
Appendix for:596

ImageNet-Hard: The Hardest Images Remaining from a Study of597

the Power of Zoom and Spatial Biases in Image Classification598

A Implementation details599

In this section, we provide a detailed description of our experimental setup, including the Python600

code for our zoom transform, the classifiers we employed, and the setup we used for zero-shot601

classification.602

A.1 Sample Python code for zoom-based transform603

from PIL import Image
import torchvision.transforms.functional as fv
import torchvision.transforms as transforms
from functools import partial

def crop_at(size , slice_x , slice_y):
def slice_crop(image , size , slice_x , slice_y):

width , height = image.size
tile_size_x = width // 3
tile_size_y = height // 3
anchor_x = (slice_y * tile_size_x) + (tile_size_x // 2)
anchor_y = (slice_x * tile_size_y) + (tile_size_y // 2)
return fv.crop(

image ,
anchor_y - (size // 2),
anchor_x - (size // 2),
size ,
size ,

)
return partial(slice_crop , size=size , slice_x=slice_x , slice_y=
slice_y)

zoom_scale = 255
zoom_transform = transforms.Compose(

[
transforms.Resize(

zoom_scale ,
interpolation=transforms.InterpolationMode

.BICUBIC ,
max_size=None ,
antialias=None ,

),
crop_at (224, i, j),

]
)

604

Figure A1: Sample python code.
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A.2 Datasets’ licenses605

Dataset Name License
ImageNet Custom license, non-commercial
ImageNet-A License
ImageNet-R MIT License
ImageNet-Sketch MIT License
ImageNet-C MIT License
ObjectNet Custom license derived from Creative Commons Attribution 4.0
ImageNet-V2 MIT License

Table A1: Dataset Licenses

A.3 Zoom Scales used606

In our experiments, we tried the following zoom scales:607

10, 16, 32, 48, 64, 96, 122, 128, 192, 224, 235, 240, 256, 288, 320, 348, 384, 448, 460, 512,

573, 576, 640, 664, 672, 680, 686, 690, 700, 720, 768, 798, 832, 896, 911, 1024.

A.4 Model selection608

We use the official OpenAI’s official CLIP for all CLIP-related experiments. All IN-trained models609

are retrieved from the torchvision [47] library. For models from the OpenCLIP family, we utilize610

the OpenCLIP library version 2.20.0. In the case of the EfficientNet-B family, we use the Hugging611

Face Transformers library. Lastly, for EfficientNet-L2, we use the implementation from the timm612

library.613
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A.5 Zero-shot classification using CLIP614

For CLIP, we follow the standard zero-shot classification. This involves creating a text template for615

each class in the dataset, which contains a generic description of an image featuring an object from616

that class. Then, we use CLIP’s text encoder to obtain embeddings for these templates and then617

average them to obtain a final vector that represents the class. To classify an image, we calculate the618

cosine similarity between its embedding and the text vectors for each class and then select the class619

with the highest value.620

A.6 Zoom-based transform621

(a)

(b)

Figure A2: (a) Making a 3-by-3 uniform grid out of the image. We pick the center point in each
region as the anchor. (b) Sample image showing how our zoom transform is applied to an image.
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B Additional Results622

In this section, we provide additional results for our experiments.623

B.1 Zooming out is needed for a small portion of the datasets624

In our approach, we leverage the power of both zoom-in and zoom-out transforms, and Tab. 1 results625

indicate that this combined zooming approach can be effective in classifying images from diverse626

datasets. Zooming in enhances texture patterns while zooming out provides a better perspective of627

the object’s shape. The question we aim to answer is which dataset and model pairs require which628

type of zoom, and whether zooming is always necessary. Additionally, we investigate which types629

of networks are less reliant on explicit zooming, as they implicitly focus on the main object in the630

image.631

Experiment We separate zoom transforms into three groups and report the maximum possible632

accuracy as defined in Sec. 3. We use transforms in the minimum set covers (as shown in Fig. A10)633

for each dataset and classifier pair. We then report the number of images that can only be classified634

using transforms in each group separately.635

Figure A3: A sample image from the ImageNet-Sketch dataset that can only be solved by zooming
out. For this image, with the standard ImageNet transform, the entire body of the animal is not visible.
Instead, zooming out of the image helps you see the whole body of the animal. More samples can be
found in Appendix D.3.

Results In general, we find that zooming in is more effective than zooming out. Zooming in636

provides two benefits: (1) it helps the model to focus on the key region where the target object is637

located, and (2) the model can extract features from the target object at a higher resolution. Across all638

methods and datasets, we can see a certain percentage of images are only classifiable using transforms639

of the zoom-out group. In particular, for ImageNet-R and ImageNet-Sketch, between 1.2% � 3%640

(Table A2) of the entire dataset can only be solved using a transform in the zoom-out group. This is641

especially true for drawings, where the texture may lack distinguishable features, and zooming out642

allows us to better perceive the shape.643
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Table A2: Breakdown of maximum possible accuracy by different zoom groups. In each dataset,
certain images necessitate a specific zoom group for correct classification regardless of the model
being used. However, CLIP performs well overall without depending heavily on a particular zoom
level. On average, the percentage of datasets that can only be solved with a specific zoom group is
very small for this model.

Dataset Model zoom-in
Solve

zoom-out
Solves

zoom-224
Solves

Only zoom-in
Solves

Only zoom-out
Solves

Only zoom-224
Solves

ImageNet

ResNet-18 94.57 79.49 81.16 10.59 0.43 0.08
ResNet-50 96.30 85.84 86.39 7.59 0.40 0.04
ViT-B/32 96.83 86.18 85.12 7.59 0.30 0.02
VGG-16 94.60 82.11 83.08 8.92 0.58 0.07
AlexNet 89.17 62.92 67.98 18.01 0.65 0.18
CLIP-ViT-L/14 95.82 90.80 87.04 4.81 0.83 0.05

ImageNet ReaL

ResNet-18 97.37 86.10 87.62 7.38 0.27 0.07
ResNet-50 98.22 91.07 91.87 4.65 0.25 0.04
ViT-B/32 98.50 90.79 88.06 4.92 0.18 0.03
VGG-16 97.38 88.43 89.40 6.02 0.38 0.07
AlexNet 93.15 69.58 74.85 15.47 0.45 0.19
CLIP-ViT-L/14 98.05 94.44 91.69 3.20 0.55 0.04

ImageNet+ReaL

ResNet-18 97.16 85.51 86.77 7.72 0.28 0.05
ResNet-50 98.25 91.10 91.77 4.60 0.24 0.03
ViT-B/32 98.70 91.00 90.95 4.92 0.14 0.02
VGG-16 97.12 87.88 89.09 6.25 0.42 0.06
AlexNet 92.79 68.65 73.93 16.25 0.47 0.16
CLIP-ViT-L/14 98.24 95.09 92.41 2.75 0.47 0.04

ImageNet-A

ResNet-18 63.66 47.95 45.37 13.97 2.75 0.21
ResNet-50 65.28 52.36 48.59 12.05 3.13 0.22
ViT-B/32 73.07 56.34 54.84 14.20 2.04 0.27
VGG-16 56.67 44.95 39.35 11.80 3.85 0.24
AlexNet 52.69 32.86 31.95 17.15 2.34 0.30
CLIP-ViT-L/14 98.35 96.71 93.57 1.70 0.69 0.04

ImageNet-R

ResNet-18 57.07 12.19 10.07 40.67 0.92 0.19
ResNet-50 64.52 12.95 10.36 48.72 1.00 0.23
ViT-B/32 76.71 18.57 21.92 51.75 0.85 0.15
VGG-16 56.59 13.15 13.27 38.24 0.93 0.29
AlexNet 39.91 10.39 9.11 26.27 1.08 0.36
CLIP-ViT-L/14 97.99 81.32 77.03 12.01 0.44 0.05

ImageNet-Sketch

ResNet-18 41.14 27.06 27.41 11.83 1.77 0.36
ResNet-50 44.72 32.80 31.45 10.99 2.23 0.24
ViT-B/32 53.45 37.43 37.38 13.11 1.83 0.36
VGG-16 36.20 27.20 24.59 9.47 2.97 0.28
AlexNet 27.71 13.84 15.11 11.26 1.22 0.33
CLIP-ViT-L/14 86.20 80.67 73.94 6.64 2.38 0.12

ObjectNet

ResNet-18 68.98 38.52 37.23 25.76 1.93 0.25
ResNet-50 74.16 51.56 47.79 19.68 2.16 0.30
ViT-B/32 77.66 44.49 42.65 27.43 1.34 0.20
VGG-16 69.19 41.72 39.49 23.34 2.27 0.31
AlexNet 56.76 23.45 22.59 28.85 2.27 0.33
CLIP-ViT-L/14 91.28 82.22 77.60 8.37 1.38 0.15

Average

ResNet-18 74.28 53.83 53.66 16.85 1.19 0.17
ResNet-50 77.35 59.67 58.32 15.47 1.34 0.16
ViT-B/32 82.13 60.69 60.13 17.70 0.95 0.15
VGG-16 72.54 55.06 54.04 14.86 1.63 0.19
AlexNet 64.60 40.24 42.22 19.04 1.21 0.26
CLIP-ViT-L/14 95.13 88.75 84.75 5.64 0.95 0.07

21



B.2 Anchor-based analysis of Center bias in ImageNet and OOD datasets644
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Figure A4: ResNet-18
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Figure A5: ResNet-50
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Figure A6: ViT-B/32
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Figure A7: VGG16
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Figure A8: AlexNet
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Figure A9: CLIP-ViT-L/14

B.3 Distribution of the minimum set cover per classifier and dataset645

In this section, we provide details on the distribution of minimum set cover size.646

Table A3: Distribution of the minimum set cover per classifier and dataset. (ZI: zoom-in, ZO:
zoom-out, ZL: zoom-224)

ReaL IN-A IN-R IN-Sketch ON

ZI ZO ZL Total ZI ZO ZL Total ZI ZO ZL Total ZI ZO ZL Total ZI ZO ZL Total

ResNet-18 160 33 8 201 174 31 6 211 204 65 9 278 209 51 9 269 191 54 9 254
ResNet-50 136 33 9 178 165 42 7 214 200 62 9 271 216 56 9 281 187 63 9 259
ViT-B/32 134 30 4 168 167 19 7 193 196 52 9 257 218 46 9 273 206 58 9 273
VGG-16 158 34 9 201 181 33 8 222 214 66 9 289 210 54 9 273 198 52 9 259
AlexNet 191 40 8 239 170 33 9 212 212 51 9 272 217 49 9 275 201 58 9 268
CLIP-ViT-L/14 141 48 8 197 75 14 4 93 76 33 5 114 142 61 9 212 205 66 9 280

23



B.4 Only 70% of all transforms are needed to reach maximum possible accuracy647

In Sec. 4.1, we first pre-define all 324 zoom transforms and then compute the maximum possible648

accuracy to ensure the predicted labels were the results of models looking at a controlled zoomed649

region (i.e. not because a model was given 324 arbitrary trials per image). Here, we aim to compute650

the minimum number of zoom settings required for a model to reach the same upper-bound accuracy.651

Evaluating this minimum set may reveal spatial biases of a dataset (Sec. 4.2) as well as the implicit652

zoom operation that a state-of-the-art model (e.g. CLIP) may have learned.653

Experiment Given a (dataset, classifier) pair, each zoom transform among the 324 will result in a654

set of correctly classified images. We employ a greedy minimum-set cover algorithm [61, 35] to find655

a minimum subset of transforms that lead to the correct prediction for all classifiable images in Sec. 4656

(i.e. those that make up the accuracy scores in Tab. 1c).657

For each dataset and classifier pair, we construct a bipartite graph, consisting of transforms and658

images as distinct groups of nodes. We connect a node from the transform group to an image node,659

if that transform leads to the correct classification of that particular image. Finding a minimum set660

cover in this graph is the same as finding the aforementioned subset of transforms. During each661

iteration of the greedy minimum set cover algorithm, the transform that yields the highest number of662

correct classifications for the remaining images is selected. This process continues until all of the663

images have been “covered”, i.e. all images have connected to a transform with at least one edge.664

The result is a subset of transforms that can classify images without sacrificing accuracy.665

Figure A10: The minimum number of zoom transforms
(out of 324) required to achieve the maximum possible
accuracy scores reported in Tab. 1c.

IN ReaL IN+ReaL IN-A IN-R IN-S ON µ

AlexNet 255 239 246 212 272 275 268 252
VGG-16 242 201 201 222 289 273 259 241
ResNet-18 250 201 208 211 278 269 254 239
ResNet-50 234 178 183 214 271 281 259 231
ViT-B/32 233 168 173 193 257 273 273 224
CLIP-ViT-L/14 251 197 186 93 114 280 212 190

Results Fig. A10 shows the minimum666

number of transforms per dataset required667

to reach the maximum possible accuracy.668

Although this number varies depending on669

the dataset and classifier, on average, the670

size of the minimum cover is 229, which is671

⇠70% of all 324 pre-defined transforms.672

We evaluate the maximum possible accu-673

racy using the top 36 transforms, the same674

number as the number of zoom scales and675

report the results in Tab. 1b. This set of transforms is achieved by stopping the algorithm after 36676

iterations, which provided us with 36 high-performing transforms. The maximum possible accuracy677

using only 36 crops is only slightly lower than that when using all 324 crops but is substantially678

higher than the standard 1-crop, e.g. 85.19% vs. 56.16% for AlexNet on IN (Tab. 1b). Also, the679

upper-bound accuracy for 36 crops being much higher than the random baseline (i.e. 3.6% for IN)680

confirms that the pre-defined zoom transforms are important to classification (not because models are681

given 36 random trials per image). The top-36 zoom transforms for ResNet-50 on ImageNet contain682

zooms at various locations in the image (see the visualizations in Appendix D.1).683

Remarkably, CLIP requires 190 transforms on average, which is fewer than every other model684

(Fig. A10; µ column). This can be attributed to either the implicit zoom power of CLIP or the fact it685

has a stronger feature extractor.686
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B.5 Center-zooming increases the accuracy of all ImageNet-trained models but not CLIP687

Previously, we have found that CLIP obtains the best accuracy on all six datasets (Tab. 1a) and688

also requires the smallest minimum set of zoom transforms to obtain the upper-bound accuracy689

(Appendix B.4). It is important to understand what classification strategy a CLIP classifier internally690

performs to classify better. Here, we test the hypothesis that the state-of-the-art CLIP is already691

performing an implicit zoom on images. If that is true, directly zooming to the center, exploiting the692

strong center bias of ImageNet-A and ObjectNet, will not improve CLIP accuracy.693

Experiment We evaluate the accuracy of all models when center-zooming on IN-A and ON images694

at 11 different scales S 2 {128, 160, 192, ..., 448} (Fig. A11). That is, center-zooming at S first695

resizes the input image so that the smaller dimension becomes S and then takes a 224⇥224 center696

crop (zero-padding is applied when necessary).697

Results In Fig. A11, we show the changes in the top-1 accuracy (1-crop) when varying the center-698

zoom scales away from the default ImageNet transform scale (S = 256) for both ImageNet-A and699

ObjectNet. While IN-trained networks exhibit consistent improvement as the zoom scale increases,700

CLIP shows a monotonic decrease in performance (Fig. A11; yellow curves decreasing on both701

sides of S = 256). This result is surprising but consistent with our hypothesis that CLIP internally702

performs implicit zooming to reach its peak accuracy and therefore manually zooming (either in or703

out) at the center mostly ruins its performance.704

(a) ImageNet-A (b) ObjectNet

Figure A11: Absolute changes in the top-1 accuracy (%) of 6 models on ImageNet-A (a) and
ObjectNet (b) when center-zooming images at various scales. Interestingly, center-zooming helps
IN-trained networks but hurts CLIP.

B.6 Zoom-in is more useful than zoom-out, which is most important to abstract images705

Zooming in enhances texture patterns while zooming out provides a better perspective of the object’s706

shape, which is known to be useful to image classification [12, 19]. Results in Sec. 4.1 and Ap-707

pendix B.4 indicate that this combined zooming approach can be effective in classifying images708

from diverse datasets. Here, we test which dataset and model pairs require which type of zoom, and709

whether zooming in or out is always necessary.710

Experiment To better understand the effectiveness of each zoom group, we calculate the maximum711

possible accuracy using all nine locations and different zoom scales S to show per-dataset trends.712

Additionally, we examined the percentage of images within each dataset that required a specific713

zoom group to be accurately classified. This analysis allowed us to gain a more comprehensive714

understanding of the role that each zoom group played in reaching the maximum possible accuracy715

reported in Tab. 1.716
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(a) ImageNet-Sketch (b) ImageNet-A

Figure A12: Maximum possible accuracy using nine crops at varying scales. The vertical line
represents the standard ImageNet zoom scale (S = 256). While for ImageNet-Sketch (a), zooming
out marginally improves the accuracy, for scale factors larger than 256, ImageNet-A (b) exhibits an
increase in accuracy. See Appendix B.9 for details.

Results The maximum possible accuracy for different zoom scales reveals a clear trend for each717

dataset. For instance, a slight zoom-out enhances accuracy for abstract image datasets like IN-Sketch718

(Fig. A12a). Conversely, for adversarial image datasets such as IN-A, zooming in improves accuracy719

(Fig. A12b) This pattern is also evident in evaluations using standard 1-crop accuracy (Appendix B.9).720

Furthermore, the percentage of images that are exclusively classifiable with the zoom-in group is721

consistently higher than the other two groups, i.e. using ViT-B/32 51.75% on IN-A, and 13.11% on722

IN-S (Tab. A4a). This shows that most datasets necessitate focusing on the object of interest in the723

image to both see texture patterns better and reduce background clutter (see Tab. A2 for full results).724

However, we also find that the zoom-out group is also necessary for the correct classification of a725

small portion of each dataset. For instance, 1.22% � 2.97% of IN-S images (Tab. A4b) require a726

zoom-out transform to be correctly labeled (i.e. zoom-in does not help at all).727

Table A4: % of images in the entire dataset that require a particular zoom group to be classified
correctly. See Tab. A2 for full results.

zoom-in (a) zoom-out (b) zoom-224 (d)

IN-A IN-S IN-A IN-S IN-A IN-S

ResNet-18 40.67 11.83 0.92 1.77 0.19 0.36
ResNet-50 48.72 10.99 1.00 2.23 0.23 0.24
ViT-B/32 51.75 13.11 0.85 1.83 0.15 0.36
VGG-16 38.24 9.47 0.93 2.97 0.29 0.28
AlexNet 26.27 11.26 1.08 1.22 0.36 0.33
CLIP-ViT-L/14 12.01 6.64 0.44 2.38 0.05 0.12
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B.7 Simple aggregation of the zoom transforms can improve accuracy on some datasets but728

not all729

Sec. 4.1 and Appendix B.5 show that using the same feature extractors (even as old as AlexNet), it730

is possible to achieve higher image classification accuracy if we know where to zoom and at which731

scale. A practical follow-up question is: How to build a classifier that knows how to zoom given732

a test image? In this section, we establish simple baselines that aggregate predictions over a set of733

zoom transforms.734

Experiment We employ the mean method from prior work [58, 45], and the max method to735

aggregate output marginal distributions. For a given image, we get N output distributions over736

classes from a classifier, in which N is the total number of used transforms. The aggregation process737

combines these N distributions and outputs a final prediction for the given image. In the aggregation738

step, we use the mean or max method to infer the final confidence for each class along N distributions.739

Finally, we select the class that has the highest confidence score. Additionally, we test 5-crop and740

10-crop evaluation [38, 60, 23] and compare them with our methods. We use the transforms in the741

minimum set found for IN-ReaL to evaluate the remaining datasets. The purpose is to reduce the742

number of augmentations and prevent training on OOD benchmarks.743

Results max aggregation of zoom-in transforms results in the largest improvements on ImageNet-744

A. That is, on IN-A, ViT-B/32 reaches a top-1 accuracy of 24.69% (+15.05) (Tabs. A5 and A6)745

and a ResNet-50 accuracy increases by +13.03 points from 16.62% to 29.65% (Appendix C.3)–a746

surprisingly strong baseline for future studies. On ObjectNet, max aggregation of zoom-in transforms747

also yields +1.99 improvement over the 1-crop ViT-B/32 baseline.748

On the other hand, mean aggregation results in smaller but more consistent improvements over the749

1-crop baseline for many datasets (+3.56 on IN, +4.08 on ReaL, +4.65 on IN-A, and +3.03 on ON;750

Tab. A5). mean aggregation (Tab. A5b) also outperforms the standard 5-crop and 10-crop [38, 23]751

aggregation on these four datasets (Tab. A5e–f).752

In contrast, for all 6 datasets, aggregating zoom-out and zoom-224 transforms consistently worsen753

the performance over the 1-crop baseline (Tab. A5c–d). That is, we find that for a few dozen images754

(e.g. sketches and abstract visuals; Fig. 1ac), interestingly, only zooming out can lead to a correct755

classification (Appendix B.6), yet for most images in these 6 benchmarks, zooming out hurts the756

accuracy.757

In summary, based on the insights from Sec. 4.1, showing that zooming could help classification, we758

find that simple methods for aggregating zoom-in transforms at test-time can directly improve model759

accuracy over the 1-crop and zoom-224 baselines on four benchmarks, i.e. all except IN-R and IN-S,760

which contain abstract images.761

Table A5: Top-1 accuracy (%) of aggregation methods on an IN-trained ViT-B/32 model. Compared
to the 1-crop baseline, aggregating zoom-in transforms consistently yields improved accuracy on
IN-A, ON but worse accuracy on IN-R and IN-S. zoom-224 refers to the set of zoom transforms at
S = 224. See Tab. A6 for more results.

(a) (b) zoom-in � (c) zoom-out � (d) zoom-224 (e) 5-crop (f) 10-crop [38]

Dataset 1-crop max mean max mean max mean max mean max mean

IN 75.75 74.35 (-1.40) 79.31 (+3.56) 71.48 69.47 72.66 73.67 77.33 77.73 77.30 77.87
ReaL 81.89 80.22 (-1.67) 85.97 (+4.08) 77.95 76.28 79.25 80.31 83.24 83.80 83.17 83.87
IN-A 9.64 24.69 (+15.05) 14.29 (+4.65) 7.79 5.48 8.12 7.39 12.19 9.88 12.32 9.67
IN-R 41.29 39.90 (-1.39) 40.06 (-1.23) 39.05 36.21 39.52 39.28 43.90 43.17 44.31 43.28
IN-S 26.83 19.74 (-7.09) 20.89 (-5.94) 22.37 19.25 25.06 25.21 28.72 28.66 28.94 28.76
ON 30.89 32.88 (+1.99) 33.92 (+3.03) 22.56 19.51 22.75 22.72 26.96 24.98 27.14 24.97
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Table A6: Performance of various aggregating methods (%) – The bold numbers show maximum
accuracy per model/dataset. CLIP strongly and consistently favors 10-crop over other settings.

(a) (b) zoom-in � (c) zoom-out � (d) zoom-224 (e) 5-crop (f) 10-crop [38]
Dataset 1-crop Max Mean Max Mean Max Mean Max Mean Max Mean

R
es

N
et

-1
8

IN 69.45 68.45 (-1.00) 71.45 (+2.00) 60.33 56.79 67.85 68.70 70.61 71.32 70.83 71.85
ReaL 76.94 76.33 (-0.61) 79.94 (+3.00) 67.64 63.92 75.73 76.74 78.26 79.01 78.42 79.46
IN-A 1.37 11.68 (+10.31) 5.48 (+4.11) 2.44 2.19 3.41 2.69 3.16 2.13 3.28 1.87
IN-R 32.14 30.60 (-1.54) 28.95 (-3.19) 29.08 27.28 32.29 32.54 33.99 33.38 34.59 33.83
IN-S 19.41 14.86 (-4.55) 14.34 (-5.07) 14.48 11.49 17.80 17.83 20.83 20.70 21.39 21.06
ON 27.59 28.21 (+0.62) 25.92 (-1.67) 16.11 14.10 22.82 22.86 24.77 20.91 25.47 21.03

R
es

N
et

-5
0

IN 75.75 73.24 (-2.51) 77.30 (+1.55) 69.06 66.42 74.45 75.39 76.67 77.13 76.89 77.43
ReaL 82.63 80.36 (-2.27) 84.68 (+2.05) 76.35 73.85 81.96 82.85 83.67 84.06 83.82 84.31
IN-A 0.21 16.11 (+15.9) 6.23 (+6.02) 2.79 2.19 3.04 2.11 2.28 0.95 2.43 1.00
IN-R 35.39 33.58 (-1.81) 32.73 (-2.66) 35.85 33.22 36.64 36.44 37.47 36.50 38.23 36.86
IN-S 22.91 16.89 (-6.02) 17.80 (-5.11) 19.51 17.12 21.60 21.66 24.71 24.51 24.94 24.74
ON 36.18 34.56 (-1.62) 34.22 (-1.96) 27.10 25.32 31.78 31.98 33.34 29.58 33.93 29.86

V
iT

-B
/3

2

IN 75.75 74.35 (-1.40) 79.31 (+3.56) 71.48 69.47 72.66 73.67 77.33 77.73 77.30 77.87
ReaL 81.89 80.22 (-1.67) 85.97 (+4.08) 77.95 76.28 79.25 80.31 83.24 83.80 83.17 83.87
IN-A 9.64 24.69 (+15.05) 14.29 (+4.65) 7.79 5.48 8.12 7.39 12.19 9.88 12.32 9.67
IN-R 41.29 39.90 (-1.39) 40.06 (-1.23) 39.05 36.21 39.52 39.28 43.90 43.17 44.31 43.28
IN-S 26.83 19.74 (-7.09) 20.89 (-5.94) 22.37 19.25 25.06 25.21 28.72 28.66 28.94 28.76
ON 30.89 32.88 (+1.99) 33.92 (+3.03) 22.56 19.51 22.75 22.72 26.96 24.98 27.14 24.97

V
G

G
-1

6

IN 71.37 69.60 (-1.77) 72.46 (+1.09) 64.75 59.95 69.51 70.48 72.31 73.09 72.67 73.53
ReaL 78.90 77.23 (-1.67) 80.59 (+1.69) 72.55 67.68 77.48 78.58 79.80 80.42 80.13 80.80
IN-A 2.69 11.55 (+8.86) 6.24 (+3.55) 3.33 2.77 4.69 3.87 4.87 3.19 5.09 3.19
IN-R 26.98 26.18 (-0.80) 24.74 (-2.24) 28.01 25.62 27.76 27.78 28.75 27.95 29.23 28.35
IN-S 16.78 13.30 (-3.48) 13.05 (-3.73) 15.18 13.37 15.82 15.97 17.80 17.63 18.28 17.92
ON 28.32 26.96 (-1.36) 26.15 (-2.17) 19.88 16.42 23.47 23.60 26.21 21.65 26.52 21.80

A
le

xN
et

IN 56.16 54.74 (-1.42) 56.98 (+0.82) 40.78 27.09 51.80 51.50 57.86 58.60 58.26 59.11
ReaL 62.67 61.46 (-1.21) 64.35 (+1.68) 45.84 30.58 58.25 58.16 64.53 65.39 64.98 65.94
IN-A 1.75 4.65 (+2.90) 3.27 (+1.52) 1.56 1.23 2.31 1.97 2.53 2.04 2.64 2.03
IN-R 21.10 20.65 (-0.45) 17.97 (-3.13) 15.72 11.25 19.91 19.55 22.79 21.86 23.26 22.16
IN-S 10.05 7.94 (-2.11) 6.54 (-3.51) 5.82 2.72 8.29 7.39 10.84 10.65 11.20 10.80
ON 14.23 14.91 (+0.68) 11.80 (-2.43) 6.11 3.75 9.65 9.01 12.63 9.57 12.84 9.58

C
LI

P-
V

iT
-L

/1
4 IN 75.03 70.01 (-5.02) 74.45 (-0.58) 72.01 72.21 74.45 76.04 76.77 76.91 76.72 77.00

ReaL 80.68 76.37 (-4.31) 81.31 (+0.63) 78.28 78.93 81.45 82.05 82.26 82.55 82.26 82.55
IN-A 71.28 76.57 (+5.29) 68.16 (-3.12) 60.71 49.51 71.69 70.04 77.80 76.61 78.25 76.83
IN-R 87.74 84.12 (-3.62) 83.54 (-4.20) 86.84 86.29 88.12 88.24 89.64 89.66 90.01 89.94
IN-S 58.23 51.88 (-6.35) 56.06 (-2.17) 57.14 57.43 59.00 59.90 61.28 61.61 61.59 62.07
ON 66.32 60.20 (-6.12) 58.10 (-8.22) 56.57 58.11 62.44 62.65 66.70 64.88 66.87 64.97

B.8 Runtime analysis of MEMO762

Another benefit of RRC compared to AugMix is faster inference time. Table A7 shows the runtime763

analysis of MEMO. Typically, TTA methods suffer from slow runtime due to augmentation and764

test-time training processes. We find that MEMO + RRC consistently leads to an average 1.6⇥765

speed-up compared to MEMO + AugMix (Tab. A7; 0.65s / image vs. 1.15s / image), providing more766

evidence to support this transformation as a viable option for test-time augmentations.767

Table A7: Average runtime per query image (in seconds). Using RandomResizedCrop in MEMO
speed ups the runtime by an average factor of 1.6⇥.

Runtime (in seconds) IN IN-A IN-R IN-S ON
MEMO + AugMix [79]

ResNet-50 [23] 1.24 1.12 1.12 1.32 1.51
DeepAug+AugMix [26] 1.19 1.07 1.12 1.23 1.55
MoEx+CutMix [40] 1.15 1.16 1.11 1.31 1.53

MEMO + RRC (Ours)
ResNet-50 [23] 0.64 0.60 0.65 0.88 1.19
DeepAug+AugMix [26] 0.62 0.62 0.64 0.87 1.18
MoEx+CutMix [40] 0.65 0.62 0.66 0.88 1.19

B.9 1-crop accuracy with different zoom scales768

In this section, we demonstrate the performance of various models when zooming in or out of an769

image. In other words, we utilize the standard 1-crop ImageNet transform while altering the initial770

scale of the image.771
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In this section, we are conducting experiments using the following models: AlexNet [38], ConvNext772

(Base, Large, Small, Tiny) [43], DenseNet-161 [29], EfficientNet-B7 [66], MobileNet (V2, V3773

Large) [57, 28], ResNet (50, 101) [23], ResNeXt-50 (32x4d) [76], ShuffleNet V2 x1.0 [46], VGG-774

19 [60], Vision Transformer (ViT-B/16, ViT-B/32, ViT-L/16, ViT-L/32) [17], and Wide ResNet-50-775

2 [78].776

Figure A13: ImageNet accuracy using a 1-crop transform (the vertical line represents the standard
ImageNet transform scale factor).

Figure A14: ImageNet-A accuracy using a 1-crop transform (the vertical line represents the standard
ImageNet transform scale factor).
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Figure A15: ImageNet-R accuracy using a 1-crop transform (the vertical line represents the standard
ImageNet transform scale factor).

Figure A16: ImageNet-Sketch accuracy using a 1-crop transform (the vertical line represents the
standard ImageNet transform scale factor).
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Figure A17: Accuracy using a 1-crop transform on 5K random images of the ObjectNet dataset (the
vertical line represents the standard ImageNet transform scale factor).
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Figure A18: Breakdown of the accuracy of IN-trained models at different crop locations and scale
size – Analysis of accuracy across various crop locations and scale sizes reveals that different datasets
exhibit distinct optimal conditions. For instance, the IN-A dataset experiences a considerable increase
in accuracy when zoomed in, while ImageNet-R yields better results when zoomed out.
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B.10 Background occlusion in ImageNet dataset777

Sample images for images with and without occlusion.778

(a) A sample image of the Tank class without oc-
clusion. (b) Image with heavy background occlusion.

(c) A clean sample image of the Four Poster
class.

(d) A low-quality image with background occlu-
sion.

Figure A19: Background occlusion examples.
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C Additional Experiments779

In this section, we provide additional experiments with the proposed zoom-based transform.780

C.1 Zooming is similarly important to the foreground and background contents781

Background pixels, despite often being neglected in image classification, can contain predictive782

signals [82, 74, 20, 55]. It has remained largely unknown how much the image context (background)783

could contribute to the model performance. While Zhu et al. [82] disentangle the predictiveness784

of background (BG) and foreground (FG) via model training, we directly measure how pretrained785

models perceive these two signals.786

Experiment Using bounding-box annotations provided by Russakovsky et al. [56], we create787

two dataset variations of ImageNet: FGSet and BGSet, following Zhu et al. [82]. We mask all the788

background for FGSet as in Fig. A20b, and for BGSet we mask all the main objects, as depicted789

in Fig. A20d & Fig. A20f. After that, we compute the accuracy of these two sets with all tested790

classifiers using ImageNet and ImageNet-ReaL labels as in Tab. A8.791

Results Our results suggest that zooming is important to ImageNet regardless of whether foreground792

or background features are used, with the difference for FGSet and BGSet on average being similar793

(Tab. A8). Additionally, when only the background features were available, almost half of ImageNet794

images (45.23%) could be correctly classified if optimal Zoom was used. Finally, we found that795

with only foreground information, ViT-B/32 could achieve a maximum possible accuracy of 95.50%796

given an optimal zooming method, suggesting that only 98.75% � 95.50% = 3.25% of images797

(Tab. 1) required the background information. These findings suggest that both foreground and798

background features are important for ImageNet classification, but that an optimal zooming method799

can considerably improve performance even in the absence of one of these feature sets.800

(a)

(b)

(c)

(d)

(e)

(f)

Figure A20: The foreground and the background both contain predictive signals. A ResNet-50
classifier can detect axolotl (a), even when the main object is masked (b). Removing the background
from images of ‘goose’ (c) and ‘parachute’ (e) causes misclassification (d, f).

C.2 Adversarial datasets contain more objects compared to ImageNet801

So far, our findings indicate that if we apply the zoom-in operation to the two datasets of ImageNet-802

A and ObjectNet, the performance of conventional vision models improves consistently up to a803

certain threshold (Sec. 4 and Appendix B.5). This suggests that the initial images contain distracting804

elements that impede the model from correctly identifying the object of interest. Both ImageNet-A805

and ObjectNet are considered out-of-distribution datasets, which are specifically designed to evaluate806

a vision model’s ability to withstand natural adversarial and pose attacks. We hypothesize that the807

primary reason that these datasets are hard can be attributed to background clutter, multiple objects,808

and the presence of a positional bias in these images.809
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Table A8: ImageNet classification from object-only and background-only signals. Numbers show
the maximum possible top-1 accuracy (%) using zoom-based transforms for minimum set covers
in Appendix B.4. We discover that background signals potentially hold significance for image
classification. The bold numbers show the highest possible accuracy per dataset and group.

1-crop Max possible using zooming

FGSet BGSet FGSet BGSet

IN ReaL IN ReaL IN ReaL IN ReaL

ResNet-18 59.77 64.97 4.91 7.84 89.89 92.04 25.81 31.33
ResNet-50 68.02 72.90 6.18 9.83 93.45 94.89 30.30 35.98
ViT-B/32 67.46 71.78 9.72 13.38 94.40 95.50 39.70 45.23
VGG-16 63.78 69.09 5.36 8.59 91.01 92.91 26.98 32.62
AlexNet 42.38 46.54 3.66 5.46 80.20 83.25 22.02 27.04
CLIP-ViT-L/14 74.46 78.62 9.49 13.80 96.14 97.35 36.85 42.51
mean 62.65 67.32 6.55 9.82 90.85 92.66 30.28 35.79

Experiment We use OWL-ViT [48], an open vocabulary object detection model, to quantify the810

number of objects present in three datasets of ImageNet, ImageNet-A, and ObjecNet. The OWL-ViT811

expects an input image with a set of object names and will determine if any object instances are812

present in the image. To specify object names, we use LVIS vocabulary [22], which encompasses a813

comprehensive list of 1203 distinct objects. The OWL-ViT model includes a threshold parameter814

that reflects its confidence level in its predictions. To assess whether different threshold values would815

affect our results, we conducted our experiment using both 0.1 and 0.05 as threshold values.816

After calculating the distribution of the number of objects in images, we perform a Mann-Whitney817

U test to determine whether there is a statistically significant difference in this distribution between818

datasets. As each dataset has a different number of classes, we limited our analysis to shared classes819

between any two datasets.820

Results The results of our study reveal a contrast between ImageNet and ImageNet-A, as well as821

ImageNet and ObjectNet. This finding implies a dissimilarity between the images in the original822

ImageNet dataset and its OOD datasets that might arise from the presence of background clutter.823

Specifically, on average, images in ImageNet-A and ObjectNet datasets tend to feature more objects,824

which can pose more significant distractions for image classification models.825

The results of the Mann-Whitney U test also reflect this finding, the p-value for both thresholds was826

found to be less than 0.05, which is statistically significant at the 95% confidence level (Tab. A9).827

Figure A21: Comparison of the number of objects in two datasets of ImageNet and ImageNet-A
using OWL-ViT [48] – T denotes the classification’s threshold

C.2.1 p-values for Mann Whitney U test828
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Figure A22: Comparison of the number of objects in two datasets of ImageNet and ObjectNet using
OWL-ViT [48] – T denotes the classification’s threshold

Table A9: The result of the Mann-Whitney U test to compare ImageNet with ImageNet-A and
ObjectNet

T = 0.05 T = 0.01

ImageNet-A 6.27E-265 1.71E-235
ObjectNet 1.80E-02 3.66E-02
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C.3 Zooming further improves robustified models on ImageNet-A829

Intensive data augmentations have been proven to significantly boost CNNs’ performance [73, 63] on830

ImageNet. Motivated by these previous successes and the fact that neural networks trained on diverse831

augmentations are able to learn robust representations [41], we want to know if robustified pretrained832

models (i.e. trained with intensive augmentations) could reach higher accuracy on ImageNet-A using833

zooming in.834

Experiment We test 4 different ResNet-50 classifier versions that have been trained with different835

data augmentation procedures. From the the torchvision library, we select two sets of model836

weights; trained with (V22) and without (V13) data augmentations. We also take two other mod-837

els trained with DeepAugmentation+AugMix [26] and MoEx+CutMix [40]. The second column838

in Tab. A10 represents the accuracy of models using 1-crop.839

Results Zooming in consistently helps ResNet-50 networks, with improvements varying from +13840

to +24 points. The best-performing network is torchvision-V2 which uses the max aggregator and841

achieves 29.65%. These results suggest that simple aggregation over the proposed zoom transform is842

effective for datasets that have dominant center bias.843

Table A10: The results of different aggregation functions on four ResNet-50 variants when tested on
ImageNet-A (%). Each model has been trained using different training-time augmentation techniques.
Improvements values in parentheses are with respect to the 1-crop baseline.

ResNet-50 Baseline Max Mean

torchvision V1 0.21 16.11 (+15.90) 6.23
MoEx+CutMix [40] 8.60 24.72 (+16.12) 15.32
DeepAug+AugMix [26] 3.94 27.93 (+23.99) 13.16
torchvision V2 16.62 29.65 (+13.03) 22.08

2ResNet50_Weights.IMAGENET1K_V2
3ResNet50_Weights.IMAGENET1K_V1
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D Visualization844

In this section, we provide several visualizations of zooming transforms.845

D.1 Visualizations for 36 top performing zoom transforms846

Figure A23: Different framing of an image of a lorikeet according to 36 high-performing transforms
of a ResNet-50 model
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Figure A24: Different framing of an image of a lorikeet according to 36 high-performing transforms
of a ViT/B-32 model
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Figure A25: Different framing of an image of a stethoscope according to 36 high-performing
transforms of a ResNet-50 model
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Figure A26: Different framing of an image of a stethoscope according to 36 high-performing
transforms of a ViT/B-32 model
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D.2 Overview of 324 transforms847

The visualizations below illustrate the transforms that result in the correct prediction of the query848

image, using ViT-B/32 [17] and CLIP-ViT-L/14 [52]. Each circle represents a transform, with the849

initial zoom scale indicated in the accompanying text. The green circles represent the transformations850

that lead to correct classification, while the red circles indicate incorrect ones.851

Figure A27: Visualization of effective transforms that lead to the correct classification of an image
containing scorpion, using a ViT-B/32 model.
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Figure A28: Visualization of effective transforms that lead to the correct classification of an image
containing scorpion, using a CLIP-ViT-L/14 model.

42



Figure A29: Visualization of effective transforms that lead to the correct classification of an image
containing bubble, using a ViT-B/32 model.
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Figure A30: Visualization of effective transforms that lead to the correct classification of an image
containing bubble, using a CLIP-ViT-L/14 model.
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Figure A31: Visualization of effective transforms that lead to the correct classification of an image
containing agama, using a ViT-B/32 model.
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Figure A32: Visualization of effective transforms that lead to the correct classification of an image
containing agama, using a CLIP-ViT-L/14 model.
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Figure A33: Visualization of effective transforms that lead to the correct classification of an image
containing acorn, using a ViT-B/32 model.
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Figure A34: Visualization of effective transforms that lead to the correct classification of an image
containing acorn, using a CLIP-ViT-L/14 model.
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D.3 Only zoom-out solves852

Sample images that required zooming out to be classified correctly.853

D.3.1 ImageNet-Sketch854

matchstick folding chair 

plate rack 56.2% matchstick 

Standard center crop matchstick 

Zoom scale 96 

16.57% folding chair 

19.67% matchstick 

19.51% matchstick 

17.34% folding chair 14.69% 

27 .29% matchstick 18.38% 

22.72% matchstick 17.67% 

microphone microphone 91.54% microphone 91.98% microphone 92.48% 

C C . .  111c PholD--153730  

sax 43.73% microphone 96.65% microphone 97 .17% microphone 97.52% 

Standard center crop microphone 85.4 7% microphone 87 .62% microphone 88.71% 

Zoom scale 96 

water Tower water tower 18.65% water tower 44.72% water tower 14.72% 

""" JJJl11 ) I  

guillotine 18.88% coffeepot 7.8% water tower 12.96% coffeepot 11.47% 

Standard center crop folding chair 18.63% crutch 13.23% crutch 13.07% 

Zoom scale 122 

ice lolly ice lolly 71.77% ice lolly 72.11 % ice lolly 73.97% 

shovel 18.61% ice lolly 89.15% ice lolly 90.24% ice lolly 88.92% 

Standard center crop ice lolly 87 .12% ice lolly 88.39% ice lolly 84.71% 

Zoom scale 96 

Figure A35: ImageNet-Sketch images that can only be solved using zoom-out. Predictions are from a
ResNet-50 classifier.
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D.3.2 ImageNet-R855

dragonfly lipstick 8.27% lipstick 8.61 % lipstick 6.89% 

lipstick 11.05% tennis ball 6.19% dragonfly 6.82% tennis ball 8.28% 

Standard center crop granny smith 10.58% granny smith 8.51 % granny smith 8.57% 

Zoom scale 122 

scuba diver scuba diver 47.01% scuba diver 44.12% scuba diver 34.63% 

gasmask 37.97% scuba diver 29.31% scuba diver 21.54% scuba diver 15.66% 

Standard center crop scuba diver 24.39% scuba diver 23.3% scorpion 15.91% 

Zoom scale 96 

mantis lipstick 12.66% lipstick 15.69% lipstick 13.76% 

candle 15.96% dragonfly 6.36% dragonfly 9.21 % lipstick 5.93% 

Standard center crop dragonfly 6.15% dragonfly 8.09% mantis 6.09% 

Zoom scale 192 

carousel 28.81% sax 54.08% sax 70.08% 

hotdog 

carousel 49.44% hotdog 26.13% sax 18.53% sax 33.17% 

Standard center crop sax 36.52% sax 76.4% sax 92.12% 

Zoom scale 128 

Figure A36: ImageNet-R images that can only be solved using zoom-out. Predictions are from a
ResNet-50 classifier.
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D.3.3 ObjectNet856

water Bottle water bottle 42.16% water bottle 42.76% water bottle 41.09% 

umbrella 10.55% water bottle 20.44% water bottle 22.05% water bottle 21.13% 

Standard center crop car wheel 12.63% water bottle 17.73% carwheel 11.62% 

Zoom scale 48 

monitor monitor 

printer 46.01 % television 

Standard center crop television 

Zoom scale 48 

36.02% monitor 

22.79% monitor 

8.6% television 

44.65% monitor 34.75% 

21.67% television 21.88% 

12.45% television 9.22% 

envelope envelope 81.52% envelope 82.54% envelope 75.4% 

band aid 84.06% envelope 75.51 % envelope 80.52% envelope 70.17% 

Standard center crop envelope 58.52% envelope 67.44% envelope 55.87% 

Zoom scale 48 

cellular telephone cellular telephone 81.35% cellular telephone 76.86% cellular telephone 62.74% 

jersey 28.74% cellular telephone 76.1 % cellular telephone 43.02% cellular telephone 66.47% 

Standard center crop jersey 58.14% jersey 43.9% jersey 58.03% 

Zoom scale 122 

Figure A37: ObjectNet images that can only be solved using zoom-out. Predictions are from a
ResNet-50 classifier.
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D.4 Only zoom-in solves857

Sample images that required zooming in to be classified correctly.858

D.4.1 ObjectNet859

sweatshirt soap dispenser 12.26% envelope 83.05% envelope 25.31% 

paper towel 33.54% cleaver 21.11 % paper towel 94.0% hoopskirt 25.54% 

Standard center crop jean 33.2% sleeping bag 29.82% sweatshirt 19.55% 

Zoom scale 512 

wok paper towel 64.52% paper towel 19.37% soap dispenser 54.49% 

paper towel 29.83% iron 91.17% toilet tissu 16.79% doormat 44.31% 

Standard center crop band aid 9.64% wok 61.57% strainer 28.0% 

Zoom scale 768 

barber chair screw 5.64% toilet tissu 21.64% running shoe 17.16% 

iron 18.11% nail 19.71% barber chair 16.85% backpack 26.91% 

Standard center crop television 37.71 % ashcan 12.33% plastic bag 13.13% 

Zoom scale 576 

swimming trunks envelope 48.19% toilet tissu 9.57% vacuum 8.44% 

sleeping bag 68.12% sleeping bag 72.3% swimming trunks 67.43% jean 21.25% 

Standard center crop running shoe 33.91 % band aid 6.55% vase 12.76% 

Zoom scale 512 

Figure A38: ObjectNet images that can only be solved using zoom-in. Predictions are from a ResNet-
50 classifier.
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D.5 AugMix and RandomResizedCrop860

Figure A39: K = 16 sample outputs from AugMix [25] (which yields the results of random sampling
from 13 transformations that include both spatial and color distortions).

Figure A40: K = 16 sample outputs from RandomResizedCrop (RRC), which basically randomly
zooms into an arbitrary region in the input image.

Figure A41: K = 16 sample outputs from AugMix [25] (which yields the results of random sampling
from 13 transformations that include both spatial and color distortions).

Figure A42: K = 16 sample outputs from RandomResizedCrop (RRC), which basically randomly
zooms into an arbitrary region in the input image.
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E ImageNet-Hard861

In this section, we provide details about the ImageNet-hard dataset.862

E.1 Distribution863

Figure A43: The distribution of the dataset within the ImageNet-Hard Dataset.

E.2 Samples images864

54



Figure A44: Sample images from ImageNet-Hard dataset with groundtruth labels.

E.3 Analysis of wrong predictions865

We used gpt-3.5-turbo to categorize each misprediction made by EfficientNet-L2 into two classes:866

plausible and implausible, based on the semantic distance between the groundtruth label and the867

predicted label.868
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System Message:

User:

Assistant:

You are a helpful assistant tasked with evaluating an image classifier by 
reviewing its predictions.

I am looking at a picture of a `curly coated retriever`. The model 
predicted it is a `flat coated retriever`. Can you categorize this 
prediction as plausible mistake or implausible mistake? provide a one line 
description.

This prediction can be categorized as a plausible mistake, as curly coated 
and flat coated retrievers can look similar to an untrained eye.

Figure A45: Sample prompt and response of gpt-3.5-turbo for a plausible classification. The text
in the Assistant block is the generated response.

System Message:

User:

Assistant:

You are a helpful assistant tasked with evaluating an image classifier by 
reviewing its predictions.

I am looking at a picture of a “ostrich”. The model predicted it is a “sea 
anemone”. Can you categorize this prediction as plausible mistake or 
implausible mistake? provide a one line description.

This is an implausible mistake as ostriches are large flightless birds and 
not related to sea anemones in any way.

Figure A46: Sample prompt and response of gpt-3.5-turbo for an implausible classification. The
text in the Assistant block is the generated response.
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E.4 Confusing classes869

In this section, we present a selection of examples highlighting the errors made by our highest-870

performing model, EfficientNet-L2.871

Figure A47: Images misclassified into coffemaker by EfficientNet-L2

Figure A48: Images misclassified into strainer by EfficientNet-L2

Figure A49: Images misclassified into space shuttle by EfficientNet-L2

Figure A50: Images misclassified into safety pin by EfficientNet-L2
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E.5 Common and rare misclassification872

Figure A51: Samples for misclassification of type Common
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Figure A52: Samples for misclassification of type Rare
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E.6 Evaluating OpenCLIP models’ performance on ImageNet-Hard873

All the models in this section are downloaded and used from the OpenCLIP library version 2.20.0.874

Table A11: Zero-shot performance of OpenCLIP on ImageNet-Hard (%)

Model Pre-trained Dataset Top-1 Accuracy

RN50 yfcc15m 0.80
RN50 cc12m 1.18
RN50-quickgelu yfcc15m 0.75
RN50-quickgelu cc12m 1.08
RN101 yfcc15m 0.65
RN101-quickgelu yfcc15m 0.62
ViT-B/32 laion400m_e31 5.34
ViT-B/32 laion400m_e32 5.41
ViT-B/32 laion2b_e16 5.66
ViT-B/32 laion2b_s34b_b79k 6.13
ViT-B/32 datacomp_m_s128m_b4k 2.79
ViT-B/32 commonpool_m_clip_s128m_b4k 2.50
ViT-B/32 commonpool_m_laion_s128m_b4k 2.41
ViT-B/32 commonpool_m_image_s128m_b4k 2.72
ViT-B/32 commonpool_m_text_s128m_b4k 2.46
ViT-B/32 commonpool_m_basic_s128m_b4k 2.23
ViT-B/32 commonpool_m_s128m_b4k 1.73
ViT-B/32 datacomp_s_s13m_b4k 0.61
ViT-B/32 commonpool_s_clip_s13m_b4k 0.84
ViT-B/32 commonpool_s_laion_s13m_b4k 0.66
ViT-B/32 commonpool_s_image_s13m_b4k 0.61
ViT-B/32 commonpool_s_text_s13m_b4k 0.77
ViT-B/32 commonpool_s_basic_s13m_b4k 0.75
ViT-B/32 commonpool_s_s13m_b4k 0.43
ViT-B/32-quickgelu laion400m_e31 5.34
ViT-B/32-quickgelu laion400m_e32 5.28
ViT-B/16 laion400m_e31 6.31
ViT-B/16 laion400m_e32 6.46
ViT-B/16 laion2b_s34b_b88k 7.18
ViT-B/16 datacomp_l_s1b_b8k 5.98
ViT-B/16 commonpool_l_clip_s1b_b8k 4.92
ViT-B/16 commonpool_l_laion_s1b_b8k 4.44
ViT-B/16 commonpool_l_image_s1b_b8k 4.75
ViT-B/16 commonpool_l_text_s1b_b8k 5.63
ViT-B/16 commonpool_l_basic_s1b_b8k 4.44
ViT-B/16 commonpool_l_s1b_b8k 3.83
ViT-B/16-plus-240 laion400m_e31 6.65
ViT-B/16-plus-240 laion400m_e32 6.69
ViT-L/14 laion400m_e31 8.83
ViT-L/14 laion400m_e32 8.72
ViT-L/14 laion2b_s32b_b82k 10.13
ViT-L/14 datacomp_xl_s13b_b90k 15.60
ViT-L/14 commonpool_xl_clip_s13b_b90k 11.58
ViT-L/14 commonpool_xl_laion_s13b_b90k 11.42
ViT-L/14 commonpool_xl_s13b_b90k 12.44
ViT-H/14 laion2b_s32b_b79k 13.01
ViT-g/14 laion2b_s12b_b42k 11.47
ViT-g/14 laion2b_s34b_b88k 14.03
ViT-bigG-14 laion2b_s39b_b160k 15.93
roberta-ViT-B/32 laion2b_s12b_b32k 5.21
xlm-roberta-base-ViT-B/32 laion5b_s13b_b90k 5.72
xlm-roberta-large-ViT-H/14 frozen_laion5b_s13b_b90k 12.95
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convnext_base laion400m_s13b_b51k 4.74
convnext_base_w laion2b_s13b_b82k 6.09
convnext_base_w laion2b_s13b_b82k_augreg 7.25
convnext_base_w laion_aesthetic_s13b_b82k 5.57
convnext_base_w_320 laion_aesthetic_s13b_b82k 5.50
convnext_base_w_320 laion_aesthetic_s13b_b82k_augreg 7.14
convnext_large_d laion2b_s26b_b102k_augreg 10.39
convnext_large_d_320 laion2b_s29b_b131k_ft 10.69
convnext_large_d_320 laion2b_s29b_b131k_ft_soup 11.20
convnext_xxlarge laion2b_s34b_b82k_augreg 14.27
convnext_xxlarge laion2b_s34b_b82k_augreg_rewind 14.23
convnext_xxlarge laion2b_s34b_b82k_augreg_soup 14.68
coca_ViT-B/32 laion2b_s13b_b90k 5.83
coca_ViT-B/32 mscoco_finetuned_laion2b_s13b_b90k 0.20
coca_ViT-L/14 laion2b_s13b_b90k 10.79
coca_ViT-L/14 mscoco_finetuned_laion2b_s13b_b90k 9.28

Table A12: Zero-shot performance of CommonPool and DataComp models on ImageNet-Hard (%)
Scale Model Pretrained Top-1 Accuracy

xl
ar

ge

ViT-L/14 datacomp_xl_s13b_b90k 15.60
ViT-L/14 commonpool_xl_clip_s13b_b90k 11.58
ViT-L/14 commonpool_xl_laion_s13b_b90k 11.42
ViT-L/14 commonpool_xl_s13b_b90k 12.44

la
rg

e

ViT-B/16 datacomp_l_s1b_b8k 5.98
ViT-B/16 commonpool_l_clip_s1b_b8k 4.92
ViT-B/16 commonpool_l_laion_s1b_b8k 4.44
ViT-B/16 commonpool_l_image_s1b_b8k 4.75
ViT-B/16 commonpool_l_text_s1b_b8k 5.63
ViT-B/16 commonpool_l_basic_s1b_b8k 4.44
ViT-B/16 commonpool_l_s1b_b8k 3.83

m
ed

iu
m

ViT-B/32 datacomp_m_s128m_b4k 2.79
ViT-B/32 commonpool_m_clip_s128m_b4k 2.50
ViT-B/32 commonpool_m_laion_s128m_b4k 2.41
ViT-B/32 commonpool_m_image_s128m_b4k 2.72
ViT-B/32 commonpool_m_text_s128m_b4k 2.46
ViT-B/32 commonpool_m_basic_s128m_b4k 2.23
ViT-B/32 commonpool_m_s128m_b4k 1.73

sm
al

l

ViT-B/32 datacomp_s_s13m_b4k 0.61
ViT-B/32 commonpool_s_clip_s13m_b4k 0.84
ViT-B/32 commonpool_s_laion_s13m_b4k 0.66
ViT-B/32 commonpool_s_image_s13m_b4k 0.61
ViT-B/32 commonpool_s_text_s13m_b4k 0.77
ViT-B/32 commonpool_s_basic_s13m_b4k 0.75
ViT-B/32 commonpool_s_s13m_b4k 0.43
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E.7 Evaluating classifiers on ImageNet-Hard-4K875

Table A13: Top-1 accuracy (%) on ImageNet-Hard-4K. Most models obtain a lower accuracy
compared to their corresponding accuracy on ImageNet-Hard.

Classifier Accuracy Classifier Accuracy Classifier Accuracy
AlexNet 7.08 (-0.16) ViT-B/32 18.12 (-0.40) CLIP-ViT-L/14@224px 1.81 (-0.05)
VGG-16 11.32 (-0.68) EfficientNet-B0@224px 12.94 (-3.63) CLIP-ViT-L/14@336px 1.88 (-0.14)
ResNet-18 10.42 (-0.44) EfficientNet-B7@600px 18.67 (-4.53) OpenCLIP-ViT-bigG-14 14.33 (-1.60)
ResNet-50 13.93 (-0.81) EfficientNet-L2@800px 28.42 (-10.58) OpenCLIP-ViT-L-14 13.04 (-2.56)

E.8 Obviously ill-posed samples from ImageNet-Sketch876

Figure A53: Sample images from ImageNet-Sketch that are completely black.
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