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ABSTRACT

We posit that one fundamental, core component of robotic manipulation is infer-
ring contacts with the environment, enabling the agent to exert control. In this
work, we study a fundamental problem of contact synthesis in robotic manipula-
tion to choose a set of contact positions and forces on a random rigid or articu-
lated rigid object for an arbitrary robot manipulator to produce a specified external
wrench. Our framework first segments the point clouds with normals into feasi-
ble contact region sets. For each feasible contact region set, a model is trained to
produce the feasible contact point within these region sets by taking as inputs the
robot description, the target wrench, the object point cloud with normals, and the
contact region set. After gathering the contact positions from the neural network
model, we develop an optimization process to fine-tune the contact points and
contact forces and generate the joint values for the robotic manipulator to exert
contact forces on the object’s surface without penetration. We perform extensive
experiments to verify the effectiveness of our proposed framework both in simula-
tion and in real-world experiments. Supplementary and Videos are on the website
https://sites.google.com/view/unicontact

1 INTRODUCTION

Empowering robots with the capability to manipulate objects of diverse shapes, types, sizes, and
adeptly control their placements and status, has long been recognized as an essential component
of intelligent robots Billard & Kragic (2019). Manipulation contains a wide range of subareas,
including prehensile manipulation like grasping and reorientating pens, non-prehensile manipulation
such as pushing coins and flipping a light switch, and rolling a ball on a table Bullock & Dollar
(2011). Additionally, there are multipurpose fine manipulations such as tool manipulation and in-
hand manipulation. According to Mason (2018), manipulation refers to an agent’s control of its
environment through selective contact. We posit that one fundamental, core component of robotic
manipulation is inferring contacts with the environment, enabling the agent to exert control.

In this work, we formulate a fundamental problem of contact synthesis in robotic manipulation,
which is to choose a set of contact positions and forces on a random rigid or articulated rigid object
for an arbitrary robot manipulator to generate a specified target wrench. An effective and efficient
robot model to generate contacts is crucial for a wide range of robotic manipulation applications.
This is an extremely challenging problem due to many factors, such as the high complexity of object
shapes, diverse connection patterns in articulated objects, and the large variety of robot designs.

This problem is related to several core issues in robotic manipulation, including grasp synthesis,
contact optimization, and affordance. Grasp synthesis involves finding a grasp configuration that
meets specific criteria, such as force closure to withstand arbitrary external wrenches. In contrast,
our focus is on identifying contact points on objects to produce a target wrench. Our formulation is
widely applied to non-prehensile tasks when robots need to manipulate non-graspable objects (for
example, a large box without a grasping region). Furthermore, we extend the contact synthesis from
rigid bodies to articulated rigid bodies, seamlessly integrating them into a unified framework.
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Figure 1: Given the object point clouds, the target wrenches, and arbitrary manipulator URDF, our
proposed UniContact predicts the robot poses and contact points for different manipulation tasks.

Contact optimization typically assumes prior knowledge of object shapes and connectivity. Our
framework, on the other hand, takes object point clouds as inputs, which could be gathered directly
from the depth sensor. In addition to generating contact forces, our model contains an efficient
pipeline to produce feasible, collision-free contact positions for specific robot configurations. Re-
garding Visual affordances, it describes the object manipulation process from the robot-centric to
object-centric perspective. It highlights regions of interest on the object surface to indicate their piv-
otal role during the robot-object interaction. However, from the robot-centric view, the affordance
regions are too coarse. In such cases, there may not be feasible motions to reach or manipulate these
regions for particular robots. To achieve dexterous manipulation, robots must also determine the
appropriate contact forces to exert on the objects.

Given the object point cloud, the target wrench, and the manipulator’s URDF, our pipeline first
segments the point cloud into multiple regions and infers these feasible region sets, which contain
feasible solutions of the contact positions and forces. Then, the feasible contact regions, together
with the manipulator’s descriptions, and the target wrench, are fed into our proposed contact point
generation network to produce the contact point sets and the associated robotic manipulator joint
values, which serve as the initialization of our contact optimizations. Our proposed optimization
generates accurate solutions for the robot to exert on the objects and provide a collision-free solution.

Our primary contributions are:

• We formulate a fundamental problem of contact synthesis in robotic manipulation for arbitrary
manipulators to choose a set of contact positions and forces on a random rigid or articulated rigid
object to generate a specified target wrench.

• We develop a neural network model to infer the feasible contact positions for arbitrary robot
manipulators based on the manipulator’s description, the target wrench, the object’s oriented
point cloud, and the contact region set.

• We propose an optimization framework to adaptively optimize contact force and contact location
on the point cloud with normals.

• We develop an efficient collision-free inverse kinematic solver for robots to make contact with
the specific positions on the object surface without further penetration, leveraging the artificial
potential field.

• We conduct extensive experiments to verify the effectiveness of our proposed framework both
in simulation and in real-world experiments.

2 PRELIMINARY

Wrench. When a force f is applied at a specific point p on an object, we can compute the resulting
torque it generates around the origin, typically the center of mass. Then wrench, which combines
both the force and torque, determines the acceleration exerted on the object by this force. At the
point p on the object surface, we can set up a local frame with z along with the inward normal and x
and y axis tangent to the surface. The mapping from force f to wrench w is linear and represented

by the wrench basis matrix G(p) =

(
R

r ×R

)
, where R is the relative rotation matrix from origin

frame to p’s local frame, r is the position of p and r× means the right cross product matrix of r.
Then w = G(p)f .
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Fricion Cone. When considering frictional contact force at p on the object surface, we utilize
the previous local frame of p. The contact force f lies in the friction cone FC = {f ∈ R3 :√
f2
1 + f2

2 ≤ µf3}, where µ denotes the friction coefficient. In practice, the friction cone can be
approximated by a polyhedral cone spanned by a finite set of kf vectors {f̂i}

kf

i=1.

3 TECHNICAL APPROACH

In robot manipulation tasks, the task description can be effectively represented by a wrench that we
aim to apply to the object. For instance, the task “lifting an apple” translates to applying a straight
upward force to the apple larger than its gravity, while the task “opening an oven” means applying a
clockwise or anticlockwise torque along the axis of the oven door. Note that we assume that robots
manipulate only one object/link at a time with the manipulator, whether it is free or articulated with
other objects/links. The target wrench applied to that object/link is the only signal that we need for
manipulation. The articulation information only influences which kind of wrench we should choose.
Again in the task “opening an oven”, the orientation of revolutional joint decides the direction of
torque and the position of the joint decides the direction and magnitude of horizontal force so that
the oven door can rotate along the joint axis. Thus the target wrench is enough.

Our framework takes the point cloud of a rigid body, the target wrench, and the robot URDF as in-
puts, and outputs the contact positions and contact forces on the object surface and the corresponding
robot joint values to exert the forces at the positions. Note that our framework also requires point
cloud’s normals. Our pipeline first segments the point clouds. Denoted the segmented point cloud
as {Pi}Si=1. Based on the predefined number of contact points K, our pipeline generates a list
candidates of region set {Pj}Kj=1, where Pj ∈ {Pi}Si=1. Here each contact region set contains K
regions. Each region contains one contact point, thus one region may appear more than once inside
the contact region set. Our pipeline select the contact points from the contact regions and produce
the contact positions and forces, and the robot joint values.

The target wrench can be associated with the desired object pose and status. The discussion of how
to specify the target wrench falls outside of our focus. We put the discussion to produce the target
wrench in the website.

3.1 CONTACT-AWARE SEGMENTATION

For each point in the point cloud with its position pi and the associated inward normal ni, we
calculate each point’s wrench basis matrix wi = [ni, pi × ni]. We define each point contact feature
as ci = [pi, wi] and cluster the point cloud, based on their contact features using Euclidean distance,
into a finite number of regions which we call contact regions. Given a set of contact regions, we
can immediately calculate if the set of contact regions is feasible to contain a set of contact points
to produce the desired target wrench which is discussed later in this subsection. We apply the
verification to all possible combinations of contact region sets. Each feasible region set is selected
and fed into the deep network model to produce contact points (described in sec. 3.2).

Such a segmentation offers several benefits. First, the deepnet model described in the next subsection
only needs to select the feasible contact points from a set of the contact region, which significantly
reduces the learning difficulty. The segmentation also weights points according to their contact fea-
ture. Consider the task of opening the microwave, the point cloud of the front side of the microwave
usually contains a large flat surface with a handle. Our pipeline segments these point clouds into
several regions. The points of the flat surface contain one region, and the small surface on the handle
becomes several regions. Although points located on the handle occupy a very small portion of the
whole point cloud, their segmented contact regions are weighed equally to the region representing
the large flat surface of the microwave.

Here we describe how to verify if the set of contact regions contains feasible contact points. Let
Nk denote the number of points in region k, the total point number of the set of K contact regions
is N =

∑K
k Nk. We then consider the solution existence condition of target wrench w: equation∑N

i G(pi)fi = w has non-zero solution fi. From the preliminary, we know the friction f is ap-
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proximately a positive span of f̂j , where j ∈ [1, kf ] and kf is the division degree of friction cone.
So w(p) =

∑kf

j ajG(p)f̂j and aj ≥ 0. The target wrench equation becomes:

N∑
i

kf∑
j

ai,jG(pi)f̂j = w, ai,j ≥ 0 (1)

From convex analysis, we know if and only if the origin of wrench space lies in the convex hull of
{G(pi)f̂j}

N,kf

i,j ∪ {−w}, above equation has a non-zero solution. This condition helps to find out
the feasible contact region sets.

Figure 2: Our proposed UniContact framework overview. Given the target wrenches, we perform
contact-aware segmentation on the object point clouds and generate a list of available region sets. An
attention-based neural network takes in the region set, segmented point clouds, robot point clouds,
and the target wrenches and outputs the predicted contact points and robot poses. Then we jointly
optimize the contact points and robot pose based on the prediction to generate the target wrench.

3.2 CONTACT POINT SET GENERATION

Given a feasible contact region set, here we describe how to select the feasible contact point for
the robot manipulator to generate the desired wrench. Specifically, the proposed network takes as
inputs the robotic hand feature, the target wrench, the object point cloud, and the contact region
set. If the contact region set has K contact regions, our network selects K contact points from
the object point cloud. Each contact point is selected within its associated contact region. Note
the contact region set might contain duplicate contact regions. The network architecture employs
PointNet++ (Qi et al., 2017) as the encoder and constructs the decoder using the multi-head attention
mechanism (Vaswani et al., 2017a). We first discuss the representation of the robotic hand and object
and introduce the decoder for contact point selection. A more detailed network architecture is put at
the project website.

Robotic hand feature. To describe the robot manipulator, we adopt the representation introduced
in UniGrasp (Shao et al., 2020). We first learn a point-cloud auto-encoding network by training a
neural network that takes as inputs the point clouds and reconstructs themself using Chamfer Dis-
tance (Fan et al., 2017). We adopt its encoder to generate a feature for each input point cloud,
which can describe the robot manipulator’s geometry at a specific joint configuration. Then, we
want to describe the manipulator’s joint range. We denote the upper and low limitations of joint
i as Hi and Li, respectively. Then, we have a middle configuration denoted as (M1, ...,Mn),
where Mi = 1

2 (Hi + Li). Each joint takes its upper or low limitation, while others take its
middle values of the joint range. In this way, there are 2n + 1 joint configurations in total, e.g.
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(H1,M2, ...,Mn), (Li,M2, ...,Mn), (Mi, H2, ...,Mn). The point clouds are fed into the encoder
of the auto-encoding network to get 2n + 1 global features, which later are concatenated and com-
bined to produce a final robot manipulator feature.

Object encoder. We adopt PointNet++ to extract object features from the point clouds. The net-
work encoder takes as inputs object point clouds and point clouds’ normal vectors, target wrench
w ∈ R6 and the contact point region set masks (similar to segmentation masks). Note that the target
wrench vector is repeated by the number of point clouds and directly added to each point in the point
cloud, along with each point’s 3D position and normal.

Point selection decoder. The point selection process is modeled as a seq2seq task. Inspired by
Transformer (Vaswani et al., 2017b), we propose a point selection decoder with a multi-head atten-
tion mechanism for the decoder. For a region set containing K regions, we sequentially feed the
object point clouds together with the corresponding contact region mask. The ith iteration, we have
the contact region mask denoted Mi, where i ∈ [1,K]. For points in the ith contact region, their
Mi is one. Otherwise, their Mi are zero. The mask with the point clouds is fed into the decoder to
extract the object feature. Additionally, the robotic manipulator feature is also fed into the decoder
to guide the neural network model to select contact points suitable for the robot manipulator. Under
the attention network, the object feature plays as the query while the robot manipulator feature plays
as the key-value. The neural network selects a contact point within the contact region masked by
Mi as the output.

Due to the page limit, we put the network’s training details, the loss function, and testing descriptions
in the project website.

3.3 OPTIMIZE ON SELECTED REGION SET

The deepnet model outputs the positions of a contact point set. However, the neural network suffers
from an estimation error, and we need to generate executable robot actions. Thus, we develop a
fine-tuning module to optimize the contact positions and forces to precisely match the target wrench.
Meanwhile, it produces the robot’s joint values to manipulate the object through these contact points.

The fine-tuning module contains several iterations. Each iteration consists of 3 stages: 1) fix the
contact positions, optimize the contact force to match the target wrench, 2) jointly optimize contact
positions and forces to move the contact points in their neighborhood to search for better contact
positions, 3) solving collision-free inverse kinematics (IK) to generate new joint values for robots to
move to new contact points. If there is no feasible IK solution, we reject the current contact point
sets and ask the neural network to produce another contact point set.

Contact Force Optimization The contact force optimization problem (CFP) optimizes the con-
tact forces fi by minimizing the difference between the contact wrench and target wrench w.
Unlike common force optimization problem Boyd & Wegbreit (2007), which assumes the prob-
lem is feasible and minimizes the magnitude of contact forces subject to target wrench equation∑

i G(pi)fi = w.

Our problem does not guarantee feasible solutions at these given contact positions. Thus we mini-
mize the differences between the wrench introduced by contact forces and the target wrench w.

min
fi

∥∥∥∥∥∑
i

G(pi)fi − w

∥∥∥∥∥ , s.t. fi ∈ FC (2)

If the difference between these two wrenches is less than a given threshold, these contact points
are considered feasible to produce the target wrench, and we can use a common force optimiza-
tion Boyd & Wegbreit (2007) to minimize the magnitude of forces. Otherwise, we optimize the
contact positions to find better contact points described below.

Jointly Contact Position and Force Optimization. The previous contact force optimization 2
returns the optimal contact forces f∗, which can be regarded as a function of contact points f∗(p).
So our optimization objective ∥

∑
i G(pi)f

∗
i (p) − w∥ is an objective function of contact positions

(p1, ..., pK) ∈ SK, where S denotes the surface of object and K denotes the number of contact points
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within a set. The neighborhood of any contact point can be linearized to the surface’s tangent space
at that point. Thus, the optimization variables are contact point movements δpi ∈ R2 and contact
force differences δfi ∈ R3. We Taylor expand the grasp mapping matrix G(p)f∗ = G(p∗)f∗ +
∇G(p∗)δpf∗+G(p∗)δf +∇G(p∗)δpδf and ignore second order terms of δf and δp. Through this
linearization, we rewrite the optimization objective as a linear function of contact positions, which
is a convex optimization shown below and can be solved easily.

min
δfi,δpi

∥∥∥∥∥∑
i

{(
G(p∗i ) +∇G(p∗i )δpi

)
f∗
i +G(p∗i )δfi

}
−w

∥∥∥∥∥
s.t. f∗

i + δfi ∈ FC, ∥δpi∥ ≤ s

(3)

Here δpi is bounded by a circle of radius s, where s means the max move step of contacts, and
f∗
i + δfi lies in the friction cone, so both constraints are convex. The derivation of ∇G(p∗) is put

in the supplementary.

Collision-free Inverse Kinematics Given the updated contact positions, our framework calls an
inverse kinematics solution to generate collision-free joint values for the robots to precisely make
contact at these specific points on the object surface while avoiding further penetration. Detailed
procedure is described in next subsection 3.4.

Error Tolerance If we set target wrench w to zero and have the residual of CFP ∥
∑

i G(pi)fi∥
converges to zero. This means the grasp nearly forms a force closure, as long as every f is in the
interior of the friction cone. In order to ensure this condition, we can replace the current friction
cone with a smaller convex set in the optimization. For example, we can choose a smaller friction
coefficient µ and add a new constraint that each normal force should be larger than a threshold
f3 ≥ η. This new convex set is a proper subset of the original friction cone. So if the residual
converges to zero under such constraints, every f is in the interior of the friction cone and the grasp
forms a force-closure. If w is nonzero, the optimized grasp no longer needs to form a force-closure,
but using stronger constraints still helps to improve the error tolerance of the optimized grasp. The
smaller mu and the larger η we use throughout optimization, the more stable grasp we will obtain
after optimization.

3.4 COLLISION-FREE INVERSE KINEMATICS

Within each iteration of adjusting the positions of contact points, the robot must change its fin-
gers to precisely attach to contact points but without object penetration. This challenging inverse
kinematics (IK) problem proves difficult for current IK solvers like Ranged-IK (Wang et al., 2023)
and IKFast(Diankov, 2010), which struggle to balance intersection-free conditions with reaching
target positions. To address this, we propose a two-stage IK Solver, leveraging the artificial poten-
tial field (Khatib, 1985) to generate collision-free finger positions in contact with the specific points
while avoiding further penetration.

Stage One: IK without collision avoidance In the first stage, we ignore the existence of objects and
minimize the distances between fingertips ti and contact points’ position pi. We use the gradient
descent method leveraging the differentiable physic simulation (Yang et al., 2023), but any standard
IK solver suffices.

min
q

Nl∑
i

P (li)

s.t. ti = pi, ∀i ∈ [1,K]

(4)

Stage Two: IK with artificial potential fields After stage one, the fingertips have reached the
specific contact points’ position. Then, we attach the fingertips at the specified contact positions
(similar to ball joints) and let other robot links move freely in the artificial potential field. We define
the potential field similar to the truncated signed distance function (SDF), which pushes robot links
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away from the object surface as shown in the following Fig ??. Let K denote the number of locked
fingertips and Nl denote the number of other robot links. Given the position of a link li, the potential
is P (li) = nli · (li− pli), where pli is the projection point of li onto the object surface and nli is the
inward normal at pli . The problem then forms an optimization:

In Eqn. 4 ti = pi indicates the ith fingertip is locked to the position pi. The loss function is the sum of
potentials over all robot links except finger tips that are attached to the surface, Lp =

∑Nl

i P (li). Its
gradient is ∇qLp =

∑Nl

i nT
li
Jli , where Jli is the i-th robot link’s translation Jacobian. Considering

the constraints that Nt finger tips are locked, the update value δq should satisfy Jtδq = 0, where
Jt = [JT

t1 , ..., J
T
tNt

]T and Jtj is the j-th finger tip’s translation Jacobian. We then construct δq from
the gradient ∇qLp by minusing its projection onto the constraint: δq = −∇qLp + J+

t Jt∇qLp,
where J+

t is the Moore–Penrose inverse of Jt that JtJ+
t Jt = Jt. It’s easy to verify Jtδq = 0.

So the joint values are iteratively updated by q → q + λδq until every P (li) is below a negative
threshold, where λ is the learning rate. An illustration figure is available on the project website.
With these two stages, our IK solver returns the solved joint values.

4 DATASET

Figure 3: UniContactNet Dataset Visualization. Millions of contact training examples with seven
manipulators and 100K+ rigid objects.

Object Pre-processing We collect 100K+ object models from 1K+ categories in Objaverse (Deitke
et al., 2022), ShapeNet (Chang et al., 2015), ABC (Koch et al., 2019), Thingi10K (Zhou & Jacobson,
2016), and GAPartNet (Geng et al., 2023). We perform filtering, remeshing into manifolds (Huang
et al., 2020), rescaling, aligning the center of mass with the coordinate origin, and convex decom-
postion (Wei et al., 2022) on the object models.

Annotations Our dataset contains millions of training examples. Each example is composed of:
object point cloud pO, object point cloud normals nO, contact-aware segmentation {Pi}Si=1, a hand
palm pose OXH, joint configuration q, contact points pc, finger torques, arm force, contact forces fc,
and wrench w. We propose a unified sampling-based method for large-scale contact synthesis. We
adopted a hierarchical sampling approach to obtain suitable contact training examples. For a scaled
object model, we sample points on its outer surface and obtain their corresponding normals. Since
solving the inverse kinematics (IK) for multiple fingers with a floating base is relatively challenging
and time consuming, we propose first sample palm poses facing the object, solve IK for each finger,
and perform combinations on all finger solutions. Under the joint configuration, we sample joint
torques and arm-to-palm forces and find combinations to provide contact forces within all the contact
friction cones. At last, we calculate the sum of the wrenches exerted by all fingers to the object w.
Here we focus on point contact between the tips of robotic hands and the object surface under the
quasi-static assumption.

5 EXPERIMENTS

In this section, we conduct experiments to answer the following questions:

Q1: How does our proposed neural network model compare to other approaches?
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Panda Hand Kinova3F Hand Allegro Hand M-Allegro Hand
SR OT OD SR OT OD SR OT OD SR OT OD

UG 0.87 0.089 0.100 0.75 0.080 0.122 0.70 0.035 0.138 0.87 0.046 0.164
Ours 0.87 0.034 0.046 0.87 0.044 0.053 0.96 0.016 0.093 0.97 0.010 0.088

Table 1: Comparative Analysis of Contact Point Quality. The experiments are conducted with
UniGrasp (UG) and UniContact (Ours) for four different robotic hands. M-Allegro Hand refers to
Allegro Hand with no ring finger and this hand is unseen in the training dataset.

Q2: How effective is our proposed fine-tuning module to update the contact positions and forces?
Q3: How effective is our proposed collision-free inverse kinematics solver?
Q4: Is our proposed approach sensitive to the noises and perturbations? (See website)
Q5: How effective is our proposed model of taking the contact region sets compared to directly
taking the whole point cloud? (See website)
Q6: What are the performances of our proposed framework on real point clouds and real robot
experiments? (See website)

5.1 UNICONTACT EFFICACY: COMPARATIVE ANALYSIS

Baseline comparisons on point selection framework. We compare our network model with Un-
iGrasp (Shao et al., 2020), a multi-stage model designed to select contact points in force closure.
Our setting’s annotations aren’t a good fit for UniGrasp. However, to the best of our knowledge, Un-
iGrasp has the most similar input, output, and setting with us. Therefore, we conduct a comparison
experiment with UniGrasp. The results are reported in Tab 1.

We totally use three metrics in the evaluation. SR stands for the success rate of finding contact
points after the optimization (described in Sec 3.3) to successfully generate the desired target wrench
(within a given small difference). Higher values are better for this metric and it shows the final
performance for manipulation. While OT and OD refer to the time for optimization and distance
between initial contact points and those after optimization, respectively. Lower values are better for
these two metrics and they measure the initialization quality. As is shown in Tab 1, our method
outperforms UniGrasp on all the metrics. The higher success rate means that our network model
along with optimization can successfully accomplish the manipulation task. The lower OT and OD
validate that the network model provides the optimization with good initialization.

Evaluation of the generalization to Novel Manipulator We edit the URDF of the allgro hand
and delete the little finger, making it a new three-fingered gripper. We feed the new gripper into our
pipeline and report the performances denoted as M-Allegro Hand in Tab. 1. The result indicates that
our model remains to produce reasonable results for this new hand.

Evaluation of the fine-tuning module To compare the contact points quality of the positions
directly returned by the neural network and the positions returned after the fine-tuning module, we
report how close the two wrenches induced by these contact positions to the target wrench. The
wrench error defined in Eqn. 2 is reduced from 0.0165 (before optimization) to below 0.0001 (after
optimization).

Evaluation of the IK Solver We visualize the inverse kinematics results described in Sec. 3.4
after the Stage One and Stage Two. The allegro hand is pushing a cup through two contact points.
In stage One, the hand intersects through the cup, while in Stage One, the two fingers are precisely
in contact with the cup’s surface. More quantitive and quantitive results are put on the website.

5.2 REAL-ROBOT EXPERIMENTS

We set up the real world experiments with a dual-arm robot as shown in Fig 5.1. The MOVO
robot Kinova has two 7 DoF arms and a Kinect RGB-D camera over head. We gather the segmented
point cloud leveraging the image segmentation from SAM Kirillov et al. (2023). We test our pro-
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posed approach both on rigid bodies such as the bottle, cup, and pan, also on articulated rigid bodies
such as microwave. Videos are available at our project website

6 RELATED WORK

Grasp synthesis studies the problem of finding a grasp configuration that meets a set of criteria
relevant to the grasping task. For a broader review, we refer to Bohg et al. (2013). Shao et al. (2020)
developed the UniGrasp to generate contact points for multi-fingered robotic hands to grasp random
objects. AdaGrasp (Xu et al., 2021) learn a single policy to generate grasp poses that generalize
to novel grippers. Recently, there has been increasing interest in multi-fingered grasping (Liu et al.,
2023; Xu et al., 2023; Wan et al., 2023). Our proposed model contains the grasp synthesis but is not
limited only to grasping. Our models contain many other manipulations, such as pushing, rotating,
and pulling.

Contact Optimization There is a rich literature about contact optimization for robotic manipulation
with various optimization objectives and optimization strategies. Hang et al. (2016) proposed the
hierarchical Fingertip Space (HFTS) as a representation enabling optimization for both efficient
grasp synthesis and online finger gaiting. Turpin et al. (2022) leverage the differentiable simulation
to generate grasp. Fan et al. (2018) Contact-implicit trajectory optimization (CITO) Mordatch et al.
(2012); Marcucci et al. (2017); Cheng et al. (2021); Gabiccini et al. (2018) plan manipulation actions
without a pre-specified contact schedule. Zhu et al. (2023) propose a high-level finger gaiting
scheme and utilizes differentiable physics simulations (Yang et al., 2023) for contact optimization
and contact localization for efficient search.

Learning Visual Affordances (Do et al., 2018; Yen-Chen et al., 2020; Lin et al., 2023) has re-
ceived increasing attention for robotic manipulation, including grasping (Mandikal & Grauman,
2021; Borja-Diaz et al., 2022; Wu et al., 2023) and articulated object manipulation (Mo et al., 2021;
Wu et al., 2021; Wang et al., 2022). For a broader review, we refer to Hassanin et al. (2021). Mo
et al. (2021) proposed Where2Act to predict the actionable point-on-point cloud for primitive ac-
tions such as pushing and pulling. Borja-Diaz et al. (2022) These affordances are usually specified
for particular manipulation tasks. Our proposed framework.

7 CONCLUSION

In this work, we propose a contact synthesis framework UniContact to generate contact positions
and forces for arbitrary robotic manipulator to manipulate random rigid and articulated rigid bod-
ides. Given the object point cloud, the target wrench, the manipulator’s URDF, our pipeline first
segments the point cloud into multiple regions and infers these feasbile region sets which contains
feasible solutions of the contact positions and forces. Then the feasible contact regions together
with manipulator’s descriptions, the target wrench are fed into our propose contact point genera-
tion network to produce the contact point sets and the associated robotic manipulator joint values,
which serves as the initialization of our contact optimizations. Our proposed optimization generates
an accurate solutions for the robot to exerts on the objects and provide a collision-free solution.
We conduct extensive experiments to verify the effectiveness of our proposed framework both in
simulation and in the real-world experiments.
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