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Abstract

Classic ensembles generalize better than any sin-
gle component model. In contrast, recent empiri-
cal studies find that modern ensembles of (overpa-
rameterized) neural networks may not provide any
inherent generalization advantage over single but
larger neural networks. This paper clarifies how
modern overparameterized ensembles differ from
their classic underparameterized counterparts, us-
ing ensembles of random feature (RF) regressors
as a basis for developing theory. In contrast to the
underparameterized regime, where ensembling
typically induces regularization and increases gen-
eralization, we prove with minimal assumptions
that infinite ensembles of overparameterized RF
regressors become pointwise equivalent to (sin-
gle) infinite-width RF regressors, and finite width
ensembles rapidly converge to single models with
the same parameter budget. These results, which
are exact for ridgeless models and approximate
for small ridge penalties, imply that overparame-
terized ensembles and single large models exhibit
nearly identical generalization. We further charac-
terize the predictive variance amongst ensemble
members, demonstrating that it quantifies the ex-
pected effects of increasing capacity rather than
capturing any conventional notion of uncertainty.
Our results challenge common assumptions about
the advantages of ensembles in overparameter-
ized settings, prompting a reconsideration of how
well intuitions from underparameterized ensem-
bles transfer to deep ensembles and the overpa-
rameterized regime.
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1. Introduction
Historically, most machine learning ensembles aggregated
component models that are simple by today’s standards (e.g.
Hansen & Salamon, 1990; Opitz & Maclin, 1999; Diet-
terich, 2000). Common techniques like bagging (Breiman,
1996), feature selection (Breiman, 2001), random projec-
tions (Kabán, 2014; Thanei et al., 2017), and boosting (Fre-
und, 1995; Chen & Guestrin, 2016) were developed and
analyzed assuming decision trees, least-squares regressors,
and other underparameterized component models incapable
of achieving zero training error.

Researchers and practitioners have now turned to ensem-
bles of overparameterized models, such as neural networks,
which have capacity to memorize entire training datasets.
Motivated by heuristics from classic ensembles (Mentch &
Hooker, 2016), some have argued that ensembles provide
robustness to dataset shift (Lee et al., 2015; Fort et al., 2019)
and that the predictive variance amongst component models
in these so-called deep ensembles is a notion of uncertainty
that can be used on downstream decision-making tasks (Lak-
shminarayanan et al., 2017; Gal et al., 2017; Gustafsson
et al., 2020; Ovadia et al., 2019; Yu et al., 2020).

While few theoretical works analyze modern overparame-
terized ensembles, recent empirical evidence suggests that
intuitions from their underparameterized counterparts do
not hold in this new regime. For example, classic meth-
ods to increase diversity amongst component models, such
as bagging, can be harmful for deep ensembles (Nixon
et al., 2020; Jeffares et al., 2024; Abe et al., 2022a; 2024;
Webb et al., 2021) despite being nearly universally benefi-
cial for underparameterized ensembles. Moreover, while
established underparameterized ensembling techniques of-
fer well-founded quantifications of uncertainty (e.g. Mentch
& Hooker, 2016; Wager et al., 2014), several recent studies
question the reliability of the uncertainty estimates from
deep ensembles (Abe et al., 2022b; Theisen et al., 2024;
Chen et al., 2024).

To address this divergence and verify recent empirical find-
ings, we develop a theoretical characterization of ensembles
in the overparameterized regime, with the goal of contrast-
ing against (traditional) underparameterized ensembles. We
answer the following questions:
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1. Do ensembles of overparameterized models provide
generalization or robustness benefits over a single (very
large) model trained on the same data? Does the capac-
ity of the component models affect this difference?

2. What does the predictive variance of overparameter-
ized ensembles measure, and does it relate to classic
frequentist or Bayesian notions of uncertainty?

To answer these questions, we analyze ensembles of over-
parameterized random feature (RF) linear regressors, a
theoretically-tractable approximation of neural networks.
Unlike prior work on RF models, our analysis makes very
few assumptions about the distribution of random features,
which—as we will show—is crucial for highlighting the
differences between ensemble variance versus more estab-
lished notions of uncertainty. Our analysis focuses on the
practically relevant regime where RF models are trained
with little to no regularization. We verify and contextualize
our theory with experiments on RF and neural networks
ensembles.

1.1. Related Work

Deep ensembles. A primary motivation of this paper is to
understand recent empirical findings about uncertainty quan-
tification afforded by deep ensembles (Lakshminarayanan
et al., 2017). Historically, variance amongst deep ensemble
members has been a proxy for epistemic uncertainty (e.g.
Kendall & Gal, 2017; Gustafsson et al., 2020), i.e., the uncer-
tainty that can be reduced by collecting more data. This view
reflects a classical intuition of ensembles: ignoring effects of
overparameterization and inductive bias, all ensemble mem-
bers should converge to the same prediction in the infinite
data limit, and thus differing predictions suggest a region
of the input space with insufficient data. However, recent
empirical findings challenge this interpretation of ensemble
variance (Abe et al., 2022b; Theisen et al., 2024). Most rel-
evant to our work, Abe et al. (2022b) demonstrate a strong
correlation between ensemble variance and the expected
improvement that results from increasing model capacity.
Specifically, across numerous architectures and datasets,
they demonstrate a strong point-wise correlation between
the predictions of an ensemble (e.g., 4 ResNet-18s) and a sin-
gle larger model (e.g., a WideResNet-18 with 4× the width)
on both in-distribution and out-of-distribution data. The
authors conclude that ensemble variance is more reflective
of sensitivity to model capacity rather than data availability,
a finding with significant implications for decision-making
and robustness. We theoretically verify these findings in
ensembles of overparameterized random feature models.

Random feature models. The connection between in-
finitely wide neural networks and kernel methods, partic-
ularly Gaussian processes, was pioneered by Neal & Neal

(1996) and Williams (1996). Building on these ideas, ran-
dom feature (RF) models were later introduced as a scalable
approximation to kernel machines (Rahimi & Recht, 2007;
2008a;b). RF regressors have seen growing theoretical in-
terest as simplified models of neural networks (e.g. Belkin
et al., 2018; 2019; Jacot et al., 2018; Bartlett et al., 2020;
Mei & Montanari, 2022; Simon et al., 2024). Random fea-
ture models can be interpreted as neural networks where
only the last layer is trained (e.g. Rudi & Rosasco, 2017;
Belkin et al., 2019) or as first-order Taylor approximations
of neural networks (e.g. Jacot et al., 2018).

Underparameterized random feature models and en-
sembles. In this paragraph, we restrict our discussion to
analyses of (ensembles of) underparameterized RF regres-
sors, where the number of random features (i.e., the width)
is assumed to be far fewer than the number of data points.
In the fixed design setting, infinite ensembles of unregular-
ized RF regressors achieve the same generalization error as
ridge regression on the original (unprojected) inputs (Kabán,
2014; Thanei et al., 2017; Bach, 2024b). We provide theoret-
ical analysis in Appx. E that further demonstrates ridge-like
behaviour of underpameterized RF ensembles.

Overparameterized random feature models. Recent
works on RF models have focused on the overparameterized
regime, often using high-dimensional asymptotics to char-
acterize generalization error (Adlam & Pennington, 2020;
Bach, 2024b; Hastie et al., 2022; Loureiro et al., 2022; Mei
& Montanari, 2022; Ruben et al., 2024). Many works rely
on results derived assuming that the the marginal distribu-
tions over the random features can be replaced by moment-
matched Gaussians. While such approximations are well-
founded for asymptotic results (e.g. Goldt et al., 2022; Hu &
Lu, 2022; Montanari & Saeed, 2022; Tao, 2012), we argue
that they may be harmful specifically for an analysis which
aims to characterize the uncertainty properties of ensemble
variance. Assuming Gaussianity results in an ensemble vari-
ance that is proportional to the predictive variance of Gaus-
sian process regression, often held as a gold standard for
uncertainty quantification (Rasmussen & Williams, 2006;
Lee et al., 2018; 2020; Ovadia et al., 2019). In contrast,
our non-Gaussian analysis yields a characterization of en-
semble variance that differs from this conventional notion
of uncertainty, closely matching recent empirical studies of
ensemble variance (Abe et al., 2022b; Theisen et al., 2024).

The benefits of overparameterization and ensembling for
out-of-distribution generalization in random feature mod-
els have been analyzed by Hao et al. (2024), who provide
lower bounds on OOD risk improvements when increasing
capacity or using ensembles. Their work focuses on non-
asymptotic guarantees under specific distributional shifts,
while ours examines the equivalence of ensembles and sin-
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Figure 1: An infinite ensemble of overparameterized RF models is equivalent to a single infinite-width RF model.
(Left) We show a sample of 100 finite-width RF models (blue) with ReLU activations trained on the same N = 6 data
points. Additionally, we show the single infinite-width RF model (pink). The finite-width predictions concentrate around
the infinite-width model. (Right) We again show the single infinite-width RF model (pink) and the “infinite” ensemble
of M = 10, 000 RF models (blue). We note no perceptible difference between the two in this setting, though extreme
numerical conditions can break this equivalence (cf. Fig. 8).

gle large models under minimal assumptions. Concurrent
work by Ruben et al. (2024) also finds RF ensembles of-
fer little advantage over larger single models, though their
analysis uses optimal ridge tuning and Gaussian universality
assumptions. Most related to our work is Jacot et al. (2020),
who analyze the pointwise expectation and variance of ridge-
regularized RF models with Gaussian process (GP) features,
leveraging Gaussianity to simplify their analysis. We go
beyond this prior work by significantly weakening the as-
sumptions on the distribution of random features, enabling
us to characterize differences between ensembles versus
Gaussian models with respect to uncertainty and robustness
properties. Moreover, we provide a finite-sample analy-
sis as well as a characterization of the transition from the
ridgeless to ridge-regularized regimes, which—to the best
of our knowledge—are novel results for overparameterized
RF ensembles.

1.2. Contributions

We consider ensembles of overparameterized RF regressors
in both the ridgeless and small ridge regimes. Unlike prior
work, we make minimal assumptions about the distribution
of the random features and so our results are not restricted
to high-dimensional asymptotics where Gaussian univer-
sality might typically apply. Our results thus distinguish
differences between RF ensembles and more traditional
uncertainty-aware models like Gaussian processes. Con-
cretely, we make the following contributions:

To answer Question 1: we show that the average ridgeless
RF regressor is pointwise equivalent to its corresponding
ridgeless kernel regressor (Theorem 3.2), implying that an
infinite ensemble of overparameterized RF models is exactly

equivalent to a single infinite-width RF model (cf. Fig. 1).
We further show that this equivalence approximately holds
in the small ridge regime (Theorem 3.5). Moreover, we
extend these results to a finite parameter budget, showing
that the functional difference between the parameters of a
larger single model and a finite ensemble, each with the
same total number of parameters, is small with high prob-
ability (see Sec. 3.2). We validate these theoretical results
with supporting experiments on RF and neural network en-
sembles, using synthetic data and the California Housing
dataset (Kelley Pace & Barry, 1997) with various activation
functions (detailed in Appx. A.1 and Appx. B).

To answer Question 2: we show that the predictive variance
in an overparameterized ensemble generally does not have
a frequentist or Bayesian interpretation, unlike uncertainty
quantifications obtained from Gaussian processes. Instead,
we find that the variance measures the expected squared
difference between the predictions from a (finite-width) RF
regressor and its corresponding kernel regressor (i.e., the
infinite-width model) (see Sec. 3.3). Crucially, this finding
relies on our non-Gaussian analysis of RF models.

Altogether, these results support recent empirical findings
that deep ensembles offer few generalization and uncer-
tainty quantification benefits over larger single models (Abe
et al., 2022b; Theisen et al., 2024). Our theory and experi-
ments demonstrate that these phenomena are not specific to
neural networks or Gaussian models but are more general
properties of ensembles in the overparameterized regime.
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2. Setup
We work in a regression setting. The training dataset D =
{(xi, yi)}Ni=1 ∈ (X × R)N is a fixed set of size N . The
vector y ∈ RN is the concatenation of all training responses.

We consider RF models adhering to the form hW(x) =
1√
D

∑D
i=1 ϕ(ωi, x)θi, where θi are learned parameters,

W = {ωi}Di=1 ∈ ΩD are i.i.d. draws from some distribution
π(·), and ϕ : Ω×X → R is a feature extraction function. In
the case of a ReLU-based RF model with p-dimensional in-
puts, we have X = Ω = Rp and ϕ(ωi, x) = max(0, ω⊤

i x).
Though RF models cannot fully explain the behaviour of
neural networks (e.g. Ghorbani et al., 2019; Li et al., 2021;
Pleiss & Cunningham, 2021), they can be a useful proxy
for understanding the effects of overparameterization and
capacity on generalization (e.g. Belkin et al., 2019; Adlam
& Pennington, 2020; Mallinar et al., 2022).

Notation. For any x, x′ ∈ X , we denote the second mo-
ment of the feature extraction function ϕ(ω, ·) as k(x, x′) =
Eω[ϕ(ω, x)ϕ(ω, x

′)], which is a positive definite kernel
function. We use the matrix K := [k(xi, xj)]ij ∈ RN×N

for the kernel function applied to all training data pairs and
the matrix ΦW := [ϕ(ωj , xi)]ij ∈ RN×D for the feature
extraction function applied to all data/feature combinations.
In this notation, [·]ij refers to the entry in the i-th row and
j-th column; if one index is omitted (e.g., [v]j), it refers
to the j-th element of a row- or column-vector, depending
on the context. We drop the subscript W when the set of
random features is clear from context. Furthermore, we
assume that K is invertible.

Throughout our analysis, it will be useful to consider the
“whitened” features W = R−⊤Φ ∈ RN×D where R⊤R =
K is the Cholesky decomposition of the kernel matrix K.
When considering a test point x∗ ∈ X (or equivalently a set
of test points), we extend the K, R, Φ, W notation by[

K [k(xi, x
∗)]i

[k(x∗, xj)]j k(x∗, x∗)

]
=

[
R c
0 r⊥

]⊤[
R c
0 r⊥

]
,[

W
w⊤

⊥

]
=

[
R c
0 r⊥

]−⊤[
Φ

[ϕ(ωi, x
∗)]i

]
. (1)

For fixed training/test points, EW [WW⊤] = D · I ,
Ew⊥ [w

⊤
⊥w⊥] = D and EW,w⊥ [w

⊤
⊥W

⊤] = 0 which can
be directly derived from EΦ[ΦΦ

⊤] = D · K (and similar
properties for ϕ∗, the vector of feature evaluations at x∗, i.e.,
[ϕ(ωj , x

∗)]j). Moreover, the columns [wi;w⊥i] of [W ;w⊥]
are i.i.d. since they are affine transformations of the i.i.d.
columns of Φ.

Overparameterized ridge/ridgeless regressors and en-
sembles. As our focus is the overparameterized regime,
we assume a computational budget of D > N features

(W = {ω1, . . . , ωD} ∼ πD) to construct an RF regres-
sor hW(x) = 1√

D
ϕW(x)⊤θ. We train the regressor pa-

rameters θ to minimize the loss ∥ 1√
D
ΦWθ − y∥22 + λ∥θ∥22

for some ridge parameter λ ≥ 0. When λ > 0 this opti-
mization problem admits the closed-form solution θ

(RR)
W,λ =

1√
D
Φ⊤

W
(

1
D · ΦWΦ⊤

W + λI
)−1

y. Although the learning
problem is underspecified when λ = 0 (i.e. in the ridge-
less case), the implicit bias of (stochastic) gradient de-
scent initialized at zero leads to the minimum norm in-
terpolating solution θ

(LN)
W = 1√

D
(Φ)⊤

(
1
D · ΦΦ⊤)−1

y.

We denote the resulting ridge(less) regressors as
h
(LN)
W (·) := 1√

D

[
ϕ(ωj , ·)

]
j
θ
(LN)
W , and h

(RR)
W,λ (·) :=

1√
D

[
ϕ(ωj , ·)

]
j
θ
(RR)
W,λ .

We also consider ensembles of M ridge(less) regressors. We
assume that each is trained on a different set of i.i.d. D > N
random features W1, . . . ,WM ∼ πD but trained on the
same training set. Thus, the only source of randomness
in these ensembles comes from the random selection of
features Wi, analogous to the standard training procedure
of deep ensembles (Lakshminarayanan et al., 2017). The
ensemble prediction is given by the arithmetic average of
the individual models h̄W1:M

(·) = 1
M

∑M
m=1 h

(LN)
Wm

(·).

Assumptions. A key difference between this paper and
prior literature is the set of assumptions about the random
feature distribution π(·). Most prior works assume that en-
tries in the extended whitened feature matrix [W ;w⊥] are
i.i.d. draws from standard normal distribution (e.g. Adlam
& Pennington, 2020; Jacot et al., 2020; Mei & Montanari,
2022; Simon et al., 2024) implying that ϕ(ωi, ·) are draws
from a Gaussian process with covariance k.1 While Gaus-
sianity is appropriate in high-dimensional asymptotics, it
essentially reduces analysis about the ensemble distribution
to a statement about Gaussian processes. A major focus
of this work is to differentiate ensembles from Gaussian
processes with regards to uncertainty quantification.

Even if we were to relax the Gaussian assumption to a
sub-Gaussian assumption, (as done by Bartlett et al., 2020;
Bach, 2024a), the distribution of random features will still
not accurately reflect common neural network features if
the entries of [W ;w⊥] are assumed to be i.i.d. For instance,
consider ReLU features. If X ⊆ Rp with p < N , the func-
tion max(ω⊤x, 0) can be fully specified by a p-dimensional
random variable. Thus, knowing N evaluations of ω⊤

j xi al-
lows one to infer ωj , making w⊥ deterministic given W . We
instead consider the following less restrictive assumptions
on the distribution of random feature functions π(·):

1If the entries of W,w⊥ are i.i.d. Gaussian, then the ith feature
applied to train/test inputs ([R⊤wi; c

⊤wi+r⊥w⊥i]) is multivariate
Gaussian. This fact holds for any train/test data; thus the ith feature
is a GP by definition (e.g. Rasmussen & Williams, 2006, Ch. 2).
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Figure 2: Overparameterized ensembles are equivalent to a single infinite-width model regardless of feature distri-
bution, while underparameterized ensembles behave differently. We present the average absolute difference between
large ensembles of models with D features versus a single large (or infinite) width model. (Left) RF ensembles with
softplus activations, N = 12, using the California Housing dataset (Kelley Pace & Barry, 1997). (Right) Neural network
ensembles with ReLU activations, N = 12, 000, on the same dataset. The shaded region shows the standard deviation. Both
exhibit a “hockey stick”-like pattern, less pronounced for neural networks, where the difference between underparameterized
ensembles and the large model is substantial, but diminishes for D > N .

Assumption 2.1 (Assumption of subexponentiality).

1. wiw⊥i (where wi is the ith column of W ) is sub-
exponential ∀i ∈ {1, ..., D} and

2.
∑D

i=1 wiw
⊤
i is a.s. positive definite for any D ≥ N .

The first condition of Assumption 2.1 ensures that the
whitened random features do not have excessively “heavy
tails”, meaning their values are well-concentrated. This is
a mild condition, satisfied if the individual feature compo-
nents wi and w⊥i are sub-Gaussian (but potentially depen-
dent), which is true if the features come from activation func-
tions with bounded derivatives and sub-Gaussian weights.
The second condition is equivalent to Φ having almost surely
full rank, which is not true for ReLUs and leaky-ReLUs fea-
tures but which is true for arbitrarily precise approximations
thereof.2 Note we make no assumptions about the mean or
independence of the entries in a given column of [W ;w⊥].

3. Main results
3.1. Equivalence of Infinite Ensembles and the

Infinite-Width Single Models

We at first assume an infinite computational budget and
consider the following two limiting predictors, for which
we will show pointwise equivalence in predictions:

1. An infinite-width least norm predictor, h(LN)
∞ , the a.s.

2E.g., ϕα(ω, x) = 1
α
log(1 + eαω⊤x), α > 0 yields an a.s.

full-rank Φ, and ϕα(ω, x)
α→∞→ ReLU(ω⊤x).

limit of h(LN)
W as |W| = D → ∞

2. An infinite ensemble of finite-width least norm predic-
tors, h̄(LN)

∞ , which is the almost sure limit of h̄(LN)
W1:M

as
M → ∞, with N < D < ∞ remaining constant.

These limiting predictors not only approximate large ensem-
bles and very large single models but also help characterize
the variance and generalization error of finite overparame-
terized ensembles, as discussed in Sec. 3.3.

Define kN (·) : X → RN as the vector of kernel evaluations
with the training data kN (·) =

[
k(x1, ·) · · · k(xN , ·)

]⊤
.

As D → ∞, the minimum norm interpolating model con-
verges pointwise almost surely to the ridgeless kernel re-
gressor by the Strong Law of Large Numbers:

h
(LN)
W (·) a.s.−→ h(LN)

∞ (·), h(LN)
∞ (·) := kN (·)⊤K−1y.

On the other hand, using W and w⊥ as introduced in Sec. 2
we can rewrite the infinite ensemble prediction h̄

(LN)
∞ (x∗)

as (for a derivation of this, see Appx. C.1)

h̄(LN)
∞ (x∗) = h(LN)

∞ (x∗)

+ r⊥EW,w⊥

[
w⊥⊤W⊤ (WW⊤)−1

]
R−⊤y (2)

To prove the pointwise equivalence of the infinite ensem-
ble and infinite-width single model, we need to show that
EW,w⊥ [w

⊤
⊥W

⊤(WW⊤)−1] term in Eq. (2) is zero. Note
that this result trivially holds when the entries of W and w⊥
are i.i.d. and zero mean, as assumed in prior work (e.g. Jacot
et al., 2020). In the following lemma, we show that this
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term is zero even when w⊥ and W are dependent, which—
as described in Sec. 2—is a more realistic assumption for
neural network features:
Lemma 3.1. Under Assumption 2.1, it holds that
EW,w⊥ [w

⊤
⊥W

⊤(WW⊤)−1] = 0.

(Proof: see Appx. C.1.) Combining Lemma 3.1 and Eq. (2)
yields the pointwise equivalence of h̄(LN)

∞ and h
(LN)
∞ :

Theorem 3.2 (Equivalence of infinite-width single model
and infinite ensembles). Under Assumption 2.1, the infi-
nite ensemble of finite-width (but overparameterized) RF
regressors h̄(LN)

∞ is pointwise almost surely equivalent to
the (single) infinite-width RF regressor h(LN)

∞ .

Theorem 3.2 implies that ensembling overparameterized
RF models yields exactly the same predictions as simply
increasing the capacity of a single RF model, regardless of
the RF distribution (see Fig. 1 for a visualization). Note that
this result significantly generalizes prior characterizations
of overparameterized RF models that have relied on Gaus-
sianity assumptions or asymptotic analyses (e.g. Adlam &
Pennington, 2020; Jacot et al., 2020), demonstrating that
the ensemble/infinite-single model equivalence is a funda-
mental property of overparameterization. Consequently, we
should not expect substantial differences in generalization
between large single models and overparameterized ensem-
bles, consistent with recent empirical findings by (Abe et al.,
2022b; 2024; Theisen et al., 2024).

We emphasize a contrast with the underparameterized
regime, where RF ensembles match the generalization error
of kernel ridge regression (see Appx. E or Bach, 2024b,
Sec. 10.2.2). Width controls the implicit ridge parameter
in the underparameterized regime (see Sec. 1.1), whereas
width does not affect the ensemble predictor in the overpa-
rameterized regime. We confirm this difference in Fig. 2
which shows that RF ensembles are close to the ridgeless
kernel regressor when D > N but not when D < N . The
figure also illustrates similar behaviours when comparing
deep ensembles versus single large neural networks.

3.2. Ensembles versus Larger Single Models under a
Finite Parameter Budget

For modest parameter budgets (where our asymptotic re-
sults are not applicable), we compare whether ensembles are
more parameter efficient than larger single models. Specif-
ically, given access to MD random features, we compare
ensembles of M models each of which use D of the fea-
tures (h̄(LN)

W1:M
= 1

M

∑M
m=1 h

(LN)
Wm

) against a single model

that uses all MD features h
(LN)
W∗ (·) (i.e., here |Wm| = D

for all m and |W∗| = MD).

First, we provide a non-asymptotic theorem showing that
h̄
(LN)
W1:M

and h
(LN)
W∗ behave similarly, with their difference

becoming negligible as the number of features per ensemble
member increases (for a formal version, see Appx. C.2).

Theorem 3.3 (Non-asymptotic difference between ensem-
bles and single models (informal version)). Under slightly
stronger assumptions than Assumption 2.1, the L2 difference
between a single neural network with MD features and an
ensemble of M neural networks each with D features is,
with probability 1− δ, upper bounded by:∥∥∥h(LN)

W∗ (·)− h̄
(LN)
W1:M

(·)
∥∥∥2
2
≤ O(

√
log(1/δ)) +O(1/D)

Theorem 3.3 is supported through a standard bias-variance
decomposition of risk:

Eh [L (h)] := Eh[ Ex[(h(x)− E[y | x])2]
= L (Eh [h]) + Ex [Vh (h(x))] . (3)

Since h
(LN)
W∗ and h

(LN)
W1

, . . . , h
(LN)
WM

share the same expected
predictor (as established in Theorem 3.2), the only dif-
ference in the generalization of h

(LN)
W∗ and h̄

(LN)
W1:M

arises
from their variances. Due to the independence between
ensemble members, we have that VW1:M

[h̄
(LN)
W1:M

(x)] =
1
MVWm

[h
(LN)
Wm

(x)]. Moreover, prior works such as (Adlam
& Pennington, 2020) and empirical results (see Appx. A.3)
suggest the variance of a single RF model is inversely pro-
portional to the number of features.3 As a consequence, we
have that VW∗ [h

(LN)
W∗ (x)] : VWm

[h
(LN)
Wm

] ≍ 1/M , further
suggesting that the generalization of ensembles and single
models should be similar under the same parameter budget.

Fig. 3 (left) and Appx. A.3 empirically confirm that RF
ensembles versus single RF models obtain similar general-
ization under fixed feature budgets. Moreover, Fig. 3 (right)
depicts a similar trend for neural networks: deep ensembles
perform roughly the same as larger single models under a
fixed parameter budget. These results show that ensembles
offer no meaningful generalization advantage over (large)
single models and, since the arguments hold for any test dis-
tribution, align with empirical findings (Abe et al., 2022b)
that ensembles provide no additional robustness benefits.

3.3. Implications for Uncertainty Quantification

We now analyze the predictive variance amongst component
models in an overparameterized RF ensemble, a quantity of-
ten used to quantify predictive uncertainty in safety-critical
applications (Lakshminarayanan et al., 2017). Before diving
in to a mathematical characterization, it is worth reflecting
on the qualitative characterization based on our existing
results. Because the expected overparameterized RF model

3This rate is exact for Gaussian features and approximate for
the general case.

6



Theoretical Limitations of Ensembles in the Age of Overparameterization

0 1000 2000 3000 4000 5000 6000 7000
Total number of features used

1.6

1.7

1.8

1.9

2.0

2.1

2.2

Ge
ne

ra
liz

at
io

n 
er

ro
r

Single model

Kernel model

Ensemble

0 1 2 3 4 5 6 7
Total number of parameters 1e6

0.220

0.225

0.230

0.235

0.240

0.245

0.250

Ge
ne

ra
liz

at
io

n 
er

ro
r

Single Large Model

Ensemble

Figure 3: The generalization error of overparameterized ensembles and single large models scales similarly with the
total number of features. We present the generalization error of ensembles compared to single large models of the same
type with equivalent total parameter budgets. Both exhibit nearly identical dependence on the total feature budget. Left: RF
ensembles/models, N = 12, ReLU activations, ensembles of models with D = 200 features. Right: neural networks
ensembles/models, N = 12, 000, ensembles of three-layer MLPs with width 256 in each layer. The shaded region shows
the standard deviation.

is the infinite-width model, predictive variance is equal to

VW [h
(LN)
W (x∗)] = EW

[(
h
(LN)
W (x∗)−

EW [h
(LN)
W (x∗)]

h̄(LN)
∞ (x∗)

)2]
= EW

[(
h
(LN)
W (x∗)− h(LN)

∞ (x∗)
)2]

,

i.e. the expected difference between finite- versus infinite-
width RF model predictions. In other words, ensemble
variance quantifies how predictions change if we increase
model capacity. This characterization, which holds for all
random feature distributions satisfying Assumption 2.1, is
not a standard frequentist or Bayesian notion of uncertainty
except under specific distributional assumptions.

Uncertainty quantification under Gaussian features.
Using Theorem 3.2, the variance of the predictions of a
single RF model with respect to its random features can be
expressed as (see Appx. C.3 for a derivation)

VW [h
(LN)
W (x∗)] = r2⊥

(
y⊤R−1 EW,w⊥

[
(WW⊤)−TWw⊥

· w⊤
⊥W

⊤(WW⊤)−1
]
R−⊤y

)
. (4)

In the special case where W and w⊥ are i.i.d. standard
normal, this expression simplifies to

VW [h
(LN)
W (x∗)] = r2⊥

(
∥h(LN)

∞ ∥2
k

D−N−1

)
, (5)

where ∥h(LN)
∞ ∥2K represents the squared norm of h(LN)

∞ in
the RKHS defined by the kernel k(·, ·). From this equation,
we see that VW [h

(LN)
W (x∗)] only depends on x∗ through the

quantity r2⊥, which by Eq. (1) is equal to

r2⊥ = k(x∗, x∗)− kN (x∗)⊤K−1kN (x∗).

We recognize this quantity as the Gaussian process posterior
variance with prior covariance k(·, ·) (e.g. Rasmussen &
Williams, 2006). Thus, with Gaussian features, ensemble
variance admits a Bayesian interpretation in addition to the
model capacity interpretation. In other words, Gaussianity
assumptions justify the use of overparameterized ensemble
variance in uncertainty quantification tasks.

Uncertainty quantification under general features. Un-
fortunately, this Bayesian interpretation explicitly does not
carry over to the general Assumption 2.1 case. Although
Eq. (4) still holds for general feature distributions, it does
not have a simple expression unless W and w⊥ are inde-
pendent. The variance depends on x∗ through both r2⊥ as
well as through a complicated expectation involving W and
w⊥. In Appx. C.3 we demonstrate with a simple example
that this expectation can indeed depend on x∗, implying that
ensemble variance does not correspond to a scalar multiple
of r2⊥ (i.e. the Gaussian process posterior variance).

In numerical experiments using ReLU random features,
(Fig. 4 and Appx. A.3), we observe significant deviations be-
tween the ensemble variance and the Gaussian process pos-
terior variance, further suggesting that one cannot view en-
sembles through a classic framework of uncertainty. These
discrepancies are particularly important for uncertainty esti-
mation in safety-critical applications or active learning (e.g.
Gal et al., 2017; Beluch et al., 2018), as the only meaningful
interpretation of ensemble variance (the expected change in
prediction from increasing capacity) may not yield reliabil-
ity guarantees or useful exploration-exploitation tradeoffs.
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Figure 4: RF ensemble variance (left) and Bayesian notions of uncertainty (right) can differ significantly. For N = 6
and D = 200 with ReLU activations, the overparameterized ensemble variance (left) and the posterior variance of a Gaussian
process with prior covariance k(·, ·) (right) differ substantially across the input range.

3.4. Equivalence of the Limiting Predictors in the Small
Ridge Regime

Having established the equivalence between infinite ensem-
bles and infinite-width single models in the ridgeless regime,
we now investigate whether this equivalence approximately
persists in the practically relevant setting when a small ridge
regularization parameter λ > 0 is introduced. More gener-
ally, we aim to determine whether the transition from the
ridgeless case to the small ridge regime is smooth. While
h
(RR)
∞,λ , the infinite-width limit of h(RR)

W,λ as |W| = D → ∞,
almost surely converges to the kernel ridge regressor with
ridge λ, the infinite ensemble h̄(RR)

∞,λ := EW [h
(RR)
W,λ (x)] does

not generally maintain pointwise equivalence with h
(RR)
∞,λ .

This divergence occurs even under Gaussianity assumptions
(Jacot et al., 2020). However, we hypothesize that the dif-
ference between these limiting predictors is small when λ
is close to zero, which is common in practical applications.
To analyze this regime, we introduce a minor additional
assumption, which is weaker than Gaussianity:

Assumption 3.4. We assume that EW [
(
ΦWΦ⊤

W
)−1

] is fi-
nite for all |W| = D > N .

Under Assumptions 2.1 and 3.4, we show that the difference
between ridge-regularized ensembles and single models is
Lipschitz-continuous with respect to λ (proof in Appx. D.1).
Theorem 3.5 (The difference between ensembles and large
single models is smooth with respect to λ.). Under Assump-
tions 2.1 and 3.4, the difference |h̄(RR)

∞,λ (x∗)− h
(RR)
∞,λ (x∗)|

between the infinite ensemble and the single infinite-width
model trained with ridge λ ≥ 0 is Lipschitz-continuous in λ.
The Lipschitz constant is independent of x∗ for compact X .

This result is illustrated in Fig. 5, where the terms bound-
ing the difference evolve smoothly with λ. To the best of

our knowledge, this Lipschitz-continuity has not been es-
tablished even under Gaussianity assumptions. We note
that the bound by Jacot et al. (2020, Thm. 4.1), which
characterizes the difference between ridge ensembles and
infinite models with Gaussian random features, becomes
vacuous as λ → 0. Since Theorem 3.2 ensures that
|h̄(RR)

∞,λ (x∗)− h
(RR)
∞,λ (x∗)| = 0 for λ = 0, we can conclude

that the pointwise difference grows at most linearly with λ.
Specifically, we have that∣∣∣h̄(RR)

∞,λ − h
(RR)
∞,λ (x)

∣∣∣ ≤ C · λ,

for some constant C independent of x∗, provided that X
is compact. In practical terms, this result indicates that for
sufficiently small values of λ, the predictions of large ensem-
bles and large single models remain nearly indistinguishable,
reinforcing our findings from the ridgeless regime.

4. Conclusion
This work characterized overparameterized RF ensembles
and contextualized theoretical findings with neural network
experiments. We used weaker distributional assumptions
than prior work to (a) more faithfully approximate real-
world models and (b) highlight differences between ensem-
bles versus models with Gaussian behaviour.

For Question 1, we demonstrated under weak conditions
that infinite ensembles and single infinite-width models are
pointwise equivalent in the ridgeless regime (Theorem 3.2)
and nearly identical with a small ridge (Theorem 3.5), sig-
nificantly expanding on prior results. We further provide a
non-asymptotic characterization, showing that ensembles
and large single models with the same parameter budget
are nearly equivalent (Theorem 3.3). These results verify
recent empirical findings (e.g. Abe et al., 2022b) that much
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Figure 5: Lipschitz continuity of predictions for an infinite ensemble and kernel regressor with respect to the ridge
parameter. (Left) We plot |h̄(RR)

∞,λ (x∗)− h̄
(LS)
∞ (x∗)| as a function of λ for 500 test points. (Right) We show the evolution

of |h(RR)
∞,λ (x∗)− h

(LS)
∞ (x∗)| for the same test points. Both plots use ReLU activation functions and the California Housing

Dataset with N = 12 and D = 200. While the direct difference |h̄(RR)
∞,λ (x∗)−h

(RR)
∞,λ (x∗)| is not shown (for reasons outlined

in Appx. A.4), it is bounded by the sum of the plotted quantities (see Appx. D.1). The evolution of these plotted bounding
terms thus illustrates that this direct difference is Lipschitz continuous in λ (proven in Theorem 3.5) and converges to zero
as λ → 0 (a consequence of Theorem 3.5 and the ridgeless equivalence established in Theorem 3.2).

of the benefit attributed to overparameterized ensembles,
such as improved predictive performance and robustness,
can be explained by their similarity to larger single models.
Notably, our analysis does not rely on Gaussianity, empha-
sizing that these phenomena are fundamental properties
of overparameterized models and not artifacts of specific
feature assumptions.

In contrast, for Question 2, we found that uncertainty inter-
pretations of ensemble variance are contingent on Gaussian-
ity assumptions and fall apart under more general feature
distributions. We characterize ensemble variance as the
expected difference to a single larger model, which only
corresponds to a (scaled) Bayesian notion of uncertainty un-
der strong independence assumptions. With more realistic
feature distributions, the ensemble variance does not corre-
spond to any conventional notion of uncertainty, reinforcing
recent empirical findings on the limitations of ensemble un-
certainty quantification (Abe et al., 2022b). This deviation
supplies further evidence that caution is needed when using
ensembles in safety-critical settings.

Overall, while our results do not contradict the utility of
overparameterized ensembles, they suggest that their ben-
efits may often be explained by their similarity to larger
models and that further research is needed to improve un-
certainty quantification methods.

Impact Statement
This paper presents work whose goal is to advance the field
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Figure 6: True function f(x) = sin(5 · b⊤x) with different random seeds. The blue line shows the true function, while
red dots represent training samples for two distinct random seeds.

In the appendix, we will provide the following additional results:

1. In Appx. A, we will describe our experimental setup for RF models in more detail, difficulties we encountered when
developing the experiments, and provide the results of additional experiments.

2. In Appx. B, we will describe our experimental setup for neural network models in more detail, and provide the results
of additional experiments.

3. In Appx. C we will give the proofs for Secs. 3.1 and 3.3 in the main paper.

4. In Appx. D we will give the proofs for Sec. 3.4 in the main paper.

5. Finally, in Appx. E, we prove (under mild assumptions) that infinite underparameterized RF ensembles are equivalent
to kernel ridge regression under some transformed kernel.

The code to run all our experiments can be found on GitHub: https://github.com/nic-dern/
theoretical-limitations-overparameterized-ensembles. It contains a README.md file that explains
how to set up and run the experiments.

A. Experimental Setup and Additional Results for RF Models
A.1. Experimental Setup

We had two setups using which we performed most of our experiments:

1. We generate training and test points uniformly at random from [−5, 5]d using the function f(x) = sin(5 · b⊤x), where
b is a vector (depending on the random seed) and the noise parameter is σ = 0.05 (we assume Gaussian noise with
mean 0). In this setting, we use N = 6, D = 200, and data from R (i.e., d = 1) if not specified otherwise. You can find
a plot of an example true function in Fig. 6.

2. We use the California Housing (Kelley Pace & Barry, 1997) dataset and sample distinct training and test points from
it (randomly permutating the dataset initially). In this setting, we use N = 12, D = 200 if not differently specified.
The data dimension is R8 here. In contrast to the first setting, we employ a data normalization using a max-min
normalization on the entire dataset since we experimentally found this makes our methods more stable.

We calculate the generalization error using N = 1000 test points in both settings. In the first setting, we calculate the
variance of the predictions of a single model using M = 20, 000 models, while in the second setting, we use M = 4, 000
models. Apart from Fig. 12 where we use 100, 000 samples, “infinite” ensembles consist of M = 10, 000 models.
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Figure 7: Visualization of hyperplanes separating training points. We illustrate how a series of hyperplanes can separate
a growing subset of the training points, leading to a triangular, invertible matrix structure as a subset of Φ.

As distribution τ(·) of the elements ωi ∈ W we always use N (0, I). As activation functions, we use ReLU, the Gaussian
error function, and the softplus function 1

β · log(1 + exp(β · ω⊤x)) with β = 1. For the first two activation functions, there
exist analytically calculatable limiting kernels, the arc-cosine kernel (Cho & Saul, 2009) and the erf-kernel (Williams, 1996).
The closed forms for these are

karc-cosine(x, x
′) =

1

2π
∥x∥∥x′∥ (sin θ + (π − θ) cos θ) ,

where θ = cos−1
(

x⊤x′

∥x∥∥x′∥

)
and

kerf(x, x
′) =

2

π
sin−1

(
2x⊤x′√

(1 + 2∥x∥2)(1 + 2∥x′∥2)

)
.

For the softplus function, we approximate the kernel by estimating the second moment k(x, x′) = E[ϕ(ω, x)ϕ(ω, x′) | x, x′]
of the feature extraction using 107 samples from τ(·). For sampling Gaussian features, we use the same approach as
described by Jacot et al. (2020).

Before training on data, we always append a 1 in the zeroeth-dimension of the data before calculating the dot product with ω
(correspondingly, the dimension of ω is d+ 1) and applying the activation function. In the ridgeless case, we use λ = 10−8

to avoid numerical issues.

A.2. Notes on Stability

During our experiments, we encountered challenges related to both mathematical stability (i.e., matrices being truly singular
rather than nearly singular) and numerical stability. This section outlines these issues and describes the steps we took to
mitigate them.

Most importantly, the matrix ΦWΦ⊤
W is not almost surely invertible when using the ReLU activation function, meaning

that technically, the second condition of our Assumption 2.1 is not fulfilled. In numerical experiments, this results in cases
where (ΦWΦ⊤

W)−1 is nearly singular (though stabilized with λ = 10−8).

On the other hand, when D is sufficiently large relative to N , ΦW is full rank with high probability, which implies that
ΦWΦ⊤

W is invertible with high probability. Given our data transformation of appending a 1 in the zeroeth dimension, one
can see this as there exists a series of (non-zero probability sets of) hyperplanes separating an increasing subset of the
training points, leading to a subset of ΦW ’s columns that form a triangular, invertible matrix (see Fig. 7 for a visualization).
Intuitively, higher data dimensionality and better separability of the points increase the probability of ΦW having full rank.

As an example of the discussed instabilities, see the adversarial scenario shown in Fig. 8, where N = 15 and many training
points are placed very close to each other. In this case, individual RF regressors exhibit relatively high variance output values
(due to numerical instabilities), which are not averaged out in the “infinite” ensemble. Similar issues were also observed
when using the Gaussian error function as the activation function, although they were generally less pronounced.
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Figure 8: An adversarial example where the infinite ensemble of overparameterized RF models is numerically not
equivalent to a single infinite-width RF model. (Left) We show a sample of 100 RF models (blue) with ReLU activations
trained on the same N = 15 densely clustered data points. Additionally, we show the single infinite-width RF model (pink).
(Right) We again show the single infinite-width RF model (blue) and the “infinite” ensemble of M = 10, 000 RF models
(pink). A significant difference between the two models is observed in this adversarial case, indicating instability.
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Figure 9: Using softplus activations instead of ReLU activations reduces instabilities in overparameterized RF
ensembles. The plots show the average absolute difference between the predictions of an infinite ensemble and a single
infinite-width model for varying feature counts D, using N = 12 training samples from the California Housing dataset.
(Left) ReLU activations exhibit significant instability, especially for D > N,D ≈ N , and do not consistently show
the expected pointwise equivalence between the infinite ensemble and the single infinite-width model. (Right) Softplus
activations — as equivalently shown in Fig. 2 — smooth out these instabilities and more consistently show the expected
pointwise equivalence.
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To alleviate these issues, we used the following approaches:

• We used a relatively low number of samples, N = 6 or N = 12, compared to D = 200. As shown in Fig. 1, even with
D = 200, there is still a considerable amount of variance in the RF regressors (i.e., the individual RF regressors are not
yet closely approximating the limiting kernel ridge regressor).

• We appended a 1 in the zeroeth dimension of the data before calculating the dot product with ω.

• We performed additional experiments using the softplus function with β = 1 as a smooth approximation of the ReLU
activation function. This often helped stabilize the numerical computations, as seen in Fig. 9, where we repeated a part
of the experiment from Fig. 2 using the ReLU function as activation function which increased the numerical instability
for low D values.

• We used a ridge term λ = 10−8 in the ridgeless case to stabilize the inversion of ΦWΦ⊤
W .

• We used double precision for all computations and used the torch.linalg.lstsq function with the driver gelsd
(for not-well-conditioned matrices) to solve linear systems.

• We applied max-min normalization to the entire California Housing dataset to improve stability.

A.3. Additional Experiments for the Ridgeless Case

To address the question of whether our findings are specific to normally distributed weights ωi for the feature generating
function, we supplement Fig. 1. Fig. 10 replicates that visualization using weights ωi drawn from a Uniform(-10, 10)
distribution and the softplus activation function. As can be seen, the equivalence between the infinite ensemble of
overparameterized RF models and the single infinite-width RF model remains apparent, and no perceptible difference is
observed.
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(a) Sample of 100 finite-width RF models (Uniform ωi)
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(b) Infinite ensemble (Uniform ωi) vs. infinite-width model

Figure 10: Replication of Fig. 1 with Uniformly Distributed Weights ωi. Similar to Fig. 1, we demonstrate the equivalence
of an infinite ensemble of overparameterized RF models to a single infinite-width RF model. Here, the weights ωi for the
Softplus activation functions are drawn from a Uniform(-10, 10) distribution. (Left) A sample of 100 finite-width RF models
(blue) trained on N = 6 data points, with the single infinite-width RF model (pink). (Right) The infinite-width RF model
(pink) and the “infinite” ensemble of M = 10, 000 RF models (blue). No perceptible difference is observed, mirroring the
findings with normally distributed weights.

Furthermore, to illustrate the convergence of finite ensembles to the infinite-width model prediction as the number of
ensemble members M increases, Fig. 11 expands on the setting of Fig. 1. It shows that even with a small number of
ensemble members, the average prediction begins to concentrate around the infinite-width model, and this concentration
improves as M grows.
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Figure 11: Evolution of Ensemble Predictions with Increasing Number of Members (M ). Following the setup of Fig. 1
(ReLU activations, normally distributed ωi, N = 6 data points), these plots show 10 sample ensemble predictions (blue
lines) for varying ensemble sizes M . The single infinite-width RF model is shown in pink. As M increases, the ensemble
predictions become more concentrated around the infinite-width model.

Additional experiments on the identity of infinite-width single model and infinite ensembles. In Fig. 12, we show that
the term E[w⊤

⊥W
⊤(WW⊤)−1] is consistently zero for both ReLU and the Gaussian error function activations consistetly

with Lemma 3.1. To further demonstrate that this result is not dependent on Gaussian-like weight distributions, Fig. 13
shows this for a softplus activation function, with weights ωi drawn from a Uniform(-10, 10) distribution and a Laplace(0, 1)
distribution. The expectation of the term remains centered at zero, supporting the generality of our theoretical findings.

Additional experiments on the ensemble variance. We observed a different behavior of the RF regressor variance and
r2⊥ as shown in Fig. 4 consistently across different random seeds and dimensions for both ReLU and the Gaussian error
function activations as activation functions. In Fig. 14, we present additional examples for the Gaussian error function in
one dimension and the ReLU activation in two dimensions.

Additional experiment on generalization error and variance scaling. In Fig. 3, the generalization error decay for the
ReLU activation function. To verify the consistency of this trend, we repeated the experiment using the Gaussian error
function and the corresponding erf-kernel. The result is very similar, shown in Fig. 15. Furthermore, this figure shows that
the variance of a single model with MD features decays as ∼ 1

MD , matching the ensemble’s behavior.
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Figure 12: Empirically, the term E[w⊤
⊥W

⊤(WW⊤)−1] is consistently zero. We plot the distribution of the first index of
w⊤

⊥W
⊤(WW⊤)−1, which captures the difference between the infinite-width single model and a smaller overparameterized

RF model (see Eq. (2)). (Left) We use ReLU as activation function, xi ∈ R, and N = 6, D = 200. (Right) We use the
Gaussian Error activation function, the California Housing dataset and N = 12, D = 200.
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(a) Softplus activation, Uniform(-10, 10) weights ωi
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(b) Softplus activation, Laplace(0, 1) weights ωi

Figure 13: Empirical validation of E[w⊤
⊥W

⊤(WW⊤)−1] ≈ 0 for Softplus activation and non-Gaussian weights.
Similar to Fig. 12, we plot the distribution of the first index of w⊤

⊥W
⊤(WW⊤)−1. Both plots use a softplus activation

function, the California Housing dataset, and N = 12, D = 200. (Left) Weights ωi are drawn from a Uniform(-10, 10)
distribution. (Right) Weights ωi are drawn from a Laplace distribution with location 0 and scale 1. In both cases, the
distribution is centered at zero.
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Figure 14: Variance and r2⊥ for different activations and dimensions. (Top left) Variance of RF model predictions across
the input range for D = 200 and N = 6, using the erf activation function. (Top right) Corresponding r2⊥ values across the
input range using the erf kernel. (Bottom left) Variance of RF model predictions across the input range for D = 200, p = 2,
and N = 12, using the ReLU activation function. (Bottom right) Corresponding r2⊥ values across the input range using the
arc-cosine kernel.

103

Number of features of random feature models

10 4

10 3

10 2

10 1

100

Va
r D

[h
(L

N
)

S
()

]

Point 1

Point 2

Point 3

Point 4

Point 5

0 1000 2000 3000 4000 5000 6000 7000
Total number of features used

3.2

3.4

3.6

3.8

Ge
ne

ra
liz

at
io

n 
er

ro
r

Single model

Kernel model

Ensemble

Figure 15: Variance and generalization error scale similarly with the number of features, consistent with Fig. 3. In
(a), the variance of a single model with MD features decays as ∼ 1

MD , matching the ensemble’s behavior. In (b), the
generalization error of an ensemble with M models and D = 200 features shows a similar decay to that of a single model
with MD features. Results use the Gaussian error function, California Housing dataset, and N = 12.
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Figure 16: Empirically, the term EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]

is consistently zero. We show the

empirical distribution of an index of w⊤
⊥W

⊤ (WW⊤ +D · λ ·R−⊤R−1
)−1 ∈ RN , which captures the difference in

predictions between c⊤EW,w⊥

[
WW⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y and a finite-sized overparameterized RF

model (see Eq. (7)). We use λ = 1.0 in both plots. (Left) We use a ReLU activation function, xi ∈ R, and N = 6, D = 200.
(Right) We use the Gaussian Error Function as activation function, the California Housing dataset, and N = 12, D = 200.

A.4. More Experiments for the Ridge Case

Additional experiments for the convergence of the expected value term. In Appx. D, we show that a variant of
Lemma 3.1 also holds in the ridge case. More precisely, we show that

EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
= 0

under Assumption 2.1. We repeated the experiment from Fig. 12 for the ridge case to verify this experimentally. The results
are shown in Fig. 16.

Additional notes. In Fig. 5, we illustrate the Lipschitz continuity of the predictions for an infinite ensemble and a kernel
regressor with respect to the ridge parameter. Rather than directly presenting the difference

∣∣∣h̄(RR)
∞,λ (x∗)− h

(RR)
∞,λ (x∗)

∣∣∣, we

show the evolution of
∣∣∣h̄(RR)

∞,λ (x∗)− h̄
(LS)
∞ (x∗)

∣∣∣ and
∣∣∣h(RR)

∞,λ (x∗)− h
(LS)
∞ (x∗)

∣∣∣. This choice was made because the upper
bound we obtained was not consistently tight for settings with large D. In particular, the pointwise predictions of the infinite
ensemble h̄

(RR)
∞,λ and the single infinite-width model h(RR)

∞,λ trained with ridge λ were already very close for non-zero λ. We
opted to display the upper bounds rather than the direct difference to avoid cherry-picking favorable settings.

Our best explanation for this phenomenon is that infinite ensembles under Assumption 2.1 in the ridge regime often behave
similarly to the single infinite-width model h(RR)

∞,λ̃
with an implicit ridge parameter λ̃, which solves the equation

λ̃ = λ+
λ̃

D

N∑
i=1

di

λ̃+ di

where di are the eigenvalues of the kernel matrix K, as shown by Jacot et al. (2020) under Gaussianity. Intuitively and
empirically, for large D, the implicit ridge λ̃ tends to be very close to the true ridge λ. Using Lemma D.1, this suggests that
for small values of λ, the difference between the infinite ensemble and the infinite-width single model h(RR)

∞,λ with ridge λ is
already minimal before λ approaches zero.

Interestingly, our findings (see Fig. 2) suggest that in the ridgeless case, the similarity to the ridge regressor with the implicit
ridge only holds in the overparameterized regime. Note that this does not violate the results from Jacot et al. (2020) since
the constants in their bounds blow up as λ → 0 in both the underparameterized and overparameterized regimes.
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B. Experimental Setup and Additional Results for Neural Network Models
B.1. Experimental Setup

For all our experiments with neural networks, we used a three-layer MLP with hidden layers of equal width and ReLU
activations. Models were trained for 1000 epochs using SGD with momentum, a learning rate of 0.01, and a momentum
decay of 0.9.

Training was performed on the same set of 12,000 samples from the California Housing dataset, with a validation set of
3,000 samples and a test set of 5,000 samples. Since the number of parameters scales quadratically with the hidden layer
width, the overparameterized regime is reached at a width of approximately 80.

All reported results are based on the best checkpoint selected using validation performance over the 1000 training epochs.

B.2. Additional Results and Limitations of Our Experiments

The results in Fig. 2, which show the average absolute difference in predictions between large ensembles with increasing
number of parameters (D) in the component models and a single large model (with MD parameters), are further supported
by the increasing correlation of residuals between the ensemble and the single model, as shown in Fig. 17. When the
component models of the ensemble become overparameterized, ensemble residuals align better with those of a single
large model, indicating that overparameterized ensembles make more similar errors to a large single model than their
underparameterized counterparts.

Furthermore, the correlations of the residuals of large ensembles of overparameterized models and two large single models
trained with different initializations were comparably high, with the average correlation between an ensemble and a single
model even slightly higher. At the same time, the residual correlation between two large ensembles trained with different
initializations was significantly higher than both of these correlations. The lower variance in predictions across multiple
ensembles compared to a single large model does not align with our theoretical expectations and experiments with random
feature models. We hypothesize that this discrepancy arises from large single models being more unstable to train but did
not investigate this limitation of our experiments in more detail.

C. Proofs for Overparameterized Ridgeless Regression
C.1. Equivalence of Infinite Ensemble and Infinite Single Model

We start by proving the equivalent formulation of the infinite ensemble prediction stated in Eq. (2) using the terms W and
w⊥ as introduced in Sec. 2:

Proof. Defining ϕ∗
W = [ϕ(ωi, x

∗)]i ∈ RD, we have

h̄∞(x∗) = EW

[
1
Dϕ∗

WΦ⊤
W
(

1
D · ΦWΦ⊤

W
)−1
]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
)
W⊤R

(
R⊤WW⊤R

)−1
]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
)
W⊤ (WW⊤)−1

]
R−⊤y

= c⊤R−⊤y + r⊥EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤)−1

]
R−⊤y, (6)

where c,R, r⊥ are as defined in Eq. (1). The left term in Eq. (6) is equal to h
(LN)
∞ (x):

h(LN)
∞ (x∗) =

[
k(xi, x

∗)
]N
i=1

K−1y = c⊤RR−1R−⊤y = c⊤R−⊤y.
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Figure 17: Correlation of residuals between ensembles and a single large model. Scatter plots comparing the residuals
of a single large model with MD parameters to those of ensembles with increasing component parameters (shown by the
the width of the component models): (Top left) 20, (Top right) 50, (Bottom left) 80, and (Bottom right) 110. The correlation
of residuals increases as the component parameter count grows. This suggests that overparameterized ensembles make more
similar errors to a single large model than (strongly) underparameterized ensembles.
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In the case of λ > 0, we can similarly see that

h̄
(RR)
∞,λ (x∗) = EW

[
1
Dϕ∗

WΦ⊤
W
(

1
D · ΦWΦ⊤

W + λI
)−1
]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
)
W⊤R

(
R⊤WW⊤R+D · λ ·R⊤R−⊤R−1R

)−1
]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
)
W⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y

= c⊤EW,w⊥

[
WW⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y

+ r⊥EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y. (7)

Note that the simplification demonstrated in Eq. (2) does not work as nicely in the underparameterized case (D ≤ N ). This
is because the weights, in this case, are given by θ = (Φ⊤

WΦW)−1Φ⊤
Wy, and thus the infinite ensemble prediction expands

as:

h̄∞(x∗) = EW

[
ϕ∗
W
(
Φ⊤

WΦW
)−1

Φ⊤
W

]
y

= EW,w⊥

[(
c⊤W + r⊥w

⊤
⊥
) (

W⊤RR⊤W
)−1

W⊤R
]
y.

Here, RR⊤ lies inside the inverse, preventing the simplifications available in the overparameterized regime.

Next up, we show that the expected value EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤)−1

]
is zero under Assumption 2.1. This directly implies

the pointwise equivalence of the infinite ensemble and the single infinite-width model (see Theorem 3.2).
Lemma 3.1 (Restated). Under Assumption 2.1, it holds that EW,w⊥ [w

⊤
⊥W

⊤(WW⊤)−1] = 0.

Proof. Define A−i = (WW⊤ − wiw
⊤
i ). Note that A−1 is almost surely invertible and positive definite by assumption

Assumption 2.1.

By the Woodbury formula, for almost every WW⊤ we have that

(WW⊤)−1 = (A−i + wiw
⊤
i )

−1 = A−1
−i −

A−1
−iwiw

⊤
i A−1

−i

1+w⊤
i A−1

−iwi
,

which implies that

w⊤
⊥W

⊤(WW⊤)−1 =
∑D

i=1 w⊥iw
⊤
i

(
A−1

−i −
A−1

−iwiw
⊤
i A−1

−i

1+w⊤
i A−1

−iwi

)
=
∑D

i=1 w⊥i

(
w⊤

i
A−1

−i+w⊤
i A−1

−iw
⊤
i A−1

−iwi

1+w⊤
i A−1

−iwi
− w⊤

i A−1
−iwiw

⊤
i A−1

−i

1+w⊤
i A−1

−iwi

)
=
∑D

i=1
w⊥iw

⊤
i

1+w⊤
i A−1

−iwi
A−1

−i .

For any positive definite matrix B ∈ RN×N and any vector v ∈ RN ; ∥v∥ = 1 and any i ∈ {1, ..., D}, we have∣∣∣Ew⊥i,wi

[
w⊥iw

⊤
i

1+w⊤
i Bwi

]
v
∣∣∣ ≤ Ew⊥i,wi

[∣∣∣ w⊥iw
⊤
i v

1+w⊤
i Bwi

∣∣∣]
=

∫ ∞

0

P
[∣∣∣ w⊥iw

⊤
i v

1+w⊤
i Bwi

∣∣∣ ≥ t
]
dt

=

∫ ∞

0

P
[∣∣w⊥iw

⊤
i v
∣∣ ≥ (1 + w⊤

i Bwi

)
t
]
dt

≤
∫ ∞

0

P
[∣∣w⊥iw

⊤
i

∣∣ > t
]
dt

≤
∫ ν2/α

0

2 exp
(
− t2

2ν

)
dt+

∫ ∞

ν2/α

2 exp
(
− t

2α

)
dt, (8)
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where the last inequality is a standard sub-exponential bound applied to w⊥iwi. Note that we here use the fact that
E[w⊥iw

⊤
i ] = 0 and the (ν2, α)-sub-exponentiality of

∣∣w⊥iw
⊤
i

∣∣.
Since the last two integrals in Eq. (8) are finite, the expectation EW,w⊥

[
(w⊥iw

⊤
i )/(1 + w⊤

i Bwi)
]
v is finite. By the weak

law of large numbers, for i.i.d. random variables w(j)
i and w

(j)
⊥i across different j’s, we have

P
[∣∣∣∣ 1

M

∑M
j=1

w
(j)
⊥i (w

(j)
i )⊤v

1+(w
(j)
i )⊤Bw

(j)
i

− EW,w⊥

[
w⊥iw

⊤
i

1+w⊤
i Bwi

]
v

∣∣∣∣ > t

]
→ 0,

for any t > 0 and v ∈ RN such that ∥v∥ = 1 as M → ∞. At the same time, repeating the sub-exponential argument above,
we have that

P
[∣∣∣∣ 1

M

∑M
j=1

w
(j)
⊥i (w

(j)
i )⊤v

1+(w
(j)
i )⊤Bw

(j)
i

∣∣∣∣ > t

]
≤ P

[∣∣∣ 1
M

∑M
i=1 w

(j)
⊥i (w

(j)
i )⊤v

∣∣∣ > t
]

≤
{
2 exp

(
−Mt2

2ν

)
0 < t ≤ ν2/α

2 exp
(
−Mt

2α

)
t > ν2/α

→ 0

as M → ∞. Here we use the property that the sum of M (ν2, α)-sub-exponential random variables is (Mν2, α)-sub-
exponential.

Together, these results imply that EW,w⊥

[
(w⊥iw

⊤
i )/(1 + w⊤

i Bwi)
]
= 0 for every positive definite B. Since the random

matrix A−i is positive semidefinite, almost surely invertible (by the second half of Assumption 2.1), and independent of
wi, w⊥i, we have that

Ew⊥,W

[
w⊥W

⊤ (WW⊤)−1
]
=
∑D

i=1 Ew⊥i,wi,A−i

[
w⊥iw

⊤
i

1+w⊤
i A−1

−iwi
A−1

−i

]
=
∑D

i=1 EA−i

[
Ew⊥i,wi

[
w⊥iw

⊤
i

1+w⊤
i A−1

−iwi

]
A−1

−i

]
= 0.

We remark that this proof equivalently holds for the ridge-regression case, i.e.,
EW,w⊥

[
w⊤

⊥W
⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]

= 0 since the proof does not rely on the specific form of the
matrix A−i other than it being positive definite. Thus by Eq. (7) we directly get that under Assumption 2.1 it holds that

h̄
(RR)
∞,λ (x∗) = c⊤EW,w⊥

[
WW⊤ (WW⊤ +D · λ ·R−⊤R−1

)−1
]
R−⊤y. (9)

C.2. Ensembles versus Larger Single Models under a Finite Feature Budget

We now prove the formal version of Theorem 3.3.

Let’s first restate the informal version of the theorem:
Theorem 3.3 (Restated). Under slightly stronger assumptions than Assumption 2.1, the L2 difference between a single
neural network with MD features and an ensemble of M neural networks each with D features is, with probability 1− δ,
upper bounded by: ∥∥∥h(LN)

W∗ (·)− h̄
(LN)
W1:M

(·)
∥∥∥2
2
≤ O(

√
log(1/δ)) +O(1/D)

We now provide the formal version of this theorem, which uses the following definitions:
Definition C.1. Define Σ : L2(X ) → L2(X ) as Σf =

∫
X k(x, ·)f(x)dµ(x).

Definition C.2. For any fixed set of random features W = {ω1, . . . , ωD} of size D define ϕW(x) =
1√
D
[ϕ(ω1, x), . . . , ϕ(ωD, x)]⊤, and the approximated kernel function k̂W(x, ·) = ϕW(x)⊤ϕW(·). Using this, define

Σ̂W : L2(X ) → L2(X ) as Σ̂Wf =
∫
X k̂W(x, ·)f(x)dµ(x).
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(We will drop the W subscript from ϕW , k̂W , and Σ̂W when the set of random features is clear from context.) Now, we
state the assumptions that we need for the proof which are stronger than the assumptions in Assumption 2.1:

Assumption C.3. We make the following assumptions:

• The columns of Φ are subgaussian with constant L, i.e. P(|Xv| ≥ t) ≤ 2 exp
(
−t2/L2

)
for all v ∈ RD with |v| ≤ 1.

• For any δ1 ∈ (0, 1) there exists a C < ∞ and D0(δ1) such that for all D ≥ D0(δ1) it holds that
∥∥∥Σ̂− Σ

∥∥∥ ≤ C with
probability ≥ 1− δ1.

• The feature extraction ϕ(ω, ·) is almost surely square integrable over the data probability measure (i.e. Ex[ϕ(ω, ·)2] <
∞).

Theorem C.4 (Non-asymptotic bound on the L2 difference between ensembles and single models (informal version)).
Under Assumption C.3, there exist constants c1, c2, c3 such that for any δ1 ∈ (0, 1) and all M,N,D with M ·D ≥ D0(δ1)
and defining λmin := min(1, λmin(K)) it holds:

If λmin

2·L2 − c1
L2

{√
N
D + N

D

}
> 0 and δ2 = M · c2e−c3Dmin(κ2j ,κ

2
2j) + c2e

−c3MDmin(κ1,κ
2
1) < 1 − δ1, where κ1 =

max(0, λmin

2·L2 − c1
L2

{√
N

M ·D + N
M ·D

}
) and κ2j = max(0, λmin

2·L2 − c1
L2

{√
N
D + N

D

}
), then for any δ3 ∈ (0, 1− δ1 − δ2) it

holds with probability at least 1− δ1 − δ2 − δ3 that the L2-norm of the difference between the larger, but finite-width single
model and the finite ensemble with the same features is bounded by∥∥∥h(LN)

W (·)− h̄W1,M
(·)
∥∥∥2
2
≤ ϵ+O(1/D)

where ϵ =

√
1

λmin
log
(

2
δ3

)
.

Proof.

First step: Expressing as the difference in their parameter norms.

In the following, we define ϕ(x) = 1√
MD

[ϕ(ω1, x), . . . , ϕ(ωMD, x)]⊤. Using this definition we get that with

θ(ENS) = 1√
M
[θ

(ENS)
1 , . . . , θ

(ENS)
M ]⊤, where θ

(ENS)
j are the parameters of the j-th component model, we get

ϕ(x)⊤θ(ENS) = 1
M

∑M
j=1

1√
D
[ϕ(ω(j−1)D, x), . . . , ϕ(ωjD, x)]⊤θ

(ENS)
j . At the same time, we can write ϕ(x)⊤θ(Single) =

1√
MD

[ϕ(ω1, x), . . . , ϕ(ωMD, x)]⊤θ(Single).

Using an equivalence of norm argument, we get Ex

[(
ϕ(x)⊤θ(ENS) − ϕ(x)⊤θ(Single )

)2] ≤ Cupper
∥∥θ(ENS) − θ(Single )

∥∥2
2
.

More precisely, for this argument, Cupper will be the operator norm of the matrix Ex[ϕ(x)ϕ(x)
⊤]. Since this is a positive

semi-definite matrix, the operator norm is equal to its largest eigenvalue.

We can now define the operator T : L2(X ) → RD, T (f) =
∫
X ϕ(x)f(x)dµ(x). The adjoint operator is T ∗ : RD →

L2(X ), T ∗(y) =
∑D

i=1 yiϕ(ωi, ·).
Let’s see how TT ∗ acts on a vector v ∈ RD:

TT ∗v = T (T ∗v)

= T
(
ϕ(·)⊤v

)
=

∫
X
ϕ(x)ϕ(·)⊤vdµ(x)

=

∫
X
ϕ(x)ϕ(·)⊤dµ(x)v

= Ex[ϕ(x)ϕ(x)
⊤]v
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Thus, we have that TT ∗ = Ex[ϕ(x)ϕ(x)
⊤]. We know from linear algebra that TT ∗ has the same eigenvalues as T ∗T .

Thus, it is enough to bound the eigenvalues of Σ̂ = T ∗T .

To bound the eigenvalues of Σ̂, we bound its difference in operator norm to the equivalent operator for the true kernel K,
i.e. Σf =

∫
X k(x, ·)f(x)dµ(x). Since we assume that for MD > D0(δ1) we have that

∥∥∥Σ̂− Σ
∥∥∥ ≤ C with probability

≥ 1 − δ1, we get that
∥∥∥Σ̂∥∥∥ ≤ ∥Σ∥ + C with probability ≥ 1 − δ1. This implies that with probability ≥ 1 − δ1 Cupper is

bounded by a constant independent of M and D.

Second step: Using least norm geometry.

By least norm geometry, we get that
∥∥θ(ENS) − θ(Single )

∥∥2
2
=
∥∥θ(ENS)

∥∥2
2
−
∥∥θ(Single )

∥∥2
2
. Furthermore, we directly get that

the norm of the ensemble as the sum of the norms of the component models, i.e.
∥∥θ(ENS)

∥∥2
2
= 1

M

∑M
j=1

∥∥∥θ(ENS)
j

∥∥∥2
2
.

Third step: bound the probability that all empirical kernel inverses admit a Taylor expansion and have bounded lower
eigenvalues.

We now want to bound probability that the eigenvalues of 1
M∗DΦΦT −K—i.e. the difference between the empirical kernel

matrix and the true kernel matrix—are bigger than λmin

2 . If the eigenvalues are less than λmin

2 , then

1. the inverse of the matrix K−1/2 1
M∗DΦΦTK−1/2 admits a Taylor expansion and

2. the minimum eigenvalue of ( 1
MDΦΦT )−1 will be lower bounded.

We use the following concentration inequality to bound this probability:

Lemma C.5 (Wainwright (2019), Thm. 6.5). Let x1, . . . , xn ∈ Rd be i.i.d. L-subgaussian random variables with
A = E[xix

⊤
i ] ∈ Rd×d. Then for any δ ≥ 0, there exists some c1, c2, c3 > 0 so that

P

[
∥ 1
n

∑n
i=1 xix

T
i −A∥2

L2
≥ c1

{√
d

n
+

d

n

}
+ δ

]
≤ c2e

−c3nmin(δ,δ2)

Applying Lemma C.5 to the case of the random matrix 1
M ·DΦΦT −K, we have that n = M ∗D, d = N , A = K and xi is

the i-th column of Φ. Furthermore, we want to bound the probability that
∥ 1

M·DΦΦT−K∥
2

L2 is bigger than λmin

2·L2 . Thus, we

set κ1 = max(0, λmin

2·L2 − c1
L2

{√
N

M ·D + N
M ·D

}
) and get that if λmin

2·L2 − c1
L2

{√
N

M ·D + N
M ·D

}
> 0, then the probability that

the eigenvalues of the difference are bigger than λmin

2 is at most c2e−c3M ·Dmin(κ1,κ
2
1).

Similarly, we get that the probability that the eigenvalues of the difference for a single component model ( 1
DΦjΦ

T
j −K)

are bigger than λmin

2 is bounded by c2e
−c3Dmin(κ2j ,κ

2
2j), where we define κ2j = max(0, λmin

2∗L2 − c1
L2

{√
N
D + N

D

}
). The

probability that the eigenvalues of any of the component models are bigger than λmin

2 is then by a union bound bounded by

M · c2e−c3Dmin(κ2j ,κ
2
2j) (again if λmin

2·L2 − c1
L2

{√
N
D + N

D

}
> 0).

We now define δ2 = M · c2e−c3Dmin(κ2j ,κ
2
2j) + c2e

−c3Dmin(κ1,κ
2
1).

Fourth step: assume that all empirical kernel matrices come from a truncated distribution.

Let π̃D and π̃MD be the distributions over 1
DΦiΦ

⊤
i and 1

MDΦΦ⊤ matrices conditioned on the fact that their inverse matrices
admit a Taylor expansion. With probability 1− δ2, the 1

DΦiΦ
⊤
i matrices that form our ensemble and single model admit

Taylor expansions. In other words, with probability 1− δ2 we can view the 1
DΦiΦ

⊤
i matrices as i.i.d. draws from π̃D and

we can view 1
MDΦΦ⊤ as a draw from π̃D.

Fifth step: bound the difference between the expected ensemble and single model inverses under the truncated distribution.
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Under π̃D, we have that:

Eπ̃D

[
K1/2( 1

DΦiΦ
⊤
i )

−1K1/2
]
= Eπ̃D

[(
I −

(
I −K−1/2( 1

DΦiΦ
⊤
i )K

−1/2
))−1

]
=

∞∑
i=0

Eπ̃D

[(
I −K−1/2( 1

DΦiΦ
⊤
i )K

−1/2
)i]

The zero-th term in the Taylor expansion is I . Recognizing that ( 1
DΦiΦ

⊤
i ) is a sample mean random feature outer products

with expectation K, the first term in the Taylor expansion is 0. Using formula (15) from (Angelova, 2012) we find that the
second term is equal to 1

DM2 for some constant M2 an all other terms are O( 1
D2 ). Thus:

Eπ̃D

[
K1/2( 1

DΦiΦ
⊤
i )

−1K1/2
]
= I +

1

D
M2 +O

(
1

D2

)
.

Following the same argument we have that

Eπ̃MD

[
K1/2( 1

MDΦΦ⊤)−1K1/2
]
= I +

1

MD
M2 +O

(
1

(MD)2

)
.

Thus,

1

M

M∑
i=1

Eπ̃D

[
y⊤
(

1

D
ΦiΦ

⊤
i

)−1

y

]
− Eπ̃MD

[
y⊤
(

1

MD
ΦΦ⊤

)−1

y

]

= y⊤K−1/2

([
I +

1

D
M2 +O

(
1

D2

)]
−
[
I +

1

MD
M2 +O

(
1

(MD)2

)])
K−1/2y

=
(
y⊤K−1y

)
O

(
1

D

)

Sixth step: Using a Hoeffding bound.

Lastly, we bound the difference between y( 1
MDΦΦ⊤)−1y and its expected value (over the truncated distribution). Equiva-

lently, we have to do this for the ensemble terms 1
M

∑M
i=1 y

⊤( 1
DΦiΦ

⊤
i )

−1y.

We first employ that we now that the operator norm of the difference 1
MDΦΦ⊤ −K is bounded by λmin

2 , implying that the
eigenvalues of 1

MDΦΦ⊤ are bounded by λmin

2 from below.

Thus, we have that 0 ≤ y⊤( 1
MDΦΦ⊤)−1y ≤ 2

λmin
· ∥y∥2 is bounded a.s. under the truncated distribution. Equivalently,

this holds for the ensemble terms.

To bound the difference between the ensemble and single model, we can now employ a Hoeffding bound. This gives us that

P

[∣∣∣∣∣ 1M
M∑
i=1

y⊤( 1
DΦiΦ

⊤
i )

−1y − Eπ̃D

[
y⊤( 1

DΦiΦ
⊤
i )

−1y
]∣∣∣∣∣ ≥ ϵ

]
≤ exp

(
−Mϵ2λmin

)
and for the single model term:

P
[∣∣y⊤( 1

MDΦΦ⊤)−1y − Eπ̃MD

[
y⊤( 1

MDΦΦ⊤)−1y
]∣∣ ≥ ϵ

]
≤ exp

(
−ϵ2λmin

)
Setting exp

(
−Mϵ2λmin

)
+ exp

(
−ϵ2λmin

)
≤ δ3 := 2 · exp

(
−ϵ2λmin

)
and solving for ϵ gives us that:

ϵ =

√
1

λmin
log

(
2

δ3

)
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Seventh step: Taking everything together.

We can now employ a union bound to get that the probability that all three conditions are satisfied is at least 1− δ1 − δ2 − δ3
and thus we get the bound on the difference between the ensemble and single model in L2 norm.

Note that the fact that we worked under a truncated distribution in the previous step is not a problem, since the corresponding
events have a lower probability under the the non-truncated distribution as long as we have already assumed the exclusion of
all events where the difference between the empirical kernel matrix and the true kernel matrix is bigger than λmin

2 .

C.3. Variance of Ensemble Predictions

In the next step, we show the formula for the variance of a single model prediction under Gaussianity. Note that one could
also get this result by slightly extending proofs by (Jacot et al., 2020).

Lemma C.6 (Variance of single model predictions). Under Gaussianity and assuming D > N + 1, the variance of single
model prediction at a test point x∗ is given by

VW [h
(LN)
W (x∗)] = r2⊥

∥h(LN)
∞ ∥2H

D −N − 1
, (10)

where ∥ · ∥H is norm defined by the RKHS associated with kernel k(·, ·).

Proof. We start by writing down the variance of the prediction of a single model:

VW [h
(LN)
W (x∗)] = EW [h

(LN)
W (x∗)2]− EW [h

(LN)
W (x∗)]2

Using Theorem 3.2, the definition of the prediction of a single model and the definition of W and w⊥, we can expand this
expression:

= EW [ϕ∗
WΦ⊤

W(ΦWΦ⊤
W)−1yy⊤(ΦWΦ⊤

W)−⊤ΦWϕ∗⊤
W ]− (h(LN)

∞ (x∗))2

= EW,w⊥ [(r⊥w
⊤
⊥ + c⊤W )W⊤R

(
R⊤WW⊤R

)−1
yy⊤

(
R⊤WW⊤R

)−⊤
R⊤W (r⊥w

⊤
⊥ + c⊤W )⊤]

− (h(LN)
∞ (x))2

= EW,w⊥ [(r⊥w
⊤
⊥ + c⊤W )W⊤ (WW⊤)−1

R−⊤yy⊤R−1
(
WW⊤)−⊤

W (r⊥w
⊤
⊥ + c⊤W )⊤]

− (h(LN)
∞ (x))2

= (c⊤R−⊤y)2 − (h(LN)
∞ (x))2

+ 2 · r⊤⊥EW,w⊥ [w
⊤
⊥W

⊤(WW⊤)−1]R−⊤yy⊤R−1c

+ r2⊥EW,w⊥ [w
⊤
⊥W

⊤(WW⊤)−1R−⊤yy⊤R−1(WW⊤)−TWw⊥]

Now we can see that the first two terms cancel out (since h
(LN)
∞ (x) = c⊤R−⊤y) and the third term is zero by Lemma 3.1.

We are left with the fourth term, which we can slightly rewrite:

VW [h
(LN)
W (x∗)] = r2⊥EW,w⊥ [w

⊤
⊥W

⊤(WW⊤)−1R−⊤yy⊤R−1(WW⊤)−TWw⊥]

= r2⊥y
⊤R−1EW,w⊥ [(WW⊤)−TWw⊥w

⊤
⊥W

⊤(WW⊤)−1]R−⊤y (11)

Using the tower rule for conditional expectations, we have:

VW [h
(LN)
W (x)] = r2⊥y

⊤R−1EW,w⊥ [(WW⊤)−TWw⊥w
⊤
⊥W

⊤(WW⊤)−1]R−⊤y

= r2⊥y
⊤R−1EW [(WW⊤)−TWEw⊥|W [w⊥w

⊤
⊥|W ]W⊤(WW⊤)−1]R−⊤y

Since the Gaussianity assumption implies W and w⊥ are independent, we get:

VW [h
(LN)
W (x)] = r2⊥y

⊤R−1EW [(WW⊤)−TWEw⊥ [w⊥w
⊤
⊥]W

⊤(WW⊤)−1]R−⊤y
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Moreover, since by Gaussianity w⊥ and W are multivariate Gaussians with the identity matrix as covariance, we get (via
the expected value of a Wishart and an inverse Wishart distribution; note that for getting this expected value, we need to
assume that D > N + 1):

VW [h
(LN)
W (x)] = r2⊥y

⊤R−1EW [(WW⊤)−T (WW⊤)(WW⊤)−1]R−⊤y

= r2⊥y
⊤R−1EW [(WW⊤)−T ]R−⊤y

= r2⊥
y⊤R−1R−⊤y

D−N−1

= r2⊥
y⊤K−1y
D−N−1 .

Recognizing that y⊤K−1y = ∥h(LN)
∞ ∥2H (e.g. Wainwright, 2019, Ch. 12) completes the proof.

An equivalent argument does not work under the more general Assumption 2.1 since w⊥ and W are not necessarily
independent. Even in the case of independence, EW [(WW⊤)−1] might not be known.

Counterexample for subexponential case. We now give an explicit counterexample showing that when only assuming
uncorrelatedness between W and w⊥ the term

E := EW,w⊥ [(WW⊤)−TWw⊥w
⊤
⊥W

⊤(WW⊤)−1]

from Eq. (11) depends on x∗ implying that the variance does not only depend on x∗ via r2⊥.

Let us assume N = D = 1 and let W be uniformly distributed across the set
{
− 4√

12.5
,− 3√

12.5
, 3√

12.5
, 4√

12.5

}
. Then we

have E[W ] = 0 and E[W 2] = 1
2 · 16

12.5 + 1
2 · 9

12.5 = 1.

Now consider an x∗ that produces a w⊥ so that w⊥ =
√
2 when W =

{
− 3√

12.5
, 3√

12.5

}
and w⊥ = 0 otherwise. Then we

have E[w⊤
⊥W ] = 0 and E[w2

⊥] = 1. The value of E is now 12.5
9 .

Furthermore, consider an x∗ that produces a w⊥ so that w⊥ =
√
2 when W =

{
− 4√

12.5
, 4√

12.5

}
and w⊥ = 0 otherwise.

Then we have E[w⊤
⊥W ] = 0 and E[w2

⊥] = 1. The value of E is now 12.5
16 .

D. Proofs for Overparameterized Ridge Regression
D.1. Difference between the Infinite Ensemble and Infinite Single Model

We begin with a lemma, which shows that the prediction of kernel regressors is Lipschitz-continuous in λ for any x∗ and
λ ≥ 0. We will denote the kernel ridge regressor with regularization parameter λ as h(RR)

∞,λ , as introduced in Sec. 3.4.

Lemma D.1 (Bound on the difference between the kernel ridge regressors). Let λ, λ′ ≥ 0 be two regularization parameters.
Then, for any x∗ ∈ X it holds that:

|h(RR)
∞,λ′ (x

∗)− h
(RR)
∞,λ (x∗)| ≤ √

n · C1 · |λ′ − λ| ·
√
yTK−4y

where we assume k(xi, x
∗) ≤ C1 for all i ∈ [N ].

Proof. We can write the kernel ridge regressors as h(RR)
∞,λ (x∗) =

∑n
i=1 α1,ik(xi, x

∗) and h
(RR)
∞,λ′ (x∗) =

∑n
i=1 α2,ik(xi, x

∗)
with coefficients α1 and α2 given by:

α1 = (K + λI)−1y

α2 = (K + λ′I)−1y

We now write y in the orthonormal basis of the eigenvectors of K, i.e. y =
∑n

i=1 aivi. We call the corresponding
eigenvalues of K d1, . . . , dn > 0.

The matrix (K + λI)−1 has the same eigenvectors as K and the eigenvalues are 0 < d̃i =
1

di+λ ≤ 1
λ . Thus, we can write

α1 =
∑n

i=1 ai
1

di+λvi and α2 =
∑n

i=1 ai
1

di+λ′ vi.
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In the next step, we bound ∥α1 − α2∥22: Using the orthonormality of the eigenvectors, we get:

∥α1 − α2∥22 =
∑n

i=1

(
ai

(
1

di+λ − 1
di+λ′

))2
Now we bound

∣∣∣ 1
λ+di

− 1
λ′+di

∣∣∣ ≤ ∣∣∣ λ′−λ
λλ′+(λ+λ′)di+d2

i

∣∣∣ ≤ |λ′−λ|
d2
i

which gives us:

∥α1 − α2∥22 ≤∑n
i=1

(
ai|λ′−λ|

d2
i

)2
≤ |λ′ − λ|2yTK−4y

Using this result, we can bound the difference between the predictions of the two kernel regressors at a single point x∗:

|h(RR)
∞,λ (x∗)− h

(RR)
∞,λ′ (x

∗)| = |∑n
i=1(α1,i − α2,i)k(xi, x

∗)| ≤∑n
i=1 |α1,i − α2,i|k(xi, x

∗)

Since k(xi, x
∗) ≤ C1, we get (using the relation between the 1-norm and the 2-norm):

|fλ(x∗)− fλ′(x∗)| ≤ C1

∑n
i=1 |α1,i − α2,i| ≤ C1∥α1 − α2∥2

√
n ≤ √

n · C1 · |λ′ − λ| ·
√
y⊤K−4y

Using similar arguments, we now show that the expected prediction of RF regressors, i.e., the prediction of the infinite
ensemble of RF regressors, is Lipschitz-continuous for any x∗ and λ ≥ 0:

Lemma D.2 (Bound on the difference between expected RF Regressors). Under Assumption 2.1 and Assumption 3.4, the
expected value of the prediction of RF regressors is Lipschitz-continuous in λ for any x∗ and λ ≥ 0, i.e., for any x∗ it holds
that:

|h̄(RR)
∞,λ′ (x

∗)− h̄
(RR)
∞,λ (x∗)| ≤ ∥c⊤R−⊤∥∥y∥DC2 |λ′ − λ|

where C2 is a constant depending on the distribution of Φ.

Proof. We use the characterization of h̄(RR)
∞,λ (x∗) from Eq. (9), which gives us the difference as∣∣∣c⊤EW,w⊥

[
WW⊤

((
WW⊤ +D · λ′ ·R−⊤R−1

)−1 −
(
WW⊤ +D · λ′ ·R−⊤R−1

)−1
)]

R−⊤y
∣∣∣ .

We can now reverse some steps we made to get this characterization and write it in terms of Φ again:∣∣∣c⊤R−⊤EW

[
ΦWΦ⊤

W

((
ΦWΦ⊤

W +D · λ′ · I
)−1 −

(
ΦWΦ⊤

W +D · λ · I
)−1
)]

y
∣∣∣ .

And now, using Jensen’s inequality and the convexity of the two-norm, we can pull out the expected value to the outside of
the difference:

∥c⊤R−⊤∥ · EW

[
∥ΦWΦ⊤

W

((
ΦWΦ⊤

W +D · λ′ · I
)−1 −

(
ΦWΦ⊤

W +D · λ · I
)−1
)
y∥
]
.

Similarly to the proof of Lemma D.1, we can write y in the orthonormal basis of the eigenvectors of ΦΦ⊤ (note that
we drop the subscript W for notational simplicity), i.e. y =

∑n
i=1 aivi. Furthermore we define the eigenvalues of ΦΦ⊤

as d1, . . . , dn > 0. The matrix (ΦΦ⊤ + D · λI)−1 again has the same eigenvectors as ΦΦ⊤ and the eigenvalues are
0 < 1

di+D·λ ≤ 1
D·λ .

Multiplying y with ΦΦ⊤(ΦΦ⊤ +D · λI)−1 and ΦΦ⊤(ΦΦ⊤ +D · λ′I)−1 then gives us:

ΦΦ⊤(ΦΦ⊤ +D · λI)−1y =
∑n

i=1 ai
di

di+D·λvi

ΦΦ⊤(ΦΦ⊤ +D · λ′I)−1y =
∑n

i=1 ai
di

di+D·λ′ vi
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We can now calculate the difference of these two vectors using the orthonormality of the eigenvectors:

∥ΦΦ⊤(ΦΦ⊤ +D · λ′I)−1y − ΦΦ⊤(ΦΦ⊤ +D · λI)−1y∥22 =
∑n

i=1

(
ai

(
di

di+D·λ − di

di+D·λ′

))2
Now we look at the difference between the two coefficients and see that for each i, we have:∣∣∣ di

di+D·λ − di

di+D·λ′

∣∣∣ ≤ D·|λ′−λ|
di

Thus, we have that the difference is bounded by:

∥ΦΦ⊤(ΦΦ⊤ +D · λ′I)−1y − ΦΦ⊤(ΦΦ⊤ +D · λI)−1y∥22 ≤ D2·|λ−λ′|2
d2
N

∥y∥22.

All together, we can now bound the difference of the expected values of the predictions of RF regressors via:

|h̄(RR)
∞,λ′ (x

∗)− h̄
(RR)
∞,λ (x∗)| ≤ ∥c⊤R−⊤∥∥y∥D|λ′ − λ|EdN

[
1
dN

]
Since tr((ΦΦ⊤)−1) =

∑n
i=1

1
di

, and the trace is a linear operator, we can write:

EdN

[
1
dN

]
≤ EW

[
(tr(ΦWΦ⊤

W)−1)
]
= tr(EW

[
(ΦWΦ⊤

W)−1
]
) =: C2

which is finite whenever EW
[
(ΦWΦ⊤

W)−1
]

is finite, i.e. Assumption 3.4 holds.

Using Lemma D.1 and Lemma D.2 we can now show that the difference between the infinite ensemble where each model
has ridge λ and the infinite single model with ridge λ is Lipschtiz-continuous in λ for λ ≥ 0:

Theorem 3.5 (Restated). Under Assumptions 2.1 and 3.4, the difference |h̄(RR)
∞,λ (x∗) − h

(RR)
∞,λ (x∗)| between the infinite

ensemble and the single infinite-width model trained with ridge λ ≥ 0 is Lipschitz-continuous in λ. The Lipschitz constant
is independent of x∗ for compact X .

Proof. We bound difference
∣∣∣|h̄(RR)

∞,λ′ (x∗)− h
(RR)
∞,λ′ (x∗)| − |h̄(RR)

∞,λ (x∗)− h
(RR)
∞,λ (x∗)|

∣∣∣ by using first the inverse, then the
normal triangle inequality: ∣∣∣|h̄(RR)

∞,λ′ (x
∗)− h

(RR)
∞,λ′ (x

∗)| − |h̄(RR)
∞,λ (x∗)− h

(RR)
∞,λ (x∗)|

∣∣∣
≤ |h̄(RR)

∞,λ′ (x
∗)− h̄

(RR)
∞,λ (x∗) + h

(RR)
∞,λ (x∗)− h

(RR)
∞,λ′ (x

∗)|
≤ |h̄(RR)

∞,λ′ (x
∗)− h̄

(RR)
∞,λ (x∗)|+ |h(RR)

∞,λ (x∗)− h
(RR)
∞,λ′ (x

∗)|

Using the bound from Lemma D.1 and Lemma D.2 (and summarizing the the corresponding constants as c1 and c2) we can
bound this by:

|h̄(RR)
∞,λ′ (x

∗)− h
(RR)
∞,λ′ (x

∗)| − |h̄(RR)
∞,λ (x∗)− h

(RR)
∞,λ (x∗)| ≤ c1|λ′ − λ|+ c2|λ′ − λ|

Thus we have Lipschitz-continuity in λ for λ ≥ 0.

The Lipschitz constant is independent of x∗ for X compact since the Lipschitz constants from Lemma D.1 and Lemma D.2
depend on x∗ in a continuous fashion.

Note that an equivalent argument in combination with (Jacot et al., 2020)[Proposition 4.2], i.e. λ̃ ≤ γ
γ−1λ, directly gives the

Lipschitz-continuity in λ for λ ≥ 0 for the difference between the infinite ensemble and the infinite-width single model with
effective ridge in the overparameterized regime.
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E. Underparameterized Ensembles
Here, we offer a proof that infinite, unregularized, underparameterized RF ensembles are equivalent to kernel ridge regression
under a transformed kernel function. We emphasize the difference from the overparameterized case—the central focus of
our paper—in which the infinite ensemble is equivalent to a ridgeless kernel regressor. Thus, underparameterized ensembles
induce regularization, while overparameterized ensembles do not.

Other works have explored the ridge behavior of underparameterized RF ensembles (Kabán, 2014; Thanei et al., 2017;
Bach, 2024b); however, these works often focus on an equivalence in generalization error whereas we establish a pointwise
equivalence. To the best of our knowledge, the following result is novel:

Lemma E.1. If the expected orthogonal projection matrix EW̃

[
R⊤W̃

(
W⊤RR⊤W

)−1
W̃⊤R

]
is well defined, and a

contraction (i.e., singular values strictly less than 1), then the infinite underparameterized RF ensemble h̄
(LN)
∞ (x∗) is

equivalent to kernel ridge regression under some kernel function k̃(·, ·).

Proof. When D < N , the infinite ridgeless RF ensemble is given by

h̄(LN)
∞ (x∗) = EW

[
1
D

∑D
j=1 ϕ(ωj , x

∗)
(

1
DΦ⊤

WΦW
)−1

Φ⊤
W

]
y

= EW,w⊥

[(
r⊥w

⊤
⊥ + c⊤W

) (
W⊤RR⊤W

)−1
W⊤

]
Ry, (12)

where W,w⊥, r⊥, c, R are as defined in Sec. 2. Defining the following block matrices:

W̃ =

[
W
w⊤

⊥

]
∈ R(N+1)×D, R̃ =

[
R
0

]
∈ R(N+1)×N , c̃ =

[
c
r⊥

]
∈ R(N+1),

we can rewrite Eq. (12) as

h̄(LN)
∞ (x∗) = c̃⊤

(
EW̃

[
W̃
(
W⊤RR⊤W

)−1
W̃⊤

])
R̃y.

By adding and subtracting R̃R̃⊤ inside the outer parenthesis, we can massage this expression into kernel ridge regression in
a transformed coordinate system:

h̄(LN)
∞ (x∗) = c̃⊤

R̃R̃⊤ +
(
EW̃

[
W̃
(
W⊤RR⊤W

)−1
W̃⊤

])−1

− R̃R̃⊤

:=Ã


−1

R̃y.

= c̃⊤Ã−1R̃
(
R̃⊤Ã−1R̃+ I

)−1

y. (13)

Applying the Woodbury inversion lemma to Ã−1, we have:

Ã−1 = EW̃

[
W̃
(
W⊤RR⊤W

)−1
W̃⊤

]
+ EW̃

[
W̃
(
W⊤RR⊤W

)−1
W⊤R

]
(I − EW [PW ])

−1 EW̃

[
R⊤W

(
W⊤RR⊤W

)−1
W̃⊤

]
,

(14)

where PW is the (random) orthogonal projection matrix onto the span of the columns of R⊤W :

PW = R⊤W
(
W⊤RR⊤W

)−1
W⊤R.

Because PW is an orthogonal projection matrix, we have that ∥PW ∥2 = 1, and thus (by Jensen’s inequality) ∥EW [PW ]∥2 ≤
1. If this inequality is strict so that I − EW [PW ] is invertible, we have by inspection of Eq. (14) that Ã is positive definite.
Therefore, the block matrix [

R̃⊤

c̃⊤

]
Ã−1

[
R̃ c̃

]
=

[
R̃⊤Ã−1R̃ R̃⊤Ã−1c̃

c̃⊤Ã−1R̃ c̃⊤Ã−1c̃

]
(15)
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is also positive definite and thus the realization of some kernel function k̃(·, ·); i.e.

[
R̃⊤Ã−1R̃ R̃⊤Ã−1c̃

c̃⊤Ã−1R̃ c̃⊤Ã−1c̃

]
=


k̃(x1, x1) · · · k̃(x1, xN ) k̃(x1, x

∗)
...

. . .
...

...
k̃(xN , x1) · · · k̃(xN , xN ) k̃(xN , x∗)

k̃(x∗, x1) · · · k̃(x∗, xN ) k̃(x∗, x∗)

 .

Note that if Ã = I then by Eq. (1) we recover the original kernel matrix

[
R̃⊤R̃ R̃⊤c̃

c̃⊤R̃ c̃⊤c̃

]
=


k(x1, x1) · · · k(x1, xN ) k(x1, x

∗)
...

. . .
...

...
k(xN , x1) · · · k(xN , xN ) k(xN , x∗)
k(x∗, x1) · · · k(x∗, xN ) k(x∗, x∗)

 .

Thus, the underparameterized ensemble in Eq. (13) simplifies to

h̄(LN)
∞ (x∗) =

[
k̃(x∗, x1) · · · k̃(x∗, xN )

]
 k̃(x1, x1) · · · k̃(x1, xN )

...
. . .

...
k̃(xN , x1) · · · k̃(xN , xN )

+ I


−1

y,

which is kernel ridge regression with respect to the kernel k̃(·, ·).
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