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Abstract

Finetuning small language models (SLMs) on data generated by large language
models (LLMs), a form of knowledge distillation, has recently been demonstrated to
lead to significantly enhanced capabilities of small models across various domains
(e.g., mathematical reasoning). However, current approaches typically require
synthesizing a large number of new examples (> 100K), which increases the
resources and training time needed for finetuning. To address this issue, we
investigate principles for making the distillation process more efficient by reducing
the amount of synthetic data required. Specifically, we explore (i) incorporating
SLM’s feedback into the LLM’s data generation process and (ii) including LLM’s
rationales (i.e., step-by-step solutions) in the distilled data. In our experiments
using the Mistral7B model as the SLM on math reasoning tasks (GSM8K, MATH),
we find that both feedback and rationales can help make finetuning with distillation
more efficient (by requiring up to ∼ 2x less synthetic data).

1 Introduction

Large language models (LLMs) have revolutionized the field of machine learning by achieving
impressive performance across various domains and demonstrating a remarkable few-shot ability
to adapt to new tasks [3]. However, their ever-increasing size can pose significant challenges when
deploying such models in practice or can entirely prevent their use in settings with constrained
resources or low-latency requirements (e.g., on-device) [2, 25]. Even when hardware constraints are
not an issue, concerns over the rising carbon footprint of language models motivate efforts to improve
efficiency [11]. In response, there has recently been growing interest in the so-called small language
models (SLMs) [1, 16, 9, 17]. Due to their smaller size (< 10B parameters), SLMs are easier to
deploy and have more efficient inference. Unsurprisingly, though, their performance often falls short
when compared to LLMs, particularly in more specialized domains (e.g., mathematical reasoning,
coding) [19, 20].

To close the performance gap between SLMs and LLMs on a particular task, a popular approach is
to perform supervised finetuning (SFT) using a domain dataset. However, since the labeled domain
dataset is usually limited in size, the performance of the fine-tuned SLM often remains unsatisfactory.
This has motivated the development of knowledge distillation approaches, where the original dataset
is extended with synthetic data generated by an LLM [21, 18, 10, 23, 13]. Successful examples
include the TinyGSM [14] and OrcaMath [17] models, where finetuning with additional distilled data
played a key role in achieving state-of-the-art performance in mathematical reasoning using SLMs.

Despite its effectiveness, most current distillation approaches require generating a large number
of synthetic examples—often in the order of hundreds of thousands [17, 13] or even millions
[14]—which introduces significant overhead. In addition to longer training times, one main concern
is the cost associated with generating such large datasets. For instance, synthesising ∼12 million
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examples used in TinyGSM would cost around $5,000 using current GPT-4 rates.2 As the demand
for more specialized models grows, with each domain requiring its own tailored synthetic dataset,
these costs can rapidly accumulate, making such distillation approaches a less attractive option.

In this work, we aim to improve the efficiency of finetuning with distillation by investigating whether
the amount of synthetic data required can be reduced. Note that reducing the size of synthetic data
offers a double benefit: it lowers the costs and time associated with generating new samples, and
it also shortens the costs and time needed for finetuning the SLM. To this end, we first explore
incorporating a form of SLM feedback [10] into the LLM’s data generation process, by oversampling
new examples based on areas where the SLM currently struggles. In the context of the OrcaMath
[17] model (i.e., Mistral7B [9] model on the GSM8K [4] dataset), we demonstrate that feedback can
indeed significantly reduce the amount of synthetic data needed—by up to a factor of 2. Additionally,
we examine the impact of including LLM rationales (step-by-step solutions) when constructing the
synthetic dataset. Similar to [8], we observe that LLM rationales can significantly improve the data
efficiency of the distillation process, particularly for smaller dataset sizes.

2 Background

Data We denote the original domain dataset as D = {(xi, yi)}Ni=1, where each xi represents the
input (e.g., a question) and yi is the corresponding ground truth output (e.g., an answer), both in
natural language format. Each output yi = (ri, ai) consists of a rationale/explanation ri and the final
answer ai.

Finetuning with Distillation One way to improve the SLM’s performance on the particular domain
is through supervised finetuning (SFT) using the next-token prediction loss on the output tokens. To
increase the amount of data available for finetuning, some current approaches first use the domain
dataset D as seed examples for the LLM to generate more similar examples, resulting in a synthetic
dataset Dsyn = {(x̂i, ŷi)}Mi=1 with M ≫ N The pretrained SLM is then finetuned on Dsyn, which
is a form of knowledge distillation [7, 21]. Importantly, while such distillation requires access to the
SLM’s weights, it only requires black-box access to the LLM via a prompt-based interface.

3 Improving Distillation Efficiency for Finetuning

We explore two principles for making current distillation approaches more efficient by reducing
the amount of synthetic data required for SLM finetuning. First, in Section 3.1, we describe how
to leverage the SLM’s current state as feedback to make the LLM’s generation of new examples
more sample-efficient. Second, in Section 3.2, we demonstrate that using LLM-generated rationales
(i.e., step-by-step solutions) can expedite learning compared to using the rationales provided by the
original dataset.

3.1 SLM’s feedback

Recent work on distillation for finetuning has explored methods that take into account the SLM’s
current capabilities and weaknesses when generating new data with an LLM [12, 10, 22, 15]. Although
these approaches differ in their exact implementation details—such as generation prompts, feedback
types, and the number of distillation iterations—they share a common idea: rather than generating
Dsyn directly from the original D, they first evaluate the SLM on D to identify areas of the data space
where the SLM performs well and where it struggles. Specifically, they split the original dataset D
into samples where the SLM’s predictions are poor, denoted as Dhard, and samples where the SLM
is already yielding good outputs, denoted as Deasy . They then generate more examples based on the
challenging examples in Dhard. The intuition behind this approach is that new samples based on
examples in Dhard will be more informative for the SLM, whereas generating additional samples
based on examples in Deasy might be redundant and unnecessary.

Lion Distillation As a concrete implementation of distillation with feedback, we adopt the Lion
framework [10]. In this approach, the original dataset is first split by collecting predictions from
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both the SLM and the LLM, denoted as ŷSLM and ŷLLM , respectively. The LLM is then used
again (with a different prompt) to assign a numerical score s ∈ {1, . . . , 10} to both predictions,
based on their correctness. The hard examples are defined as those where the LLM’s prediction is
(significantly) better than the SLM’s: Dhard := {(xi, yi) | s(ŷLLM (xi), yi)−s(ŷSLM (xi), yi) > τ},
with τ representing the discrimination threshold. The remaining examples are treated as "easy," i.e.,
Deasy = D \ Dhard.

In our experiments, we use the default prompts from Lion [10] for both scoring and generating new
samples, and we keep the default generation parameters unchanged (the threshold is set to τ = 1).
Unlike Lion, we solely use the examples in Dhard (instead of using a 1:1 ratio between Dhard and
Deasy) and we perform a single distillation round, as we observed that this yields satisfactory results
for the purposes of our study.

Figure 1: Mistral7B performance (in terms of %
of correctly solved test problems) after finetuning
on OrcaMath [17] and our Lion-constructed [10]
datasets. We observe that Lion data outperforms
OrcaMath across all sizes considered here, indicat-
ing that incorporating SLM’s feedback can help
with making distillation more efficient. With a
red dashed line ( ) we show the performance of
the OrcaMath model [17] that was finetuned on
the dataset of size 200K. We report average per-
formance with one standard deviation based on 3
independent runs.

Experimental Results For our main experi-
ment, we follow the same setting as in OrcaMath
[17]. In OrcaMath, the target domain is mathe-
matical reasoning, concretely the popular bench-
mark GSM8K [4], which consists of grade-
school math problems. Mistral7B model [9]
is used as the SLM. The original domain dataset
D consists of the train split of the GSM8K data
and some other publicly available mathemati-
cal datasets. Using GPT-4 Turbo, additional
synthetic examples are generated, resulting in
a final dataset size of 200K. Note that no SLM
feedback was used in constructing the OrcaMath
dataset. To assess the impact of incorporating
SLM feedback, we construct a new dataset us-
ing the aforementioned Lion distillation with
feedback. In creating the Lion dataset, we use
the train split of GSM8K (∼7.5K) as the seed
dataset and generate data with GPT-4 Turbo to
ensure a fair comparison with OrcaMath. We
perform QLoRA finetuning [5] for 2 epochs (see
Appendix B for further experimental details).

The results are displayed in Figure 1 where we
compare the Mistral7B performance after finetuning on different sizes of OrcaMath and Lion datasets.
We find that Mistral7B improves much faster when finetuned on the Lion dataset compared to the
OrcaMath dataset. For example, finetuning on 10K Lion data points yields better performance
(∼74%) than finetuning on 20K OrcaMath datapoints (∼73%), indicating that Lion can reduce the
number of synthetic data points needed by more than a factor of 2. Moreover, in OrcaMath, they
report 81.5% accuracy after training on the entire 200K dataset, while Lion reaches ∼78% after only
20K data points, meaning it recovers ∼80% of OrcaMath’s performance gains while requiring 10x
less data. These results demonstrate that incorporating the SLM’s feedback is an effective mechanism
for reducing the number of synthetic samples needed, thereby making the entire distillation pipeline
more efficient.

3.2 LLM’s rationales

We next provide some insights into the importance of including LLM-generated rationales in distilled
data (see Figure 3 for concrete examples of answers with rationales).

Experimental Results We again use Mistral7B as the SLM and distil data from GPT-4 Turbo. In
addition to the GSM8K dataset [4], we report results on the more challenging MATH dataset [6],
which we further split into three subsets by difficulty level (1 being the easiest and 5 the hardest)
to better understand how rationales impact domains of varying difficulty. To study the effect of
LLM-generated rationales, we report finetuning results for the following datasets: RR, consisting
of real questions and real answers (with rationales), which corresponds to a subset of the original
data D; RS, consisting of real questions and LLM-generated synthetic answers/rationales; and
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Figure 2: Performance of the finetuned Mistral7B model across datasets with different types of
rationales (see Section 3.2 for details on dataset construction). The main observation is that LLM-
generated rationales ( ; RS) result in better performance compared to using the original ones ( ;
RR). We report average performance with one standard deviation based on 3 independent runs.

SS, consisting of both synthetic questions and synthetic answers/rationales. Since our focus is on
generating less data, we set the size of all datasets to N = 1000 (further experimental details are
provided in Appendix B).

The results are shown in Figure 2. We first observe that, surprisingly, finetuning on the original data
(RR) results in worse performance compared to the base pretrained model across all four domains
considered.3 We posit that this is likely due to the short length of the rationales in the original
dataset. As shown in Table 1, the average length of responses from the model finetuned on the RR
dataset roughly corresponds to the length of the answers in the original data and is shorter than the
average length of the pretrained model’s responses. This suggests that supervised finetuning, with its
next-token prediction loss, is highly sensitive to the reasoning style and format of the data, at least in
the small-data regime considered here. Consequently, exposure to shorter answers in RR may cause
the Mistral7B model to ’unlearn’ some of its default chain-of-thought behavior [20].

This hypothesis is further supported by the considerable performance improvements observed when
finetuning on the RS dataset, which consists of the same real questions but includes longer, LLM-
generated answers, even when finetuning on just N = 1000 samples. These findings align with
previous work showing that including LLM-generated rationales ri can make finetuning more data-
efficient compared to training on final answers ai alone [8]. The outperformance of using synthetic
answers (RS) compared to using real ones (RR) is additionally surprising because no quality control
was applied to the synthetic answers. Thus, it is likely that some synthetic answers in RS are incorrect,
especially in harder domains like MATH5, where the LLM performance is below 50% (see Table 2).

To further investigate this, we constructed the RS* dataset, ensuring that synthetic answers are correct
by cross-referencing them with ground-truth answers (a form of rejection sampling [24]) using the
GPT-4 Turbo model as the verifier. Interestingly, improving the data quality does not seem to have
a significant effect, as evidenced by the similar performance of RS and RS*. Taken together, this
suggests that in the small-data regime, the style of the data (i.e., short vs. long answers) might be
as important as its correctness (i.e., wrong vs. correct). Lastly, we observe that using synthetic
questions (SS) yields performance similar to using real ones (RS), confirming our findings from
Section 3.1 that the LLM is capable of generating sufficiently good questions to facilitate effective
finetuning. All in all, our findings suggest that incorporating (longer) LLM rationales can accelerate
the training process by improving data efficiency compared to using the original ones, particularly
when finetuning on smaller datasets.

4 Conclusion & Future Work

We have demonstrated that the efficiency of distillation for finetuning SLMs can be enhanced by
incorporating SLM feedback and LLM-generated rationales. In the future, it would be valuable to
confirm the effectiveness of SLM feedback in domains beyond mathematical reasoning (e.g., coding,
medical knowledge). It would also be useful to explore reducing supervised finetuning’s sensitivity
to style and format in small data regimes, and to better understand the limited impact of rejection
sampling on synthetic data (see RS* results in Section 3.2).

3Similar counterintuitive results have been reported previously; see, e.g., Section 4.7 in [23].
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Appendix

A Related Work

Finetuning SLMs on synthetic data distilled from LLMs has recently emerged as a successful
paradigm for building small yet powerful specialized models [14, 17, 23, 13]. However, reducing
the costs associated with such distillation techniques has received less attention to date. In Lion
[10], the use of SLM feedback is proposed for more effective distillation, but their focus is on
instruction-tuning, whereas we focus on domain adaptation via finetuning. LLM-generated rationales
for improved efficiency were proposed in [8], though they study simpler tasks (e.g., text classification)
where no ground-truth rationales are available. Most recently, LLM2LLM [12] was introduced for
distillation with feedback on small seed datasets, which complements our efforts to minimize the
amount of synthetic data required for finetuning.

B Experimental details

We make our code publicly available at https://github.com/metodj/ED4LLM2SLM. All the
experiments reported in this paper can be performed on a single A100 GPU.

For supervised finetuning, we use the parameter-efficient QLORA method [5] for 2 epochs with a
batch size of 24. We set the LoRA rank and alpha parameters to 64 and adapt all linear layers. We
use Mistral’s default tokenizer with a maximum sequence length set to 1024 (except for MATH5,
where we use 2048). During finetuning, the data is presented in the following format:

Question: {question}\n Answer: {answer}

and only the answer tokens are counted towards the loss.

For synthetic data generation in Section 3.1, we closely follow the original Lion [10] implementation
available at https://github.com/YJiangcm/Lion. The main difference is that we perform a
single distillation step and make use only of hard examples when finetuning (i.e., the sampling ratio
between Dhard and Deasy is 1 : 0). Further tuning of these generation parameters is left for future
work. For the experiment in Section 3.2, we also use Lion framewrok when constructing the fully
synthetic dataset (SS), whereas for datasets with only synthetic answers (RS, RS*), we first sample
real questions from the original datasets D and then generate answers using GPT-4 Turbo with the
following prompt:

Here is a question that describes a math problem. Write a response that
appropriately and accurately solves the math problem.\n Question:{question}

For inference with the SLM, we consider a 0-shot scenario and do greedy-decoding using the
following prompt:

Question: {question}\n Answer:

For evaluation, we use the GPT4-based-Exact-Match metric proposed in OrcaMath (see Section 4 in
[17]).
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C Additional Figures

Figure 3: An example of a question from GSM8K dataset [4] with the original rationale/explanation
and the one based on the LLM (GPT4-Turbo).

Table 1: Lengths (in terms of average number of tokens) of the original rationales/explanations in
D, as well as those generated by the LLM (see Appendix B for the exact prompts used to generate
synthetic answers). We also display the lengths of the SLM’s responses after finetuning on various
datasets. Notably, finetuning on original rationales (RR) results in shorter SLM outputs compared to
those based on the base pretrained model, which may explain the performance drop after finetuning
on the original rationales, as reported in Section 3.2.

Rationales Model output
Ground-truth (R) LLM (S) base SFT on RR SFT on RS

GSM8K 117 270 191 113 252
MATH1 78 312 165 64 255
MATH3 139 464 314 115 454
MATH5 287 718 450 287 741

Table 2: Performance (in terms of % of correctly solved test problems) based on GPT4-based-Exact-
Match evaluation [17] of GPT4-Turbo model on GSM8K [4] and MATH [6] datasets. We further
stratify MATH dataset based on the difficulty level.

GSM8K MATH1 MATH3 MATH5
Accuracy [%] 95.1 92.9 72.3 32.9
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