseline scans for each subject. This decision ensured an equal number
of scans and participants. However, to address the challenge of a small dataset
size owing to the constraint of scans from the same time period, each subject
could have three to four visits in different years or at least a 6-month gap within
the same year. To maintain our principle of avoiding data leakage, we carefully
split the data into 80%, 10%, and 10% for the training, validation, and test sets,
respectively. Ensuring that a subject’s scans do not appear in different sets but
all in one place.

The summary of subjects and scans in the dataset is provided in Table 1.
gives an overview of the participants included in the study, highlighting the
distribution across AD, MCI, and CN groups, which is crucial for understanding
the dataset’s composition.

2.2 Data Preprocessing

Both MRI and FDG-PET images in ADNI underwent various processing stages.
Each modality was pre-processed separately. Specifically, the MRI images under-
went a series of processing steps, including skull stripping, intensity normaliza-
tion, uniform resampling to achieve isotropic resolution, 3D cropping to extract
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Table 1. Summary of participant statistics in the ADNI dataset (MRI and PET).

Class Subjects Scans
AD 43 117
MCI 111 433
CN 99 272
Total Number of scans = 822

only the brain from the black background, resizing all scans to 128×128×128,
and the application of histogram equalization to enhance the contrast. The pre-
processing pipeline proposed in [11] was applied here, except for the histogram
equalization step, which was applied to the scans to enhance the quality and
discriminatory power of the images.

Regarding PET scans preprocessing, the initial FDG-PET scans underwent
the following processing steps to ensure consistency in PET data across various
systems. First, we converted all the PET files into Neuroimaging Informatics
Technology Initiative (NIFTI) format files, as all the processed PET image data
were in the DICOM format. The dicom2nifti Python package was used to apply
the conversion. Similar to MRI, PET images include extensive background re-
gions characterized by zero pixel values beyond the brain tissue. We effectively
reduced these non-essential background regions to decrease the volume of the
input data via 3D cropping, as in the MRI pipeline. Furthermore, we resized
the volume to 128×128×128. Finally, histogram equalization was applied to the
PET scans. Figure 2 outlines the PET image processing pipeline, which includes
essential steps for standardizing PET images and enhancing their quality for the
feature extraction process.

In this study, handling multimodal data posed a significant challenge owing
to the limitations of a small sample size. To address this concern, an essential
component of the proposed methodology is the augmentation step. We employed
various 3D transformations on both MRI and PET data, including 3D random
rotation and flipping.

2.3 Networks Architecture

The effectiveness of the 3D CNN models and transfer learning approach in di-
agnosing AD led us to choose them as the optimal starting point for designing
our multimodal framework. The proposed multimodal model architecture is il-
lustrated in Figure 1. The 3D DenseNet201-based transfer learning model was
used as a deep feature extractor for the processed images of both modalities.
The feature encoder had four dense blocks, and transition layers were employed
between them. After extracting the feature maps from each modality, a con-
catenation layer was added to the model to fuse the intermediate features and
prepare them for the single final network. The last layers in our network form a
small and simple 3D CNN. The layer details of the final classification network
are shown in Figure 1.
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Fig. 2. PET Image Processing Method.

3 Experiments Setup and Results

In this part of our study, our experiments are organized as follows. Initially,
two 3D DenseNet201 models were utilized as feature extractors for both the
MRI and PET images. Subsequently, we loaded the weights of each modality
independently and incorporated them into the fusion phase. Finally, a straight-
forward 3D CNN network is applied to the fused features for AD diagnosis. We
conducted three classification tasks: AD vs CN, AD vs MCI, and MCI vs CN.

One of the challenges highlighted in the literature is the variability in hy-
perparameter choices across different studies and experiments. To address this
issue, we employ an open-source hyperparameter optimization framework called
Optuna [3]. Optuna is compatible with any machine learning or deep learning
framework, offering versatility.

We used Optuna’s automated hyperparameter optimization algorithms to ef-
ficiently explore and evaluate different configurations, facilitating the discovery
of optimal model settings. Specifically, we specified the search space for the hy-
perparameter batch size, learning rate, and input shape by defining their types as
categorical, float, and categorical with possible ranges of [5, 8, 16, 32], [0.000001,
0.0001], and [64, 96, 128], respectively. Following the optimization process, Op-
tuna returns the best set of hyperparameters that leads to optimal performance
according to the defined objective function.

The optimal configuration obtained was [batch size of 16, an input size of
128, and a learning rate of 3.4885205571560794e-05], achieved in trial 9. All
experiments were performed using the TensorFlow deep learning framework [1]
in Python. In the training phase of the feature extractors, we employed 200
epochs with a batch size of 16, aligned with the recommendations derived from
the Optuna optimization process. Nevertheless, when training the final CNN
network, we encountered hardware constraints, compelling us to decrease the
batch size to five. Adam optimizer [15] is employed with a learning rate that
is recommended from Optuna algorithm and a ReduceLROnPlateau strategy is
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utilized here to reduce the learning rate when the validation loss has stopped
improving. According to the final classification network, all the setups were the
same.

In our study, we addressed the challenge of imbalanced classes by imple-
menting oversampling and class-weighting strategies during training of our fu-
sion model. To overcome class imbalance, we applied oversampling to the mi-
nority classes using the resample function. This step ensures that each class is
adequately represented in the training dataset, thereby preventing the model
from being biased towards the majority class. It randomly selects samples with
replacements from the provided class indices, effectively duplicating some sam-
ples to achieve desired oversampling. This is performed until the size of the
minority class matches the size of the majority class, making the class distri-
bution more balanced in the training data. To further mitigate the impact of
class imbalance, we computed class weights using the "compute class weight"
function from sci-kit-learn [20]. It is used to assign different weights to different
classes during model training. In the experiments, the BinaryFocalCrossentropy
loss function was employed, which combines the characteristics of both binary
cross-entropy (BCE) and focal loss. Binary Cross-Entropy (BCE) serves as the
standard loss function for binary classification problems. On the other hand,
focal loss is introduced to address class imbalance in binary classification tasks.
This is achieved by modulating the cross-entropy loss and downweighting the
contribution of well-classified examples where the predicted probability is high.
This adjustment allowed the model to prioritize hard-to-classify examples.

We evaluated the performance of our fusion model across three binary clas-
sification tasks to recognize the three AD stages, as shown in table 2. The Table
presents the performance metrics of our proposed feature fusion method, demon-
strating the model’s ability to differentiate between AD, MCI, and CN with high
accuracy and AUC scores. Notably, the best results were achieved for the AD vs.
CN task, with an AUC score of 97.67%, based on a single inference on a hold-out
test set. It is important to highlight that the lower performance observed in the
AD vs. MCI and MCI vs. CN tasks is expected, as the MCI stage is notoriously
challenging to classify due to its overlapping features with both normal aging
and early Alzheimer’s, which poses a difficulty even for advanced models. Table
3 compares the performance of uni-modal approaches against our proposed fea-
ture fusion method, highlighting the substantial improvements in classification
accuracy and AUC achieved through multimodal integration.

Table 2. Proposed Feature Fusion Results for 3 classification tasks.

Task ACC BA AUC F1-score
AD vs CN 95.24 95.71 97.67 93.33
MCI vs CN 80 77.81 86.08 72.86
AD vs MCI 75.0 74.23 80.54 73.4
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Table 3. The uni-modal and Proposed Feature Fusion Results for AD vs CN task.

Metric MRI PET Fusion method
ACC 68.75 87.5 95.24
AUC 72.5 94.29 97.67
BA 68.67 87.71 95.71
F1-score 67.15 87.67 93.33

4 Discussion and Conclusion

In this study, our goal was to utilize the power of neuroimaging multimodal data
instead of unimodal data. Table 4 benchmarks the performance of our proposed
method against other recent studies, showcasing the superiority of our approach
in terms of accuracy across multiple classification tasks. Our proposed method
outperforms other studies with superior performance for the AD vs. CN task
with ACC= 95.24%.

Regarding data subjects used in this paper, instead of utilizing only the
baseline scans, we obtained three to four scans for each subject in different years
to overcome the small data sizes as much as possible. In addition, we took into
consideration the problem of data leakage that could happen through having
multiple scans for each subject, so, we split the data very carefully to ensure
that the scans of each subject will not appear in different sets. By utilizing
the oversampling and class weighting in our experiments, we got a superior
performance of the model and we can see this effect clearly through investigating
the metrics especially the f1-scores for each class in different tasks.

Integrating 3D augmentation functions significantly improved our experi-
ments and the model’s performance. The process followed these steps: first, we
applied oversampling to all training data within each classification task, balanc-
ing the minor class with the major class after splitting the data into training,
validation, and test sets at the subject level. Next, preprocessing was conducted
on the oversampled data. Finally, the transformation was applied exclusively to
the training data, with an augmentation factor of 5.

As shown in Table 4 there are many studies, some of which follow differ-
ent approaches for fusing MRI and PET volumes. Song et al. [22] introduced
a framework for AD diagnosis with the feature fusion approach (intermediate
fusion) to obtain semantic information from the 3D volumes of MRI and PET.
In addition, they proposed another fusion method by applying an image fusion
process that outperformed the first method. The image fusion approach helps
reduce the number of model parameters, as a single composite image is used in
the network. However, multistep pre-processing is required to achieve this fusion.
Kong et al. [16] presented also an image fusion method which is considered as
the early fusion approach where PET and MRI images are fused and fed into the
network. In addition, Venugopalan et al. [24] suggested that the deep models for
integration also showed improved performance over traditional feature-level and
decision-level integrations. However, their study suffers from a limited dataset
size. Zhang et al. [28] proposed an adversarial learning approach to enhance the
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cross-attention mechanism for more effective feature fusion. They focused on
subjects with complete T1w and FDG-PET images, utilizing feature fusion with
their baseline scans. The effectiveness of their approach was then evaluated on
two tasks: AD vs. CN and pMCI vs. sMCI.

Our methodology preserves modality-specific features using intermediate fea-
ture fusion, avoiding the extensive preprocessing typically required by image fu-
sion techniques, such as volume registration and alignment. This streamlined
approach led to significant improvements, particularly in the AD vs. CN task.
By using a simple CNN for feature extraction and classification, our method out-
performed others, highlighting the effectiveness of maintaining modality-specific
information while minimizing preprocessing complexity

The features extracted from MRI and FDG-PET scans are clinically rele-
vant, capturing critical structural and metabolic information associated with
Alzheimer’s disease. MRI highlights structural atrophy, while FDG-PET re-
veals metabolic changes, offering complementary insights for AD diagnosis. How-
ever, our current work lacks interpretability methods, essential for translating
these features into actionable clinical insights, and faces challenges in multi-
class classification due to the complexity of handling 3D data from MRI and
PET scans, which requires substantial computational resources. Future work
should integrate interpretability techniques to better understand the model’s
decision-making process and enhance its clinical utility. Additionally, incorpo-
rating more rigorous statistical analysis, including reporting central tendencies
for cross-validation runs and conducting statistical tests to confirm the signifi-
cance of observed improvements, is necessary.

In conclusion, our study presented a comprehensive framework for aiding
in the early diagnosis of Alzheimer’s disease through a focus on neuroimag-
ing features. We specifically chose to focus on fusing neuroimaging features by
combining 3D MRI scans with 18-FDG PET scans through the introduction of
an intermediate feature fusion method. Our proposed fusion framework demon-
strated superior results compared to related studies in the literature.

Table 4. Comparative performance of our classifiers and competitors.

AD vs CN MCI vs CN AD vs MCI
Study ACC (%) ACC(%) ACC(%)
Kong et al. (2022) [16] 93.21 86.52 85.63
song et al. (2021) [22](feature fusion) 93.22 82.37 81.00
song et al. (2021) [22](image fusion) 94.11 88.48 84.83
Venugopalan et al. (2021)[24] 86 - -
Castellano et al. (2024)[6] 95.00 - -
Zhang et al. (2023)[28] 92.9 - -
Proposed feature fusion method 95.24 80 75

Disclosure of Interests. The authors have no competing interests to declare that
are relevant to the content of this article.
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