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APPENDIX

A VARIOUS RESOLUTION IMAGES

There are no image datasets prepared for various resolutions. Therefore, creating images in various
resolutions through an appropriate resizing method is important in our task. Chrabaszcz et al. (2017)
showed that low-resolution images resized by some interpolations have the characteristics of the
original image. Among various interpolation methods, the bilinear interpolation method retains the
most characteristics of the original images. Therefore, we constructed low-resolution image datasets
applying the same bilinear interpolation method to the original dataset.

After constructing the low-resolution datasets, we examined the performance decrease with various
pre-trained models. To check the performance decrease, the low-resolution images were resized
back to the target resolution (224) with various interpolation methods. Table 5 shows that the bicubic
interpolation has the smallest performance decrease. As mentioned in Section 1, images resized by
the bicubic interpolation were used as input to various pre-trained models.

Table 5: The top-1 accuracy of pre-trained
ConvNeXt-Tiny in various resolutions when re-
sized up with each interpolating method.

Method Acc. (%) Resolution
32 64 128 224

Nearest Top-1 0.9 18.17 58.27 82.52
Bilinear Top-1 29.47 60.36 76.98 82.52
Bicubic Top-1 34.51 64.88 77.27 82.52

Area Top-1 0.9 34.92 74.42 82.52
Nearest-exact Top-1 0.9 18.27 58.27 82.52

Table 6: Classification accuracy drops when scal-
ing up low-resolution images, i.e., 32, 64, 128, to
target resolution, i.e., 224 or 299, using existing
image interpolation methods. We report the best
interpolation method’s results.

Model Acc. (%) Resolution # Param.32 64 128 224 299

ResNet-18 Top-1 22.09 50.53 65.52 69.76 - 11.69MRelative 31.67 72.43 93.91 100 -

Inception-V3 Top-1 22.05 53.92 71.77 - 77.29 27.16MRelative 33.69 72.39 93.51 - 100

ViT-B16 Top-1 47.39 68.91 78.13 81.07 - 86.57MRelative 58.46 85.00 69.37 100 -

ConvNeXt-Tiny Top-1 34.51 64.88 77.27 82.52 - 28.59MRelative 42.02 79.00 94.08 100 -

B DETAILED DESCRIPTION OF DATASETS

The following are detailed descriptions of the datasets used in our experiments. The number of
classes, train images, and test images are organized in Table 7.

B.1 IMAGENET-1K

ImageNet-1k (Russakovsky et al., 2015) is the most widely used dataset in image classification along
with iNaturalist. In particular, the most widely used dataset, ImageNet Large Scale Visual Recog-
nition Challenge 2012 (ILSVRC2012), contains 1000 categories of 1.2 million images. ImageNet
is built with the WordNet hierarchy which means each category is explained by several words or
phrases. Thus, its goal is to offer a set of qualified images in the same hierarchical words or phrases.

B.2 FINE-GRAINED DATASETS

Fine-grained Datasets contain classes from a single category, such as cars, birds, flowers, aircraft, or
food, and these are more difficult to classify where detailed elements must be considered.

Stanford Cars Stanford Cars (Krause et al., 2013) is a dataset containing car images. There are 196
classes with information on make, model, and year (e.g., 2012 BMW M3 coupe).

Oxford-IIIT Pets Oxford-IIIT Pets (Parkhi et al., 2012) contains images of cats and dogs with 37
categories. The label consisted of species and breeds. This dataset also provides a bounding box for
segmentation tasks.

Flowers Flowers (Nilsback & Zisserman, 2008) includes 102 categories of flowers that are mainly
found in the United Kingdom. Even flowers belonging to the same categories have large variations
in pose, size, and light.
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FGVC Aircraft FGVC Aircraft (Maji et al., 2013) is used in the fine-grained recognition challenge
2013 (FGComp). Aircraft with various sizes, purposes, driving forces, and other features are classi-
fied by those fine-grained features. The 100 categories of aircraft include the make or name of the
model series.

Food-101 Food-101 (Bossard et al., 2014) contains 101 kinds of food images, which were originally
provided to be used for RandomForest. The number of images is much larger compared to other fine-
grained datasets. The images in this dataset are already rescaled and contain noises ranging from
color intensity to wrong labels.

Table 7: The number of classes, train images and test images.

Datasets # of classes # of train images # of test images
ImageNet-1k 1000 1,281,167 50,000
Stanford Cars 196 8,144 8,041

Oxford-IIIT Pets 37 3,680 3,669
Flowers 102 1,020 6,149

FGVC Aircraft 100 3,334 3,333
Food-101 101 75,750 25,250

C TRAINING ALGORITHM

We describe a two-stage training algorithm in Algorithm. 1. We first stage for training with tar-
get resolution in the first while loop, followed by the second while loop for training with various
resolutions.

Algorithm 1: 2-stage Training of PAC-FNO
Input: Target resolution data Dtarget, Number of low-resolutions N , Low resolution data

{Dlow1 , · · · , DlowN }, Class label y, Predicted class label ŷ, First phase iteration number Kfirst,
Second phase iteration number Ksecond, PAC-FNO parameters θo, Pre-trained backbone model
parameters θp, cross-entropy loss CE

Initialize θo;
k ← 0;
/* First training stage */
while k < Kfirst do

for each mini-batch B ⊆ Dtarget do
{ŷi}|B|

i=1← Backbone(PAC-FNO(B;θo);θp);
Train θo and θp with CE({ŷi}|B|

i=1, {yi}|B|
i=1);

k ← k + 1;
end
k ← 0 ;
/* Second training stage */
while k < Ksecond do

for i← 1 to N do
for each mini-batch B ⊆ Dlowi do
{ŷi}|B|

i=1← Backbone(PAC-FNO(B;θo);θp);
Train θo with CE({ŷi}|B|

i=1, {yi}|B|
i=1);

for each mini-batch B ⊆ Dtarget do
{ŷi}|B|

i=1← Backbone(PAC-FNO(B;θo);θp);
Train θo with CE({ŷi}|B|

i=1, {yi}|B|
i=1);

k ← k + 1;
end

D BACKBONE MODELS

We propose a plug-in module for multi-scale classification. Therefore, we applied various pre-
trained classification models from CNN-based to ViT-based classification models. All classification
models were trained with ImageNet-1k from scratch with the settings in Table 8. TORCHVISION
provides all such pre-trained models.

ResNet-18 Residual network (ResNet) is a model that applies the concept of residual connection to
CNN architectures. ResNet-18 (He et al., 2016) consists of 18 convolutional blocks and 8 residual
layers. It is the most fundamental model in image classification.

14



Published as a conference paper at ICLR 2024

Table 8: Recipe for the pre-trained models provided in TORCHVISION.

Model ResNet-18 ViT-B16 ConvNeXt-Tiny
Epochs 90 300 600

Batch size 32 512 128
Optimizer sgd adamw adamw

Learning rate (lr.) 0.1 3e-3 1e-3
Weight decay 1e-4 0.3 0.05
lr. scheduler steplr cosineannealinglr cosineannealinglr

lr. warmup method - linear linear
lr. warmup epochs - 30 5
lr. warmup decay - 0.033 0.01

Amp - ◦ -
Random erase - - 0.1

Label smoothing - 0.11 0.1
Mixup alpha - 0.2 0.2

Auto augment - ra ta wide
Clip grad norm - 1 -

Ra sampler - ◦ ◦
Cutmix alpha - 1.0 1.0
Model-ema - ◦ ◦

Norm weight decay - - 0.0
Train crop size 224 224 176
Test resize size 256 256 232
Test crop size 224 224 224

Ra reps - 3 4

Inception-V3 Inception networks (Szegedy et al., 2016) are one of the most popular classification
models, which stacks deep convolutional layers in an efficient way. They proposed techniques such
as the concatenation of convolutional layers with different kernel sizes, kernel decomposition, and
backpropagation with an auxiliary classifier for efficient training. We used the pre-trained Inception-
V3 model provided by TORCHVISION, and there is no training recipe for training from scratch.

ViT-B16 Vision Transformer (Dosovitskiy et al., 2020) (ViT) is a model that uses transformers based
on a self-attention architecture in the image domain. It divides an image into patches and calculates
all patch-by-patch relationships through self-attention. Because of these calculations, much memory
and training time are required. Among those ViT-based models, ViT-B16 has the smallest model size
and divides an image into 16 patches.

ConvNeXt-Tiny ConvNeXt (Liu et al., 2022) is one of the most recent models with good per-
formance using only convolutional networks. It shows better performance with fewer parameters
compared to ViT. To achieve good performance, it utilizes several advanced training schemes for
convolutional networks. ConvNeXt-Tiny refers to the smallest model size in the ConvNeXt family.

E HYPERPARAMETERS

In Tables 9 and 10, we list all the key hyperparameters in our experiments for each dataset. Our
Appendix accompanies some trained checkpoints and one can easily reproduce.

Table 9: The best hyperparameter of our main experiments (ImageNet-1k).

ImageNet-1k ResNet-18 Inception-V3 Vision Transformer ConvNeXt-Tiny
# of parallel AC-FNO blocks (m) 2 2 2 4

# of stages (n) 1 1 1 2
First phase training lr. 1e-3 1e-3 1e-3 2e-4

Second phase training lr. 1e-6 1e-6 1e-6 2e-6
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Table 10: The best hyperparameter of our experiments on the fine-grained datasets.

ConvNeXt-Tiny StanfordCars Oxford-IIIT Pets Flowers FGVC Aircraft Food-101
# of parallel AC-FNO blocks (m) 4 2 2 2 2

# of stages (n) 2 2 1 1 1
First phase training lr. 1e-3 1e-3 1e-3 1e-3 1e-3

Second phase training lr. 1e-6 1e-5 1e-6 1e-6 1e-6

F EVALUATION

F.1 EXPERIMENTAL SETUP

We run our experiments on a machine equipped with Intel i9 CPUs and Nvidia RTX A5000/A6000
GPUs. We implement PAC-FNO using Python v3.8 and PyTorch v1.12.

F.2 NUMBER OF PARAMETERS OF PAC-FNO

We report the number of parameters of PAC-FNO according to backbone models and datasets.

Table 11: The number of parameters according
to backbone models.

ImageNet-1k ResNet-18 Inception-V3 Vision Transformer ConvNeXt-Tiny
# of PAC-FNO

parameters +0.91M +1.61M +0.91M +3.65M

Table 12: The number of parameters according to
datasets

ConvNeXt-Tiny StanfordCars Oxford-IIIT Pets Flowers FGVC Aircraft Food-101
# of PAC-FNO

parameters +3.65M +3.65M +3.65M +3.65M +3.65M

F.3 ADDITIONAL SUPER-RESOLUTION METHODS

In this section, we report experimental results with the additional latest super-resolution baseline.
We fine-tune a pre-trained classification model with low-resolution images that are upscaled by the
super-resolution model. We note that we used the latest super-resolution model.

In Table 13, combining the super-resolution and fine-tune methods shows better performance than
simply upscaling low-resolution images to the target resolution using the super-resolution model.
Even at 32 resolution, it shows slightly better performance than PAC-FNO. However, this super-
resolution method has two major drawbacks. The first drawback is the model size. DRPN’s ×8
upscaling model has a similar number of parameters the the pre-trained model size, i.e., 23.21M
vs.28.59M. Second, a model is needed for each resolution. In other words, upscaling models for
×8, ×4, and ×2 are needed to handle 28, 56, and 112 resolutions, respectively. In contrast, our
proposed PAC-FNO can handle images of all resolutions with an additional 3.65M network and
shows good performance.

Additionally, we verify the superiority of PAC-FNO by providing a comparison with a method
equipped with the latest super-resolution model. OSRT (Yu et al., 2023) is a state-of-the-art model
in the super-resolution domain but it does not support ×8 upscale. Therefore, we only use the ×2
and ×4 upscale models of OSRT. As a result, PAC-FNO shows better performance than OSRT and
OSRT (fine-tune) methods.

Table 13: Results with the additional latest super-resolution method. For the experiment, we
used ConvNeXt-Tiny as a pre-trained model. (Left: ImageNet-1k, Right: ImageNet-C/P Fog)

Model Method Metric Resolution
28 32 56 64 112 128 224

ConvNeXt-Tiny

Resize Top1-Acc (%) 27.5 34.5 60.7 64.9 75.0 77.3 82.5
Fine-tune Top1-Acc (%) 40.2 62.3 65.8 76.0 76.4 80.7 81.8

DRPN Top1-Acc (%) 40.7 - 68.2 - 79.4 - 82.5
# of Parameters (M) 23.21 - 10.43 - 5.95 - -

DRPN
(Fine-tune)

Top1-Acc (%) 60.8 - 72.5 - 76.7 - 82.5
# of Parameters (M) 23.21 - 10.43 - 5.95 - -

OSRT Top1-Acc (%) - - 61.4 - 75.4 - 82.5
# of Parameters (M) - - 11.93 - 11.79 - -

OSRT
(Fine-tune)

Top1-Acc (%) - - 71.2 - 78.4 - 81.2
# of Parameters (M) - - 11.93 - 11.79 - -

PAC-FNO Top1-Acc (%) 58.9 63.2 77.6 76.2 80.2 80.7 81.8
# of Parameters (M) 3.65

Model Method Metric Resolution
28 32 56 64 112 128 224

ConvNeXt-Tiny

Resize Top1-Acc (%) 8.12 10.8 27.2 31.9 48.5 52.3 58.4
Fine-tune Top1-Acc (%) 23.2 28.2 47.5 51.4 61.0 62.2 63.0

DRPN Top1-Acc (%) 0.67 - 0.99 - 1.32 - 58.4
# of Parameters (M) 23.21 - 10.43 - 5.95 - -

DRPN
(Fine-tune)

Top1-Acc (%) 21.8 - 42.3 - 56.8 - 61.0
# of Parameters (M) 23.21 - 10.43 - 5.95 - -

OSRT Top1-Acc (%) - - 19.4 - 37.9 - 58.4
# of Parameters (M) - - 11.93 - 11.79 - -

OSRT
(Fine-tune)

Top1-Acc (%) - - 42.3 - 56.4 - 59.4
# of Parameters (M) - - 11.93 - 11.79 - -

PAC-FNO Top1-Acc (%) 25.4 30.4 48.2 51.7 60.1 61.4 62.8
# of Parameters (M) 3.65
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F.4 ADDITIONAL FINE-GRAINED DATASETS

Tables 14 and 15 show the performance of the remaining fine-grained dataset, Stanford Cars. PAC-
FNO shows good performance in most cases, especially at low-resolution compared to other models.
Tables 16 and 17 show the performance of the Oxford-IIIT Pets with the ViT model. PAC-FNO
shows good performance than FNO at all resolutions.

Table 14: Top-1 accuracy on low-resolution.

Dataset Method Resolution

28 32 56 64 112 128 224

Standford Cars

Resize 14.7 22.5 66.3 73.6 88.2 89.6 91.5
Fine-tune 12.3 66.5 70.5 88.5 91.2 92.4 92.6

DRLN 1.98 - 36.1 - 87.0 - 91.5
DRPN 41.5 - 84.2 - 90.9 - 91.5
FNO 11.9 19.2 67.8 75.3 91.0 92.6 93.9
UNO 57.4 66.2 85.9 87.8 91.6 92.1 92.3

A-FNO 67.6 74.4 88.0 89.7 92.1 92.3 92.7
PAC-FNO 70.4 76.6 89.0 90.0 92.6 92.8 93.5

Table 15: Relative accuracy on low-resolution.

Dataset Method Resolution

28 32 56 64 112 128 224

Standford Cars

Resize 16.1 24.5 72.4 80.4 96.4 97.9 100
Fine-tune 13.6 71.9 76.1 95.6 98.5 99.8 100

DRLN 2.16 - 39.4 - 95.1 - 100
DRPN 51.9 - 92.1 - 99.3 - 100
FNO 12.7 20.5 72.2 80.2 96.9 98.6 100
UNO 62.2 71.7 93.1 95.1 99.2 99.8 100

A-FNO 72.9 80.2 94.9 96.7 99.4 99.5 100
PAC-FNO 75.3 81.9 95.2 96.3 99.0 99.3 100

Table 16: Top-1 accuracy on low-resolution.

Dataset Method Resolution

28 32 56 64 112 128 224

Oxford-IIIT Pets FNO 26.3 33.0 58.1 64.8 82.9 85.8 91.3
PAC-FNO 40.3 46.2 69.0 72.5 86.8 89.2 92.2

Table 17: Relative accuracy on low-resolution.

Model Method Resolution

28 32 56 64 112 128 224

Oxford-IIIT Pets FNO 28.8 36.1 63.6 71.0 90.8 94.0 100
PAC-FNO 43.7 50.1 74.8 78.6 94.1 96.7 100

F.5 ADDITIONAL METRIC FOR IMAGENET-1K AND FINE-GRAINED DATASETS

Table 18 and 19 show the relative accuracy of low-resolution images generated by ImageNet-1k
and fine-grained datasets. In ImageNet-1k, the performance of PAC-FNO is the best in most of
the datasets, and especially in lower resolution. In fine-grained datastes, PAC-FNO shows good
performance in all cases. In other words, PAC-FNO works very well for low-resolution image
classification.

Table 18: Relative accuracy on low-resolution
images generated from ImageNet-1k

Model Method Resolution

28 32 56 64 112 128 224 299

ResNet-18

Resize 23.9 31.7 65.5 72.3 91.3 93.8 100 -
Fine-tune 1.6 3.3 15.7 25.1 53.1 77.8 100 -

DRLN 0.3 - 24.5 - 90.0 - 100
DRPN 45.3 - 79.7 - 96.7 - 100
FNO 57.3 64.5 84.3 87.7 96.4 97.7 100 -
UNO 57.5 65.3 84.9 88.3 96.7 98.1 100 -

A-FNO 63.2 72.3 87.9 91.2 97.7 98.5 100 -
PAC-FNO 60.8 67.9 86.2 89.5 97.3 98.4 100 -

Inception-V3

Resize 21.6 28.5 62.9 69.7 89.9 92.9 - 100
Fine-tune 51.1 60.9 82.2 90.1 94.1 94.6 - 100

FNO 62.4 68.9 87.4 89.5 95.5 97.6 - 100
UNO 54.6 62.2 84.6 88.0 96.6 97.7 - 100

A-FNO 44.6 52.9 79.6 83.7 94.8 96.3 - 100
PAC-FNO 62.9 70.0 87.8 90.2 97.1 98.1 - 100

ViT-B16

Resize 51.3 58.4 81.4 85.0 94.7 96.3 100 -
Fine-tune 49.1 59.8 82.1 85.8 95.3 96.7 100 -

DRLN 4.6 - 51.8 - 94.9 - 100
DRPN 64.4 - 90.0 - 98.6 - 100 -
FNO 49.1 58.5 83.1 86.8 96.7 97.9 100 -
UNO 54.5 63.1 84.7 87.7 97.1 98.3 100 -

A-FNO 69.1 74.8 90.9 93.2 98.5 99.2 100 -
PAC-FNO 58.5 65.5 86.7 89.9 97.6 98.7 100 -

ConvNeXt-Tiny

Resize 33.3 41.8 73.6 78.7 90.9 93.7 100 -
Fine-tune 49.1 76.2 80.4 92.9 93.4 98.7 100 -

DRLN 0.4 - 30.4 - 87.0 - 100 -
DRPN 49.3 - 82.7 - 96.2 - 100 -
FNO 54.0 61.7 85.1 88.1 96.6 97.7 100 -
UNO 72.7 78.0 91.4 93.7 98.1 98.9 100 -

A-FNO 61.8 68.5 87.2 90.3 97.2 98.1 100 -
PAC-FNO 72.3 77.5 91.4 93.5 98.4 99.0 100 -

Table 19: Relative accuracy on low-resolution
images generated from Fine-grained datasets

Dataset Method Resolution

28 32 56 64 112 128 224

Oxford-IIIT Pets

Resize 31.4 38.8 74.8 82.2 95.9 97.3 100
Fine-tune 34.8 43.8 78.0 84.5 97.0 97.5 100

DRLN 3.6 - 39.3 - 94.0 - 100
DRPN 44.3 - 89.9 - 98.8 - 100
FNO 20.9 59.1 66.3 76.8 94.9 98.9 100
UNO 12.3 17.4 47.8 55.9 88.7 92.8 100

A-FNO 30.3 37.4 71.3 78.8 95.6 97.5 100
PAC-FNO 80.0 84.3 93.8 95.5 98.7 99.3 100

Flowers

Resize 41.2 49.6 78.5 83.7 96.0 97.7 100
Fine-tune 46.2 53.3 82.2 85.4 96.5 98.0 100

DRLN 10.3 - 55.7 - 95.2 - 100
DRPN 67.3 - 92.8 - 99.1 - 100
FNO 26.2 34.0 68.2 75.6 94.9 97.0 100
UNO 24.1 31.4 67.1 74.6 94.5 96.4 100

A-FNO 29.2 36.6 69.3 76.2 93.8 96.6 100
PAC-FNO 78.5 82.6 92.8 94.6 99.2 99.8 100

FGVC Aircraft

Resize 3.1 3.5 34.3 52.4 89.1 93.2 100
Fine-tune 10.7 20.3 50.4 73.1 96.7 95.2 100

DRLN 1.4 - 16.4 - 86.4 - 100
DRPN 23.1 - 74.8 - 96.6 - 100
FNO 32.6 41.1 73.6 79.3 92.4 93.8 100
UNO 2.0 2.1 11.2 27.8 89.5 93.6 100

A-FNO 8.4 14.2 62.9 73.3 92.9 95.3 100
PAC-FNO 46.5 55.6 82.6 85.6 94.9 96.9 100

Food-101

Resize 44.0 52.8 83.6 88.0 96.7 97.9 100
Fine-tune 55.0 59.3 88.0 89.9 96.8 98.2 100

DRLN 7.7 - 42.9 - 95.3 - 100
DRPN 60.2 - 89.6 - 65.3 - 100
FNO 48.0 56.5 85.8 89.2 97.1 98.0 100
UNO 57.5 64.5 85.9 89.1 96.9 97.8 100

A-FNO 52.2 58.6 81.9 85.9 95.0 96.1 100
PAC-FNO 82.9 86.1 94.6 96.1 98.7 99.2 100
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F.6 ADDITIONAL NATURAL INPUT VARIATIONS

Table 20 shows the remaining input variation results of ImageNet-C/P Hendrycks & Dietterich
(2019). For the remaining input variations, we report results at 32, 64, 128, and 224 resolution, ex-
cluding SR models whose performance appears to be meaningless. In most cases, PAC-FNO shows
good performance at 32 and 64 resolution, and Fine-tune shows good performance at 128×128 and
224×224 resolution. However, at 128 and 224, there is a performance difference of up to 5% (Glass
noise 44.2% vs. 39.5% at 128 × 128 resolution), but at 32 and 63, there is a performance difference
of up to 47% (Pixelate 44.2% vs. 39.5% at 32 × 32 resolution). In other words, PAC-FNO shows
good performance by a large margin at low-resolution.

Table 20: Performance of PAC-FNO on the input variation tasks. We show the top-1 accuracy
of the ConvNext-Tiny model on remaining input variations, chosen from ImageNet-C/P (Hendrycks
& Dietterich, 2019).

Variation Model Resolution

32 64 128 224

Resize 11.3 37.9 55.3 47.9
Fine-tune 11.6 39.5 57.4 51.5

FNO 38.4 47.1 46.5 43.4
UNO 42.8 54.6 56.5 52.1

A-FNO 37.8 43.1 44.0 42.8

Gaussian
Noise

PAC-FNO 48.0 54.8 56.5 52.3

Resize 11.3 37.3 53.8 45.4
Fine-tune 11.6 39.0 56.2 49.5

FNO 38.2 45.9 43.9 41.1
UNO 41.2 53.6 55.2 50.5

A-FNO 38.1 42.9 42.8 41.2

Shot
Noise

PAC-FNO 47.7 54.0 55.0 50.0

Resize 10.8 36.9 53.2 44.6
Fine-tune 11.3 38.5 55.5 48.5

FNO 37.2 45.2 41.8 38.5
UNO 37.2 53.5 54.3 48.9

A-FNO 36.5 41.3 39.3 37.2

Impulse
Noise

PAC-FNO 46.7 53.5 54.1 50.2

Resize 10.0 32.2 48.3 43.2
Fine-tune 11.1 36.9 56.9 55.9

FNO 35.8 44.9 47.4 47.6
UNO 47.2 51.5 50.5 47.3

A-FNO 38.6 47.2 47.4 47.2

Defocus
Noise

PAC-FNO 51.3 57.7 57.5 56.2

Resize 11.7 33.5 38.7 31.5
Fine-tune 12.7 36.9 44.2 38.8

FNO 39.8 43.3 34.9 32.4
UNO 26.1 43.4 33.4 30.7

A-FNO 42.8 39.6 28.7 26.1

Glass
Noise

PAC-FNO 54.4 50.9 39.5 35.1

Variation Model Resolution

32 64 128 224

Resize 10.6 36.5 54.0 48.1
Fine-tune 11.5 39.6 58.8 55.9

FNO 36.3 46.9 48.7 47.4
UNO 41.3 50.6 49.3 47.9

A-FNO 37.6 44.9 42.6 41.3

Motion
Noise

PAC-FNO 50.4 56.5 55.3 54.1

Resize 10.3 25.7 43.0 43.6
Fine-tune 10.9 26.8 46.4 48.9

FNO 35.2 38.5 37.3 37.0
UNO 33.5 40.2 39.4 39.5

A-FNO 36.0 35.9 33.8 33.5

Zoom
Noise

PAC-FNO 49.6 48.8 46.5 44.6

Resize 4.9 20.2 46.6 49.6
Fine-tune 5.2 21.8 49.0 52.5

FNO 20.3 31.1 41.6 45.9
UNO 40.1 36.5 44.0 43.6

A-FNO 18.1 27.4 37.5 40.4

Snow

PAC-FNO 31.9 41.1 48.3 49.4

Resize 6.5 30.8 54.9 54.1
Fine-tune 6.9 32.3 56.7 57.0

FNO 27.8 42.3 49.0 50.9
UNO 46.0 48.8 54.0 53.6

A-FNO 22.6 37.7 45.3 46.0

Frost

PAC-FNO 40.3 52.4 56.9 56.9

Resize 8.1 40.4 62.9 59.5
Fine-tune 8.5 41.7 65.8 64.7

FNO 31.8 53.5 63.3 63.5
UNO 59.2 59.6 65.2 62.8

A-FNO 34.8 55.6 62.1 59.2

Contrast

PAC-FNO 44.9 59.9 65.1 62.3

Variation Model Resolution

32 64 128 224

Resize 12.2 40.0 56.8 53.2
Fine-tune 12.6 41.5 59.1 56.6

FNO 38.3 49.7 52.1 51.5
UNO 45.4 52.8 50.5 48.4

A-FNO 41.3 48.2 47.8 45.4

Elastic
Transform

PAC-FNO 51.8 57.3 55.8 53.5

Resize 14.5 81.0 63.8 53.2
Fine-tune 15.1 52.9 66.8 56.6

FNO 48.6 66.7 62.5 42.9
UNO 40.8 70.9 64.6 52.2

A-FNO 53.2 67.8 58.9 40.8

Pixelate

PAC-FNO 62.6 73.2 67.9 54.4

Resize 12.9 44.4 64.3 62.4
Fine-tune 13.3 45.9 66.3 65.5

FNO 45.2 62.5 65.2 63.7
UNO 61.1 61.2 64.4 62.2

A-FNO 50.9 64.8 63.9 61.1

Jpeg
Compression

PAC-FNO 52.3 63.2 64.8 63.0

Resize 12.1 41.2 59.2 53.5
Fine-tune 12.5 42.6 66.2 57.1

FNO 41.6 52.7 51.3 48.8
UNO 48.3 58.6 59.9 56.2

A-FNO 42.7 49.6 49.8 48.3

Speckle
Noise

PAC-FNO 52.1 60.3 61.4 57.8

Resize 10.4 34.8 51.1 46.9
Fine-tune 11.5 39.1 59.0 58.4

FNO 37.3 47.8 50.6 50.8
UNO 51.2 54.0 53.3 50.2

A-FNO 40.1 50.2 51.3 51.2

Gaussian
Blur

PAC-FNO 52.5 60.0 60.7 59.4

Table 21: Performance of PAC-FNO according to low and high-frequency filter. We report top-1
accuracy on low-resolution images generated from ImageNet-1k in ConvNeXt-Tiny.

ImageNet-1k 32 64 128 224
PAC-FNO

(low pass filter) 53.5 71.4 78.7 79.0

PAC-FNO
(high pass filter) 21.6 49.4 68.2 74.8

PAC-FNO 58.9 74.5 80.2 81.5

ImageNet-C/P Fog 32 64 128 224
PAC-FNO

(low pass filter) 18.0 41.7 52.4 54.4

PAC-FNO
(high pass filter) 5.92 23.0 43.2 50.2

PAC-FNO 25.4 48.2 60.1 62.8

F.7 ADDITIONAL ABLATION STUDIES

We provide an analysis of the impact of low and high-frequency information on accu-
racy/generalization through ablation experiments. Table 21 shows thah compared to PAC-FNO,
using low-pass and high-pass filters results in lower accuracy and generalization. When using a
high-pass filter, it is expected to show good performance in ImageNet-C/P Fog, but since the perfor-
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Figure 7: Comparison of spectral responses according to the configuration of the AC-FNO
block. We test the ConvNeXT-Tiny backbone model on ImageNet-1k and visualize only the hidden
vector of the first layer (m = 1) for the hidden vectors hm

n . In the case of parallel (solid line), there
are four hidden vectors (h1

n, n ∈ {1, 2, 3, 4}), and in the case of serial (dashed line), there is one
hidden vector (h1

n, n ∈ {1}).

mance even on clean images is not good, it does not show good performance in terms of generaliza-
tion. Therefore, only PAC-FNO, which uses both low and high-frequency components, shows good
performance in terms of accuracy/generalization.

F.8 EFFECTIVENESS OF PARALLEL ARCHITECTURE

In this section, we show the efficacy of the parallel configuration of the AC-FNO block by visualizing
which frequencies are captured. For fair comparison, we visualize the first layer output, which
contains the most information of an original input sample, for the following two settings: AC-FNO
in our proposed parallel configuration and AC-FNO in a serial configuration. Figure 7 shows spectral
responses according to the configuration of the AC-FNO block. The farther it is from the center, the
higher its frequency is.

In Figure 7, We show that in the parallel configuration, each hidden vector not only captures the
low-frequency components but also captures the high-frequency components. Moreover, their fre-
quencies are sometimes complementary to each other. In particular, h1

4 has large normalized mag-
nitudes at high frequency ranges, which means that h1

3 captures high-frequency components well.
On the other hand, the hidden vector of the serial configuration (dashed line) is concentrated at
low-frequency (center).

Additionally, since the parallel configuration of the AC-FNO block captures both high and low-
frequency components, it also shows good performance for image degradations as shown in Figure 8.
Figures 8d and 8e are visualizations in the frequency domain. In other words, PAC-FNO consider
high-frequency information well in those cases.
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(a) Original (b) Original with Fog (c) Original with Gaussian Blur
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(e) Frequency domain of Gaussian blur

Figure 8: Visualization of image degradation. (d) and (e) are visualizations of degradation without
clean images e.g., (b)-(a) and (c)-(a) in the frequency domain.

F.9 FLOPS AND RUNTIME

We report the FLOPs and runtime on data at different resolutions

Table 22: Results of FLOPs and runtime on ImageNet-1k in ConvNeXt-Tine.

ImageNet-1k Method Metrics Resolution
28 56 112 224

ConvNeXt-Tiny

Resize GFLOPs 8.96 8.96 8.96 8.96
Runtimes (s) 0.006 0.006 0.006 0.006

Fine-tune GFLOPs 8.96 8.96 8.96 8.96
Runtimes (s) 0.006 0.006 0.006 0.006

DRLN GFLOPs 180.66 412.05 1200.50 8.96
Runtimes (s) 0.378 0.498 0.913 0.007

DRPN GFLOPs 1220.42 576.94 387.88 8.96
Runtimes (s) 0.1532 0.164 0.171 0.007

FNO GFLOPs 9.78 9.78 9.78 9.78
Runtimes (s) 0.016 0.016 0.016 0.016

UNO GFLOPs 9.10 9.10 9.10 9.10
Runtimes (s) 0.018 0.018 0.018 0.018

AFNO GFLOPs 8.96 8.96 8.96 8.96
Runtimes (s) 0.010 0.010 0.010 0.010

PAC-FNO GFLOPs 8.98 8.98 8.98 8.98
Runtimes (s) 0.013 0.013 0.013 0.013
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