
On Efficient Distillation from LLMs to SLMs

Anonymous Author(s)
Affiliation
Address
email

Abstract

Finetuning small language models (SLMs) on data generated by large language1

models (LLMs), a form of knowledge distillation, has recently been demonstrated to2

lead to significantly enhanced capabilities of small models across various domains3

(e.g., mathematical reasoning). However, current approaches typically require4

synthesizing a large number of new examples (> 100K), which increases the5

resources and training time needed for finetuning. To address this issue, we6

investigate principles for making the distillation process more efficient by reducing7

the amount of synthetic data required. Specifically, we explore (i) incorporating8

SLM’s feedback into the LLM’s data generation process and (ii) including LLM’s9

rationales (i.e., step-by-step solutions) in the distilled data. In our experiments10

using the Mistral7B model as the SLM on math reasoning tasks (GSM8K, MATH),11

we find that both feedback and rationales can help make finetuning with distillation12

more efficient (by requiring up to ∼ 2x less synthetic data).13

1 Introduction14

Large language models (LLMs) have revolutionized the field of machine learning by achieving15

impressive performance across various domains and demonstrating a remarkable few-shot ability16

to adapt to new tasks [3]. However, their ever-increasing size can pose significant challenges when17

deploying such models in practice or can entirely prevent their use in settings with constrained18

resources or low-latency requirements (e.g., on-device) [2, 25]. Even when hardware constraints are19

not an issue, concerns over the rising carbon footprint of language models motivate efforts to improve20

efficiency [11]. In response, there has recently been growing interest in the so-called small language21

models (SLMs) [1, 16, 9, 17]. Due to their smaller size (< 10B parameters), SLMs are easier to22

deploy and have more efficient inference. Unsurprisingly, though, their performance often falls short23

when compared to LLMs, particularly in more specialized domains (e.g., mathematical reasoning,24

coding) [19, 20].25

To close the performance gap between SLMs and LLMs on a particular task, a popular approach is26

to perform supervised finetuning (SFT) using a domain dataset. However, since the labeled domain27

dataset is usually limited in size, the performance of the fine-tuned SLM often remains unsatisfactory.28

This has motivated the development of knowledge distillation approaches, where the original dataset29

is extended with synthetic data generated by an LLM [21, 18, 10, 23, 13]. Successful examples30

include the TinyGSM [14] and OrcaMath [17] models, where finetuning with additional distilled data31

played a key role in achieving state-of-the-art performance in mathematical reasoning using SLMs.32

Despite its effectiveness, most current distillation approaches require generating a large number33

of synthetic examples—often in the order of hundreds of thousands [17, 13] or even millions34

[14]—which introduces significant overhead. In addition to longer training times, one main concern35

is the cost associated with generating such large datasets. For instance, synthesising ∼12 million36
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examples used in TinyGSM would cost around $5,000 using current GPT-4 rates.1 As the demand37

for more specialized models grows, with each domain requiring its own tailored synthetic dataset,38

these costs can rapidly accumulate, making such distillation approaches a less attractive option.39

In this work, we aim to improve the efficiency of finetuning with distillation by investigating whether40

the amount of synthetic data required can be reduced. Note that reducing the size of synthetic data41

offers a double benefit: it lowers the costs and time associated with generating new samples, and42

it also shortens the costs and time needed for finetuning the SLM. To this end, we first explore43

incorporating a form of SLM feedback [10] into the LLM’s data generation process, by oversampling44

new examples based on areas where the SLM currently struggles. In the context of the OrcaMath45

[17] model (i.e., Mistral7B [9] model on the GSM8K [4] dataset), we demonstrate that feedback can46

indeed significantly reduce the amount of synthetic data needed—by up to a factor of 2. Additionally,47

we examine the impact of including LLM rationales (step-by-step solutions) when constructing the48

synthetic dataset. Similar to [8], we observe that LLM rationales can significantly improve the data49

efficiency of the distillation process, particularly for smaller dataset sizes.50

2 Background51

Data We denote the original domain dataset as D = {(xi, yi)}Ni=1, where each xi represents the52

input (e.g., a question) and yi is the corresponding ground truth output (e.g., an answer), both in53

natural language format. Each output yi = (ri, ai) consists of a rationale/explanation ri and the final54

answer ai.55

Finetuning with Distillation One way to improve the SLM’s performance on the particular domain56

is through supervised finetuning (SFT) using the next-token prediction loss on the output tokens. To57

increase the amount of data available for finetuning, some current approaches first use the domain58

dataset D as seed examples for the LLM to generate more similar examples, resulting in a synthetic59

dataset Dsyn = {(x̂i, ŷi)}Mi=1 with M ≫ N The pretrained SLM is then finetuned on Dsyn, which60

is a form of knowledge distillation [7, 21]. Importantly, while such distillation requires access to the61

SLM’s weights, it only requires black-box access to the LLM via a prompt-based interface.62

3 Improving Distillation Efficiency for Finetuning63

We explore two principles for making current distillation approaches more efficient by reducing64

the amount of synthetic data required for SLM finetuning. First, in Section 3.1, we describe how65

to leverage the SLM’s current state as feedback to make the LLM’s generation of new examples66

more sample-efficient. Second, in Section 3.2, we demonstrate that using LLM-generated rationales67

(i.e., step-by-step solutions) can expedite learning compared to using the rationales provided by the68

original dataset.69

3.1 SLM’s feedback70

Recent work on distillation for finetuning has explored methods that take into account the SLM’s71

current capabilities and weaknesses when generating new data with an LLM [12, 10, 22, 15]. Although72

these approaches differ in their exact implementation details—such as generation prompts, feedback73

types, and the number of distillation iterations—they share a common idea: rather than generating74

Dsyn directly from the original D, they first evaluate the SLM on D to identify areas of the data space75

where the SLM performs well and where it struggles. Specifically, they split the original dataset D76

into samples where the SLM’s predictions are poor, denoted as Dhard, and samples where the SLM77

is already yielding good outputs, denoted as Deasy . They then generate more examples based on the78

challenging examples in Dhard. The intuition behind this approach is that new samples based on79

examples in Dhard will be more informative for the SLM, whereas generating additional samples80

based on examples in Deasy might be redundant and unnecessary.81

Lion Distillation As a concrete implementation of distillation with feedback, we adopt the Lion82

framework [10]. In this approach, the original dataset is first split by collecting predictions from83

1Source: https://openai.com/api/pricing/
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both the SLM and the LLM, denoted as ŷSLM and ŷLLM , respectively. The LLM is then used84

again (with a different prompt) to assign a numerical score s ∈ {1, . . . , 10} to both predictions,85

based on their correctness. The hard examples are defined as those where the LLM’s prediction is86

(significantly) better than the SLM’s: Dhard := {(xi, yi) | s(ŷLLM (xi), yi)−s(ŷSLM (xi), yi) > τ},87

with τ representing the discrimination threshold. The remaining examples are treated as "easy," i.e.,88

Deasy = D \ Dhard.89

In our experiments, we use the default prompts from Lion [10] for both scoring and generating new90

samples, and we keep the default generation parameters unchanged (the threshold is set to τ = 1).91

Unlike Lion, we solely use the examples in Dhard (instead of using a 1:1 ratio between Dhard and92

Deasy) and we perform a single distillation round, as we observed that this yields satisfactory results93

for the purposes of our study.94

Figure 1: Mistral7B performance (in terms of %
of correctly solved test problems) after finetuning
on OrcaMath [17] and our Lion-constructed [10]
datasets. We observe that Lion data outperforms
OrcaMath across all sizes considered here, indicat-
ing that incorporating SLM’s feedback can help
with making distillation more efficient. With a
red dashed line ( ) we show the performance of
the OrcaMath model [17] that was finetuned on
the dataset of size 200K. We report average per-
formance with one standard deviation based on 3
independent runs.

Experimental Results For our main experi-95

ment, we follow the same setting as in OrcaMath96

[17]. In OrcaMath, the target domain is mathe-97

matical reasoning, concretely the popular bench-98

mark GSM8K [4], which consists of grade-99

school math problems. Mistral7B model [9]100

is used as the SLM. The original domain dataset101

D consists of the train split of the GSM8K data102

and some other publicly available mathemati-103

cal datasets. Using GPT-4 Turbo, additional104

synthetic examples are generated, resulting in105

a final dataset size of 200K. Note that no SLM106

feedback was used in constructing the OrcaMath107

dataset. To assess the impact of incorporating108

SLM feedback, we construct a new dataset us-109

ing the aforementioned Lion distillation with110

feedback. In creating the Lion dataset, we use111

the train split of GSM8K (∼7.5K) as the seed112

dataset and generate data with GPT-4 Turbo to113

ensure a fair comparison with OrcaMath. We114

perform QLoRA finetuning [5] for 2 epochs (see115

Appendix B for further experimental details).116

The results are displayed in Figure 1 where we117

compare the Mistral7B performance after finetuning on different sizes of OrcaMath and Lion datasets.118

We find that Mistral7B improves much faster when finetuned on the Lion dataset compared to the119

OrcaMath dataset. For example, finetuning on 10K Lion data points yields better performance120

(∼74%) than finetuning on 20K OrcaMath datapoints (∼73%), indicating that Lion can reduce the121

number of synthetic data points needed by more than a factor of 2. Moreover, in OrcaMath, they122

report 81.5% accuracy after training on the entire 200K dataset, while Lion reaches ∼78% after only123

20K data points, meaning it recovers ∼80% of OrcaMath’s performance gains while requiring 10x124

less data. These results demonstrate that incorporating the SLM’s feedback is an effective mechanism125

for reducing the number of synthetic samples needed, thereby making the entire distillation pipeline126

more efficient.127

3.2 LLM’s rationales128

We next provide some insights into the importance of including LLM-generated rationales in distilled129

data (see Figure 3 for concrete examples of answers with rationales).130

Experimental Results We again use Mistral7B as the SLM and distil data from GPT-4 Turbo. In131

addition to the GSM8K dataset [4], we report results on the more challenging MATH dataset [6],132

which we further split into three subsets by difficulty level (1 being the easiest and 5 the hardest)133

to better understand how rationales impact domains of varying difficulty. To study the effect of134

LLM-generated rationales, we report finetuning results for the following datasets: RR, consisting135

of real questions and real answers (with rationales), which corresponds to a subset of the original136

data D; RS, consisting of real questions and LLM-generated synthetic answers/rationales; and137
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Figure 2: Performance of the finetuned Mistral7B model across datasets with different types of
rationales (see Section 3.2 for details on dataset construction). The main observation is that LLM-
generated rationales ( ; RS) result in better performance compared to using the original ones ( ;
RR). We report average performance with one standard deviation based on 3 independent runs.

SS, consisting of both synthetic questions and synthetic answers/rationales. Since our focus is on138

generating less data, we set the size of all datasets to N = 1000 (further experimental details are139

provided in Appendix B).140

The results are shown in Figure 2. We first observe that, surprisingly, finetuning on the original data141

(RR) results in worse performance compared to the base pretrained model across all four domains142

considered.2 We posit that this is likely due to the short length of the rationales in the original143

dataset. As shown in Table 1, the average length of responses from the model finetuned on the RR144

dataset roughly corresponds to the length of the answers in the original data and is shorter than the145

average length of the pretrained model’s responses. This suggests that supervised finetuning, with its146

next-token prediction loss, is highly sensitive to the reasoning style and format of the data, at least in147

the small-data regime considered here. Consequently, exposure to shorter answers in RR may cause148

the Mistral7B model to ’unlearn’ some of its default chain-of-thought behavior [20].149

This hypothesis is further supported by the considerable performance improvements observed when150

finetuning on the RS dataset, which consists of the same real questions but includes longer, LLM-151

generated answers, even when finetuning on just N = 1000 samples. These findings align with152

previous work showing that including LLM-generated rationales ri can make finetuning more data-153

efficient compared to training on final answers ai alone [8]. The outperformance of using synthetic154

answers (RS) compared to using real ones (RR) is additionally surprising because no quality control155

was applied to the synthetic answers. Thus, it is likely that some synthetic answers in RS are incorrect,156

especially in harder domains like MATH5, where the LLM performance is below 50% (see Table 2).157

To further investigate this, we constructed the RS* dataset, ensuring that synthetic answers are correct158

by cross-referencing them with ground-truth answers (a form of rejection sampling [24]) using the159

GPT-4 Turbo model as the verifier. Interestingly, improving the data quality does not seem to have160

a significant effect, as evidenced by the similar performance of RS and RS*. Taken together, this161

suggests that in the small-data regime, the style of the data (i.e., short vs. long answers) might be162

as important as its correctness (i.e., wrong vs. correct). Lastly, we observe that using synthetic163

questions (SS) yields performance similar to using real ones (RS), confirming our findings from164

Section 3.1 that the LLM is capable of generating sufficiently good questions to facilitate effective165

finetuning. All in all, our findings suggest that incorporating (longer) LLM rationales can accelerate166

the training process by improving data efficiency compared to using the original ones, particularly167

when finetuning on smaller datasets.168

4 Conclusion & Future Work169

We have demonstrated that the efficiency of distillation for finetuning SLMs can be enhanced by170

incorporating SLM feedback and LLM-generated rationales. In the future, it would be valuable to171

confirm the effectiveness of SLM feedback in domains beyond mathematical reasoning (e.g., coding,172

medical knowledge). It would also be useful to explore reducing supervised finetuning’s sensitivity173

to style and format in small data regimes, and to better understand the limited impact of rejection174

sampling on synthetic data (see RS* results in Section 3.2).175

2Similar counterintuitive results have been reported previously; see, e.g., Section 4.7 in [23].
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Appendix248

A Related Work249

Finetuning SLMs on synthetic data distilled from LLMs has recently emerged as a successful250

paradigm for building small yet powerful specialized models [14, 17, 23, 13]. However, reducing251

the costs associated with such distillation techniques has received less attention to date. In Lion252

[10], the use of SLM feedback is proposed for more effective distillation, but their focus is on253

instruction-tuning, whereas we focus on domain adaptation via finetuning. LLM-generated rationales254

for improved efficiency were proposed in [8], though they study simpler tasks (e.g., text classification)255

where no ground-truth rationales are available. Most recently, LLM2LLM [12] was introduced for256

distillation with feedback on small seed datasets, which complements our efforts to minimize the257

amount of synthetic data required for finetuning.258

B Experimental details259

We make our code publicly available at GITHUB REPO. All the experiments reported in this paper can260

be performed on a single A100 GPU.261

For supervised finetuning, we use the parameter-efficient QLORA method [5] for 2 epochs with a
batch size of 24. We set the LoRA rank and alpha parameters to 64 and adapt all linear layers. We
use Mistral’s default tokenizer with a maximum sequence length set to 1024 (except for MATH5,
where we use 2048). During finetuning, the data is presented in the following format:

Question: {question}\n Answer: {answer}

and only the answer tokens are counted towards the loss.262

For synthetic data generation in Section 3.1, we closely follow the original Lion [10] implementation
available at https://github.com/YJiangcm/Lion. The main difference is that we perform a
single distillation step and make use only of hard examples when finetuning (i.e., the sampling ratio
between Dhard and Deasy is 1 : 0). Further tuning of these generation parameters is left for future
work. For the experiment in Section 3.2, we also use Lion framewrok when constructing the fully
synthetic dataset (SS), whereas for datasets with only synthetic answers (RS, RS*), we first sample
real questions from the original datasets D and then generate answers using GPT-4 Turbo with the
following prompt:

Here is a question that describes a math problem. Write a response that
appropriately and accurately solves the math problem.\n Question:{question}

For inference with the SLM, we consider a 0-shot scenario and do greedy-decoding using the
following prompt:

Question: {question}\n Answer:

For evaluation, we use the GPT4-based-Exact-Match metric proposed in OrcaMath (see Section 4 in263

[17]).264
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C Additional Figures265

Figure 3: An example of a question from GSM8K dataset [4] with the original rationale/explanation
and the one based on the LLM (GPT4-Turbo).

Table 1: Lengths (in terms of average number of tokens) of the original rationales/explanations in
D, as well as those generated by the LLM (see Appendix B for the exact prompts used to generate
synthetic answers). We also display the lengths of the SLM’s responses after finetuning on various
datasets. Notably, finetuning on original rationales (RR) results in shorter SLM outputs compared to
those based on the base pretrained model, which may explain the performance drop after finetuning
on the original rationales, as reported in Section 3.2.

Rationales Model output
Ground-truth (R) LLM (S) base SFT on RR SFT on RS

GSM8K 117 270 191 113 252
MATH1 78 312 165 64 255
MATH3 139 464 314 115 454
MATH5 287 718 450 287 741

Table 2: Performance (in terms of % of correctly solved test problems) based on GPT4-based-Exact-
Match evaluation [17] of GPT4-Turbo model on GSM8K [4] and MATH [6] datasets. We further
stratify MATH dataset based on the difficulty level.

GSM8K MATH1 MATH3 MATH5
Accuracy [%] 95.1 92.9 72.3 32.9
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