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ABSTRACT

Optimal Transport (OT) theory investigates the cost-minimizing transport map that
moves a source distribution to a target distribution. Recently, several approaches
have emerged for learning the optimal transport map for a given cost function
using neural networks. We refer to these approaches as the OT Map. OT Map
provides a powerful tool for diverse machine learning tasks, such as generative
modeling and unpaired image-to-image translation. However, existing methods that
utilize max-min optimization often experience training instability and sensitivity to
hyperparameters. In this paper, we propose a novel method to improve stability and
achieve a better approximation of the OT Map by exploiting displacement inter-
polation, dubbed Displacement Interpolation Optimal Transport Model (DIOTM).
We derive the dual formulation of displacement interpolation at specific time t
and prove how these dual problems are related across time. This result allows
us to utilize the entire trajectory of displacement interpolation in learning the OT
Map. Our method improves the training stability and achieves superior results
in estimating optimal transport maps. We demonstrate that DIOTM outperforms
existing OT-based models on image-to-image translation tasks.

1 INTRODUCTION

Optimal Transport (OT) problem (Villani et al., 2009; Peyré et al., 2019) explores the problem of
finding the cost-optimal transport map that transforms one probability distribution (source distribution)
into another (target distribution). Recently, there has been a growing interest in directly learning the
optimal transport map using neural networks. Throughout this paper, we call these approaches as the
OT Map. OT Map has been widely applied across various machine learning tasks by appropriately
defining the source and target distributions, such as generative modeling (Rout et al., 2022; Choi et al.,
2023; 2024a; Liu et al., 2022; Lipman et al., 2023), image-to-image translation (Korotin et al., 2023;
Fan et al., 2022), and domain adaptation (Flamary et al., 2016). OT Map is particularly well-suited for
unsupervised (unpaired) distribution transport problems, as it enables the transport of one distribution
into another using only a predefined cost function, without requiring data pairs.

Despite their potential, existing OT Map methods often encounter significant challenges in training
stability. In particular, the OT models utilizing max-min objectives exhibit unstable training dynamics
and sensitivity to hyperparameters (Makkuva et al., 2020; Fan et al., 2022; Rout et al., 2022; Flamary
et al., 2016). These challenges limit their applicability to high-dimensional data. To address these
instability issues, various approaches have been explored, such as introducing additional regularization
terms in the learning objective (Rout et al., 2022; Roth et al., 2017) and generalizing the standard OT
problem to the unbalanced optimal transport problem (Choi et al., 2023; 2024b).

In this paper, we propose a novel approach for learning the optimal transport map based on displace-
ment interpolation. We refer to our model as the Displacement Interpolation Optimal Transport
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Model (DIOTM). We identify a fundamental connection between the (static) optimal transport map
and displacement interpolation. Motivated by this relationship, we derive a max-min formulation of
displacement interpolation, involving the optimal transport map and the time-dependent Kantorovich
potential. Our experimental results demonstrate that DIOTM achieves more stable convergence and
superior accuracy in approximating OT maps compared to existing methods. In particular, DIOTM
achieves competitive FID scores in image-to-image translation tasks, such as 5.27 for Male→Female
(64× 64), 7.40 for Male→Female (128× 128), and 10.72 for Wild→Cat (64× 64), comparable to
the state-of-the-art results. Our contributions can be summarized as follows:

• We propose a method to learn the optimal transport map based on displacement interpolation.
• We derive the dual formulation of displacement interpolation and utilize this to formulate a

max-min optimization problem for the transport map and potential function.
• We introduce a novel regularizer, called the HJB regularizer, derived from the optimality

condition of the potential function.
• Our model significantly improves the training stability and accuracy of existing OT Map

models that leverage min-max objectives.

Notations and Assumptions Let X be a connected bounded convex open subspace of Rd, and let
µ and ν be absolutely continuous probability distributions with respect to Lebesgue measure. We
regard µ and ν as the source and target distributions. For a measurable map T , T#µ represents the
pushforward distribution of µ. Π(µ, ν) denote the set of joint probability distributions onX×Y whose
marginals are µ and ν, respectively. c(x, y) refers to the transport cost function defined on X × Y .
Throughout this paper, we consider X = Y ⊂ Rd with the quadratic cost, c(x, y) = α∥x − y∥2,
where d indicates the dimension of data. Here, α is a given positive constant. Moreover, we denote
W2(·, ·) as the 2-Wasserstein distance of two distributions.

2 BACKGROUND

In this section, we provide a brief overview of Optimal Transport theory. These results, especially the
dual formulation and displacement interpolation, will play a crucial role in our proposed method.

Optimal Transport The Optimal Transport (OT) problem investigates the optimal way to transport
the source distribution µ to the target distribution ν (Villani et al., 2009). The optimality of the
transport plan is defined as the minimization of a given cost function. Initially, Monge (1781)
formulated the OT problem with a deterministic transport map T where T#µ = ν. However, the
Monge OT problem is non-convex and the optimal transport map T ⋆ may not exist depending on µ
and ν. To overcome this problem, Kantorovich (1948) introduced the following convex formulation:

C(µ, ν) := inf
π∈Π(µ,ν)

[∫
X×X

c(x, y)dπ(x, y)

]
, (1)

where the minimization is conducted over the set of joint probability distribution π ∈ Π(µ, ν). We
refer to this π as the transport plan or coupling between µ and ν. When the optimal transport map
T ⋆ from the Monge OT exists, the optimal coupling π⋆ satisfies π⋆ = (Id× T ⋆)#µ. For a general
cost function c(·, ·) that is lower semicontinuous and lower bounded, the Kantorovich OT problem
(Eq. 1) can be reformulated as follows (Villani et al. (2009), Chapter 5):

C(µ, ν) = sup
V ∈L1(ν)

[∫
X
V c(x)dµ(x) +

∫
X
V (y)dν(y)

]
, (2)

where the potential function V ∈ L1(ν) is an integrable function with respect to ν and the c-transform
of V is defined as

V c(x) = inf
y∈Y

(c(x, y)− V (y)) . (3)

This formulation (Eq. 2) is called the semi-dual formulation of OT.

Rout et al. (2022) and Fan et al. (2022) proposed a method for learning the optimal transport map T ⋆

by leveraging this semi-dual formulation (Eq. 2) of OT and applied this T ⋆ for generative modeling.
In generative modeling, the source distribution µ and the target distribution ν correspond to the
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Gaussian prior and the target data distribution, respectively. Specifically, these models parametrize
the potential V = Vϕ in Eq. 2 and the transport map Tθ : X → Y as follows:

Tθ : x 7→ argmin
y∈X

[c(x, y)− Vϕ (y)] ⇔ V c
ϕ (x) = c (x, Tθ(x))− Vϕ (Tθ(x)) . (4)

Note that the parametrization of Tθ on the left-hand side is equivalent to the representation of V c
ϕ

on the right-hand side, by the definition of the c-transform (Eq. 3). Based on this, we arrive at the
following optimization problem:

LVϕ,Tθ
= sup

Vϕ

[∫
X
inf
Tθ

[c (x, Tθ(x))− Vϕ (Tθ(x))] dµ(x) +

∫
X
Vϕ(y)dν(y)

]
. (5)

Intuitively, Tθ and Vϕ serve similar roles as the generator and the discriminator of a GAN (Goodfellow
et al., 2020). A key difference is that Tθ is trained to minimize the cost c (x, Tθ(x)), since Tθ learns
the optimal transport map. For convenience, we denote the optimization problem LVϕ,Tθ

(Eq. 5) as
the OT-based generative model (OTM) (Fan et al., 2022).

Dynamic Optimal Transport and Displacement Interpolation In this paragraph, we provide a
close connection between the dynamic optimal transport problem and displacement interpolation.
While the (static) optimal transport (Eq. (1)) focuses solely on how each x ∼ µ is transported to
y ∼ ν, the dynamic optimal transport problem tracks the continuous evolution of µ to ν. Formally,
the dynamic formulation of the Kantorovich OT problem (Eq. 1) for the quadratic cost c(x, y) =
α∥x− y∥2 can be expressed as follows:

inf
v:[0,1]×X→X

[∫ 1

0

∫
X
α∥vt(x)∥2ρt(x)dxdt;

∂ρt
∂t

+∇ · (vtρt) = 0, ρ0 = µ, ρ1 = ν

]
. (6)

This dynamic formulation of OT (Eq. 6) is called the Benamou-Brenier formulation (Benamou
& Brenier, 2000). Note that the dynamic transport plan {ρt}0≤t≤1 evolves from µ to ν, and this
evolution is governed by the ODE dx/dt = vt(x) through the continuity equation.

Interestingly, the optimal solution of this dynamic OT problem has a simple form. Along each ODE
trajectory {x(t) | dx/dt = vt(x), x(0) = x0}, the velocity field v remains constant. Moreover, when
the deterministic optimal transport map T ⋆ exists, the following holds:

ρdist := [(1− t) · Id+ t · T ⋆]# µ and ρdist = ρ⋆t for 0 ≤ t ≤ 1. (7)

where Id denotes the identity map and ρ⋆ denotes the optimal dynamic OT plan of Eq. 6. ρdist is
called McCann’s Displacement Interpolation (DI) (McCann, 1997). Eq. 7 shows that the pushforward
of linear interpolation between Id and the static OT map T ⋆ is equivalent to the dynamic OT plan ρ⋆t .
Hence, throughout this paper, we simply denote the displacement interpolation as ρ⋆t . Furthermore,
it is well known that the displacement interpolants satisfy the following property (Theorem 7.21 in
Villani et al. (2009)):

ρ⋆t = arg inf
ρ
LDI(t, ρ) where LDI(t, ρ) = (1− t)W 2

2 (µ, ρ) + tW 2
2 (ρ, ν). (8)

Note that LDI corresponds to the Wasserstein-2 barycenter problem between the two probability
distributions µ, ν (Agueh & Carlier, 2011; Kolesov et al., 2024b). In other words, Eq. 8 represents the
equivalence between the displacement interpolants and the Wasserstein barycenter. This equivalence
will be utilized in Sec 3 to derive our approach to neural optimal transport, i.e., learning the optimal
transport map T ⋆ with a neural network. We establish how the optimal potential and transport maps
for each ρ⋆t are related and use this relationship to improve neural optimal transport.

3 METHOD

In this section, we propose our method, called the Displacement Interpolation Optimal Transport
Model (DIOTM). Our model leverages displacement interpolation to improve the stable estimation of
the optimal transport map using neural networks. In Sec 3.1, we derive our two main theorems for
deriving our learning objective. In Sec 3.2, we describe how we implement our DIOTM model based
on these theoretical results.

3



Published as a conference paper at ICLR 2025

3.1 DUAL FORMULATION OF DI AND THE RELATIONSHIP BETWEEN INTERPOLATION
POTENTIAL FUNCTIONS

In this subsection, we provide two theoretical results: the Dual Formulation of Displacement
Interpolation (Thm 3.1) and the Relationship between Interpolation Potential Functions (Thm
3.3). Thm 3.1 will be utilized to derive our main learning objective (Eq. 17) and Thm 3.3 will be
employed to formulate our regularizer (Eq. 19).

Dual Problem of Displacement Interpolant Here, we begin with the dual formulation of the
minimization characterization of the interpolant ρ⋆t (Eq. 8). The dual problem can be expressed as Eq.
9 in the following Theorem 3.1. Note that while the primal formulation (Eq. 8) optimizes over the set
of probability distribution ρ, the dual formulation optimizes over two potential functions f1,t, f2,t.
Theorem 3.1. Given the assumptions in Appendix A, for a given t ∈ (0, 1), the minimization problem
infρ LDI(t, ρ) (Eq. 8) is equivalent to the following dual problem:

sup
f1,t,f2,t∈C with (1−t)f1,t+tf2,t=0

[
(1− t)

∫
X
f c
1,t(x)dµ(x) + t

∫
Y
f c
2,t(y)dν(y)

]
. (9)

where the supremum is taken over two continuous potential functions f1,t : Y → R and f2,t : X → R,
which satisfy (1−t)f1,t+tf2,t = 0. Note that the assumptions in Appendix A guarantee the existence
and uniqueness of displacement interpolants ρ⋆t , the forward optimal transport map

−→
T ⋆

t from µ to ρ⋆t ,
and the backward transport map

←−
T ⋆

t from ν to ρ⋆t . Based on this, we have the following:
−→
T ⋆

t (x) ∈ arginfy∈Y
[
c(x, y)− f⋆

1,t(y)
]
,
←−
T ⋆

t (y) ∈ arginfx∈X
[
c(x, y)− f⋆

2,t(x)
]
, (10)

µ-a.s. for x and ν-a.s. for y. By applying the same c-transfrom parametrization as in Eq. 4, we
derive the following max-min formulation of the dual problem:

sup
f1,t,f2,t∈C with (1−t)f1,t+tf2,t=0

(1− t)

∫
X
inf−→
T t

(
c(x,
−→
T t(x))− f1,t(

−→
T t(x))

)
dµ(x)

+ t

∫
Y
inf←−
T t

(
c(
←−
T t(y), y)− f2,t(

←−
T t(y))

)
dν(y). (11)

Note that the max-min formulation above requires optimization over four functions: the two potentials
f1,t, f2,t and the two transport maps

−→
T t,
←−
T t. Here, we provide an intuitive interpretation of this

max-min optimization (Eq. 11). Two transport maps
−→
T t,
←−
T t act as generators of the interpolant ρ⋆t

from µ and ν, respectively. Two potential functions f1, f2 serve similar roles to discriminators for
the generated samples (fake samples) from

−→
T t,
←−
T t. The discriminator values for the true samples ρ⋆t

cancels out because of the potential condition (1− t)f1,t + tf2,t = 0. Formally,

(1− t)

∫
f1,t(z) dρ

⋆
t (z) + t

∫
f2,t(z) dρ

⋆
t (z) =

∫
[(1− t)f1,t + tf2,t] (z) dρ

⋆
t (z) = 0. (12)

In fact, using this potential condition, we can combine these two potentials into a single value
function (or potential function) Vt. This simplified formulation of Eq. 9 will be used to derive our
regularizer in Theorem 3.3.
Corollary 3.2. For a given t ∈ (0, 1), let f1,t(y) = tVt(y) and f2,t(x) = −(1− t)Vt(x) for some
value function Vt : X = Y → R. Then, the dual formulation of displacement interpolation (Eq. 9)
can be rewritten as follows:

sup
Vt

[∫
X
V

c0,t
t (x)dµ(x) +

∫
Y
(−Vt)

ct,1(y)dν(y)

]
, (13)

where cs,t(x, y) =
α∥x−y∥2

t−s for every 0 ≤ s < t ≤ 1.

Relationship between Interpolation Potential Functions Here, based on Corollary 3.2, we derive
the optimality condition, that each interpolant value function Vt satisfies, as the time-dependent value
function V (t, x) = Vt(x). From now on, we will denote the value function in its time-dependent
form: V (t, x) : (0, 1)×X = Y → R.
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Algorithm 1 Training algorithm of DIOTM

Require: The source distribution µ and the target distribution ν. Transport networks
−→
T θ1 ,

←−
T θ2 and

the discriminator network Vϕ. Total iteration number K, and regularization hyperparameter λ.
1: for k = 0, 1, 2, . . . ,K do
2: Sample a batch x ∼ µ, y ∼ ν, t ∼ U [0, 1].

3: xt ← (1− t)x+ t
−→
T θ1(x), yt ← (1− t)

←−
T θ2(y) + ty.

4: Update Vϕ to increase the Lϕ

Lϕ = −Vϕ(t, xt) + Vϕ(t, yt)− λR(Vϕ(t, xt))− λR(Vϕ(t, yt)).

5: Update
−→
T θ1 to decrease the loss: c0,t(x, xt)− Vϕ(t, xt).

6: Update
←−
T θ2 to decrease the loss: ct,1(yt, y) + Vϕ(t, yt).

7: end for

Theorem 3.3. Given the assumptions in Appendix A, the optimal V ⋆
t in Eq. 13 satisfies the following:

V ⋆
t = arg sup

Vt

[∫
X
V

c0,t
t (x)dµ(x) +

∫
Y
Vt(x)dρ

⋆
t (x)

]
, (14)

up to constant ρ⋆-a.s.. Moreover, there exists {V ⋆
t }0≤t≤1 that satisfies Hamilton-Jacobi-Bellman

(HJB) equation, i.e.

∂tV
⋆
t +

1

4α
∥∇V ⋆

t ∥2 = 0, ρ⋆-a.s. (15)

In Sec 3.2, we use this HJB optimality condition (Eq. 15) as a regularizer for the value function V in
our model. In Sec 5, we demonstrate that, when combined with our displacement interpolation, this
regularizer significantly improves the stability of optimal transport map estimation.

3.2 DISPLACEMENT INTERPOLATION OPTIMAL TRANSPORT MODEL

In this subsection, we introduce our model, called Displacement Interpolation Optimal Transport
Model (DIOTM). The goal of our model is to learn the optimal transport map between the source
distribution µ and the target distribution ν. DIOTM is trained by utilizing the displacement interpo-
lation ρ⋆t (Eq. 7) between these two distributions. In DIOTM, the forward and backward transport
maps

−→
T ,
←−
T are trained to match all intermediate distributions. As a result, each transport map is not

directly trained to generate the boundary distributions µ and ν, but instead exploits the matching of
intermediate distributions. This approach enables our model to achieve a more stable estimation of
the optimal transport map.

Parametrization of the DI Dual Problem Our DIOTM learns the static optimal transport map
between µ and ν by exploiting the displacement interpolation (DI) ρ⋆t , which is the solution of the
dynamic optimal transport problem (Villani et al., 2009). However, there are some challenges when
using DI to learn the static transport map. While our goal is to learn the optimal transport maps
between µ and ν, the max-min dual formulation of the DI dual problem (Eq. 11) applies to each
specific time t ∈ (0, 1). In other words, the intermediate transport maps

−→
T t,
←−
T t and the potential Vt

are defined separately for each t. Therefore, we represent these interpolant generators
−→
T t,
←−
T t

through the boundary generators
−→
T ,
←−
T by incorporating the optimality condition of DI (Eq. 7).

Specifically, we parametrize the interpolant generators
−→
T t and

←−
T t as follows:

−→
T t(x) = (1− t)x+ t

−→
T θ1(x),

←−
T t(y) = (1− t)y + t

←−
T θ2(y) for t ∈ (0, 1). (16)

where
−→
T θ1 and

←−
T θ2 parametrize the optimal transport maps from the source µ to the target ν and from

ν to µ, respectively. The optimality condition of DI clarifies how the intermediate optimal transport
maps

−→
T ⋆

t ,
←−
T ⋆

t are related to each other. We utilize this condition to parametrize the entire interpolant
ρ⋆t for t ∈ (0, 1) using just two networks

−→
T θ1 : X → Y and

←−
T θ2 : Y → X . Note that this optimality

condition is satisfied under the optimal value function Vϕ is given. Thus, this parametrization is
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introduced for better efficiency. Additionally, we already investigated how the potentials, specifically
the value function V (t, x), are related in Theorem 3.3. Therefore, by combining Eq 13 and 16, we
arrive at our main max-min learning objective:

LDI
ϕ,θ = sup

Vϕ

∫
X

inf−→
T θ1

Et

[α
t
∥x−

−→
T t(x)∥2 − Vϕ(t,

−→
T t(x))

]
dµ(x)

+

∫
Y

inf←−
T θ2

Et

[
α

1− t
∥
←−
T t(y)− y∥2 + Vϕ(t,

←−
T t(y))

]
dν(y). (17)

Here, α indicates the cost intensity hyperparameter, i.e., c(x, y) = α∥x − y∥22. Note that the
expectation with respect to t is for aggregating the interpolant ρ⋆t for t ∈ (0, 1). When represented
with our transport map parametrizations

−→
T θ1 and

←−
T θ2 (Eq. 16), our main learning objective LDI

ϕ,θ

can be expressed as follows:

LDI
ϕ,θ = sup

Vϕ

∫
X

inf−→
T θ1

Et

[
αt∥x−

−→
T θ(x)∥2 − Vϕ(t,

−→
T t(x))

]
dµ(x)

+

∫
Y

inf←−
T θ2

Et

[
α(1− t)∥

←−
T θ(y)− y∥2 + Vϕ(t,

←−
T t(y))

]
dν(y). (18)

Moreover, we introduce the HJB regularizer R(Vϕ), which is derived from the HJB optimality
condition of the value function, proved in Theorem 3.3:

R(Vϕ) = Et,x∼ρt

∣∣∣∣2α ∂tVϕ(t, x) +
1

2
∥∇Vϕ(t, x)∥2

∣∣∣∣ . (19)

As a result, the learning objective can be summarized as follows:

Lϕ,θ = LDI
ϕ,θ + λR(Vϕ(t, x)). (20)

where λ > 0 denotes the HJB regularizer intensity hyperparameter.

Algorithm We present our training algorithm for DIOTM (Algorithm 1). Our adversarial training
objective Lϕ,θ updates alternatively between the value function Vϕ and the two transport maps
−→
T θ,
←−
T θ, similar to GAN framework (Goodfellow et al., 2020). Note that we simplified Algorithm

1 by omitting the non-dependent terms for each neural network. Additionally, we apply the HJB
regularizer to both generated distributions, i.e., the forward generated distribution from

−→
T θ and the

backward generated distribution from
←−
T θ. Finally, throughout all experiments, we use the uniform

distribution for time sampling, i.e., t ∼ U [0, 1]. However, the time sampling distribution can be
freely modified. We leave the investigation of the optimal time sampling distribution to future work.
In particular, if we set t ∼ δ1, i.e., t = 1, the training algorithm becomes similar to OTM (Rout et al.,
2022). In this case, we do not use any displacement interpolation information for t ∈ (0, 1). The only
difference is our HJB regularizer.

4 RELATED WORK

OT problem addresses a transport map between two distributions that minimizes the predefined
cost function. Starting from the dual formulations (Kantorovich, 1948; Vacher & Vialard, 2022a;b;
Gallouët et al., 2021), diverse methods for estimating OT Map have been developed based on minimax
problem (Liu et al., 2019; Makkuva et al., 2020; An et al., 2020; Fan et al., 2022; Rout et al., 2022;
Choi et al., 2023; 2024b; Korotin et al., 2023). In particular, Fan et al. (2022); Rout et al. (2022);
Korotin et al. (2023) derived adversarial algorithm from the semi-dual formulation of OT problem and
properly recovered OT maps compared to other previous works (Makkuva et al., 2020). Moreover,
they provided moderate performance in image generation and image translation tasks for large-scale
datasets. Another line of research focuses on the dynamical formulation of OT problems (Chen et al.,
2021; Shi et al., 2024b; Liu et al., 2024; 2022; Neklyudov et al., 2023; Gushchin et al., 2024). Several
works (Zhang & Chen, 2021; Chen et al., 2021; Shi et al., 2024b; Liu et al., 2024) use sampling-based
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Table 1: Evaluation of optimal transport map on the synthetic datasets between OTM (Rout et al.,
2022) and ours, based on the 2-Wasserstein distance W2 and the L2 distance between transport maps.

Metric G→8G G→25G Moon→Spiral G→Circles

OTM DIOTM OTM DIOTM OTM DIOTM OTM DIOTM

W2 (↓) 4.93 3.72 10.09 6.49 0.40 0.55 3.96 2.34
L2 (↓) 6.48 4.38 13.09 10.00 1.77 1.67 6.23 5.44

Figure 1: Visualization of transport maps T on synthetic datasets. The transport map is visualized
as a black line connecting each source sample x to its corresponding generated data T (x).

approaches, which require numerically simulating ODEs or SDEs during training. More recently,
some methods (Neklyudov et al., 2023; Gushchin et al., 2024) have introduced simulation-free
techniques, often incorporating adversarial learning strategies. Since our approach also leverages the
dynamical properties of OT, we compare our method with Shi et al. (2024b); Gushchin et al. (2024),
both of which have demonstrated scalability in image translation tasks.

5 EXPERIMENTS

In this section, we conduct experiments on various datasets to evaluate our model from the following
perspectives.

• In Sec 5.1, we compare our model with the ground-truth solution from POT Flamary et al.
(2021) on synthetic datasets to assess how well our model approximates OT maps.

• In Sec 5.2, we compare our model with various OT models on image-to-image translation
tasks to evaluate the scalability of our model.

• In Sec 5.3, we evaluate the training stability of our DIOTM model and investigate the
effectiveness of HJB regularizer compared to other approaches, such as OTM regularizer
and R1 regularizer.

For implementation details of experiments, please refer to Appendix B.

5.1 OPTIMAL TRANSPORT MAP EVALUATION ON SYNTHETIC DATASETS

First of all, we evaluate whether our model can accurately learn the optimal transport map
T ⋆ from the source distribution µ and the target distribution ν. We assess our model against
OTM (Rout et al., 2022; Fan et al., 2022) by comparing them to the discrete OT solution from the
POT library (Flamary et al., 2021). As discussed in Sec 3.2, when the time sampling distribution
is set to δt=1, our DIOTM presents a similar framework with OTM. Hence, we consider OTM an
appropriate baseline for demonstrating the advantage of using displacement interpolation. Note that
OTM demonstrated the most competitive performance as a neural optimal transport map in Korotin
et al. (2022b). Also, the discrete OT solution indicates the optimal transport map between empirical
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Figure 2: Image-to-Image translation results of DIOTM for Wild→ Cat (64× 64) on AFHQ (Choi
et al., 2020). The left figure shows the source images and the right figure shows the corresponding
translated images by DIOTM.

Figure 3: Image-to-Image translation results of DIOTM for Male → Female (128 × 128) on
CelebA (Liu et al., 2015).

distributions, i.e., µ =
∑

i δxi
, ν =

∑
j δyj

, computed via convex optimization. Hence, this discrete
OT solution serves as the proxy ground-truth solution of the continuous OT map. We tested our model
on four synthetic datasets: Gaussian-to-8Gaussian (G→8G), Gaussian-to-25Gaussian (G→25G),
Moon-to-Spiral, and Gaussian-to-Circles (G→Circles).

Fig. 1 visualizes the transport maps and Tab. 1 presents the quantitative evaluation metric results. In
Tab. 1, we evaluate each transport map through two metrics. First, we calculate the 2-Wasserstein
distance W2(

−→
Tθ#µ, ν) between the generated distribution

−→
Tθ#µ and the target distribution ν. Second,

we evaluate whether the neural optimal transport correctly recovers the optimal pairings (x, T (x)).
Specifically, we compute the discrete optimal transport T ⋆

disc on test datasets using POT and measure
the L2 distance between transport maps, i.e.,

∫
X ∥
−→
T (x)− T ⋆(x)∥22dµtest(x). Fig. 1 shows that our

DIOTM more accurately approximates the target distribution, as indicated by the smaller distribution
error between the orange target data and the green generated data. This is further supported by the
quantitative results. In Tab. 1, DIOTM achieves a smaller distribution error (W2) on three out of four
datasets and consistently better recovers the optimal coupling (L2) across all datasets. In summary,
our DIOTM provides a better approximation of the optimal transport map T ⋆ compared to OTM.

5.2 SCALABILITY EVALUATION IN IMAGE-TO-IMAGE TRANSLATION TASKS

We assessed our model on several Image-to-Image (I2I) translation benchmarks: Male→ Female (Liu
et al., 2015) (64×64), Wild→ Cat (Choi et al., 2020) (64×64), and Male→ Female (Liu et al., 2015)
(128× 128). Intuitively, the optimal transport map serves as a generator for the target distribution,
which maps each input x to its cost-minimizing counterpart y. For instance, if we consider Male→
Female task with the quadratic cost ∥x− y∥22, the optimal transport map translates each male image
into a female image while minimizing the pixel-level difference. Consequently, various (entropic)
optimal transport approaches are widely used for the I2I translation tasks. Therefore, we compared
our model with the optimal transport models (NOT (Fan et al., 2022) and OTM (Rout et al., 2022))
and the entropic optimal transport models (DSBM (Shi et al., 2024a) and ASBM (Gushchin et al.,
2024)) on image-to-image (I2I) translation tasks.

Fig. 2 and 3 present the I2I translation results. In each figure, the left subfigure shows source image
samples. The right subfigure displays the translated images generated by our transport map. DIOTM
successfully generates the target distributions (Cat and Female images) while preserving the identity

8
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Table 2: Image-to-Image translation benchmark
results compared to existing neural (entropic) opti-
mal transport models. † indicates the results con-
ducted by ourselves. DSBM scores are taken from
(Gushchin et al., 2024; De Bortoli et al., 2024).

Data Model FID (↓)

Male→Female (64x64)

CycleGAN (Zhu et al., 2017) 12.94
NOT (Korotin et al., 2023) 11.96

OTM† (Fan et al., 2022) 6.42
DIOTM† (Ours) 5.27

Wild→Cat (64x64)
DSBM (Shi et al., 2024a) 20+
OTM† (Fan et al., 2022) 12.42

DIOTM† (Ours) 10.72

Male→Female (128x128)

DSBM (Shi et al., 2024a) 37.8
ASBM (Gushchin et al., 2024) 16.08

OTM† (Fan et al., 2022) 7.55
DIOTM† (Ours) 7.40

Figure 4: Ablation study on the regularizer
hyperparameter λ.

Figure 5: Visualization of the stable training dynamics of DIOTM on Wild→Cat (64× 64). The
loss values are visualized on a log10 scale.

Table 3: Comparison of our HJB regularizer with the OTM and R1 regularizers on the DIOTM
model. Our HJB regularizer exhibits superior performance and stability to λ.

Model G→8G G→25G Moon→Spiral

λ 0.1 0.2 1.0 10 0.1 0.2 1.0 10 0.1 0.2 1.0 10

W2 (↓)
OTM 22.08 22.90 DIV 31.35 68.01 89.62 DIV 81.02 19.99 14.19 15.66 33.80

R1 3.59 5.01 3.29 4.42 9.20 9.94 11.78 DIV 1.91 2.08 1.05 2.74
HJB 1.93 2.69 2.92 3.21 7.19 14.64 7.99 12.38 0.54 0.59 0.30 1.31

L2 (↓)
OTM 27.41 28.21 DIV 34.47 96.89 97.98 DIV 87.05 20.96 15.01 34.31 33.80

R1 4.49 5.39 3.87 5.14 86.05 17.64 19.52 DIV 2.88 3.56 2.36 3.74
HJB 3.05 3.44 3.36 3.98 16.51 15.82 11.11 15.64 1.42 2.25 1.13 2.27

of the input source images. In practice, our DIOTM model trains two transport maps in both directions
−→
T θ and

←−
T θ. The results for the reverse image-to-image translation are included in Appendix C.

Tab. 2 provides the quantitative evaluation results. We adopted the FID score (Heusel et al., 2017)
for quantitative comparison. The FID score assesses whether each model accurately generates the
target distribution. As shown in Tab. 2, the DIOTM model demonstrates state-of-the-art results
among existing (entropic) OT-based methods on I2I translation benchmarks. Specifically, our model
significantly outperforms other entropic OT-based models with a FID score of 7.40 in the higher
resolution case of Male→ Female (128×128). While OTM achieved comparable results at a specific
hyperparameter of λ = 10, OTM diverges for all other λ ∈ {50, 100} with FID > 60 (Fig. 4). In
contrast, our DIOTM consistently maintains a stable performance of FID < 10 for λ ∈ {50, 100}
(Fig. 4). In summary, DIOTM exhibits superior scalability in handling higher-resolution image
datasets compared to previous OT Map models such as NOT and OTM.

5.3 FURTHER ANALYSIS

In this subsection, we provide an in-depth analysis of our DIOTM model. Specifically, we demon-
strate the stable training dynamics of DIOTM, compare the HJB regularizer R(Vϕ) with various

9
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regularizers introduced in other neural optimal transport models, and conduct an ablation study on
the regularization hyperparameter λ.

Stable Training Dynamics The previous approaches to neural optimal transport with adversarial
learning often suffer from training instability (Choi et al., 2024b). These models tend to diverge after
long training and are sensitive to hyperparameters. In contrast, our DIOTM offers stable training
dynamics. Fig. 5 visualizes the loss values for the transport map Tθ and the value function Vϕ

throughout the training process. Note that we visualized these loss values on a log10 scale. In OTM
(Rout et al., 2022), the Tθ loss gradually explodes as training progresses. This unstable training
dynamics has been a major challenge for the OT Map models based on minimax objectives. On the
contrary, DIOTM exhibits stable loss dynamics without the abrupt divergence phenomenon, observed
in OTM.

Comparison to Various Regularization Methods We investigate the effect of our HJB regularizer
R(Vϕ) (Eq. 19) compared to other regularization methods. Specifically, we compare two alternatives:
OTM regularizerROTM (Fan et al., 2022; Rout et al., 2022) and R1 regularizerRR1 (Roth et al., 2017).
These regularizers are also introduced to stabilize the training value function Vϕ. We incorporate
these regularizers into our algorithm by modifying the regularization termR in line 4 of Alg. 1 as
follows:

• ROTM(t, xt, yt) = ∥∇y (c0,t(x, xt)− Vϕ(t, xt)) ∥+ ∥∇y (ct,1(y, yt) + Vϕ(t, yt)) ∥.
• RR1(t, xt, yt) = ∥∇yVϕ(t, xt)∥2 + ∥∇yVϕ(t, yt)∥2.

We assessed these regularizers on synthetic datasets to measure the accuracy of each neural optimal
transport map, as in Tab. 1. Tab. 3 provides the results of each regularization method. Note
that because we are comparing different regularizers, a direct comparison under the same λ is not
meaningful. Instead, we need to focus on the best results of each regularizer and their robustness to
the regularization intensity parameter λ. In Tab. 3, our HJB regularizer attains the best and stable
results on all three synthetic datasets. We interpret this result by focusing that the HJB regularizer is
the only regularizer that incorporates the time derivative ∂tVϕ. Our time-dependent value function
Vϕ(t, x) is trained to distinguish the displacement interpolation for each t. Therefore, regularizing
the behavior of our value function across time t is beneficial for DIOTM.

Effect of the Regularization Hyperparameter λ Finally, we conducted an ablation study on the
regularization hyperparameter λ (Eq. 20) in the image-to-image translation tasks of Wild→ Cat
(64× 64) and Male→ Female (128× 128). Note that, unlike Tab. 3, we compare our model with
OTM (Rout et al., 2022), not the DIOTM model with the OTM regularizer. Fig. 4 demonstrates that
our model exhibits significantly greater stability regarding the regularization hyperparameter λ, in
comparison to OTM. Specifically, in Wild→ Cat (64× 64), our model maintains decent performance
for λ ∈ {1, 50, 100}, showing the FID score around 20 even in the worst case. In contrast, the FID
scores of OTM fluctuate severely from below 20 to around 60 depending on λ.

6 CONCLUSION

In this paper, we introduced the Displacement Interpolation Optimal Transport Model (DIOTM),
a neural optimal transport method based on displacement interpolation. Our method is motivated
by the equivalence between displacement interpolation and dynamic optimal transport. We derived
the dual formulation of displacement interpolant and developed a method that utilizes the entire
trajectory of displacement interpolation to improve neural optimal transport learning. Our experiments
demonstrated that DIOTM achieves more accurate and stable optimal transport map estimation
compared to previous method. A major limitation of this work is the requirement to train both
bidirectional transport maps

−→
T and

←−
T . In image-to-image translation tasks, both transport maps are

meaningful, e.g. Male↔ Female. However, in generative modeling, the reverse transport map
←−
T

from the data to the prior noise distribution is not always necessary. In these cases, training
←−
T can be

an unnecessary cost. Another limitation of this work is that our approach is limited to the quadratic
cost. This is because our displacement interpolation parametrization in Eq. 16 is only valid under the
quadratic cost assumption.
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A PROOFS

Assumptions Let X ∈ Rd be a closure of a connected bounded convex open subspace of Rd.
Let dim(∂X ) < d. Let P2,ac be a collection of probability distributions on X that are absolutely
continuous and have finite second moments. Let µ, ν ∈ P2,ac. Moreover, let c(x, y) = τ∥x− y∥2.
Here, τ is a given positive constant.

A.1 PROOF OF THEOREM 3.1

Theorem A.1. Given the assumptions in Appendix A, for a given t ∈ (0, 1), the minimization problem
infρ LDI(t, ρ) (Eq. 8) is equivalent to the following dual problem:

sup
f1,t,f2,t with (1−t)f1,t+tf2,t=0

[
(1− t)

∫
X
f c
1,t(x)dµ(x) + t

∫
X
f c
2,t(y)dν(y)

]
. (21)

where the supremum is taken over two potential functions f1,t : Y → R and f2,t : X → R, which
satisfy (1− t)f1,t + tf2,t = 0. Note that the assumptions in Appendix A guarantee the existence and
uniqueness of displacement interpolants ρ⋆t , the forward optimal transport map

−→
T ⋆

t from µ to ρ⋆t , and
the backward transport map

←−
T ⋆

t from ν to ρ⋆t . Based on this, we have the following:
−→
T ⋆

t (x) ∈ arginfy∈Y
[
c(x, y)− f⋆

1,t(y)
]

µ-a.s.. (22)
←−
T ⋆

t (x) ∈ arginfx∈X
[
c(x, y)− f⋆

2,t(x)
]

ν-a.s.. (23)

Proof. We prove the theorem by two steps. First, we prove Eq. 21 following the duality theorem in
Korotin et al. (2022a) and Kolesov et al. (2024a). Then, we discuss the existence and uniqueness of
the potential f1, f2 and the optimal transport maps. Using these uniquesness, we prove Eq. 22.

Step 1. We first prove Eq. 21. Suppose 0 < t < 1 is given. By applying the dual form of OT
problem Kantorovich (1948), for every ρ ∈ P2, the following equation satisfies:

(1− t)W 2
2 (µ, ρ) + tW 2

2 (ρ, ν)

= sup
f1,f2∈C(X )

[
(1− t)Ex∼µ[f

c
1,t(x)] + tEy∼ν [f

c
2,t(y)] + Ez∈ρ[(1− t)f1,t(z) + tf2,t(z)]

]
. (24)

Then, by applying Theorem 3.4 in Sion (1957), we obtain the following:

L∗ = inf
ρ
(1− t)W 2

2 (µ, ρ) + tW 2
2 (ρ, ν),

= inf
ρ

sup
f1,t,f2,t∈C(X )

[
(1− t)Ex∼µ[f

c
1,t(x)] + tEy∼ν [f

c
2,t(y)] + Ez∈ρ[(1− t)f1,t(z) + tf2,t(z)]

]
,

= sup
f1,t,f2,t∈C(X )

inf
ρ

[
(1− t)Ex∼µ[f

c
1,t(x)] + tEy∼ν [f

c
2,t(y)] + Ez∼ρ[(1− t)f1,t(z) + tf2,t(z)]

]
.

(25)

Note that we can swap minimax to max-min problem due to the compactness assumption of the space
X . Now, suppose m = m(f1,t, f2,t) := infz∈X (1− t)f1,t(z)+ tf2,t(z). Let f̃1,t = (m(f1,t, f2,t)−
tf2,t)/(1 − t). Then, m = (1 − t)f̃1,t(z) + tf2,t(z) ≤ (1 − t)f1,t(z) + tf2,t(z), which implies
f̃1,t ≤ f1,t. Then, we can easily obtain f c

1,t ≤ f̃ c
1,t. With this inequality, we can obtain the following

equality:

sup
f1,t,f2,t∈C(X )

inf
ρ

[
(1− t)Ex∼µ[f

c
1,t(x)] + tEy∼ν [f

c
2,t(y)] + Ez∼ρ[(1− t)f1,t(z) + tf2,t(z)]

]
,

= sup
f1,t,f2,t∈C(X )

[
(1− t)Ex∼µ[f

c
1,t(x)] + tEy∼ν [f

c
2,t(y)] +m(f1,t, f2,t)

]
,

= sup
f2,t∈C(X )

[
(1− t)Ex∼µ[f̃

c
1,t(x)] + tEy∼ν [f

c
2,t(y)] +m(f̃1,t, f2,t)

]
,

= sup
f2,t∈C(X )

[
(1− t)Ex∼µ

[(
− tf2,t
1− t

)c

(x)

]
+ tEy∼ν [f

c
2,t(y)]

]
.

(26)
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Note that the last equation is obtained by using the following property: (f1,t + a)c = f c
1,t − a for

any constant a. By letting f1,t = − tf2,t
1−t , we finally obtain Eq. 21.

Step 2. In this step, we prove the uniqueness of the optimal potential pair (f⋆
1,t, f

⋆
2,t) of Eq. 21. Let

ρ⋆ = arg inf
ρ
(1− t)W 2

2 (µ, ρ) + tW 2
2 (ρ, ν). (27)

First, we should show the well-definedness of above equation. In other words, we should show the
existence and uniqueness of ρ⋆. Due to the absolutely continuity assumption of µ, there exists unique
deterministic optimal transport map between µ and ν (See Chapter 1 or Theorem 9.2 of Villani et al.
(2009)). Thus, by applying Corollary 7.23 in Villani et al. (2009), there exist unique solution ρ⋆.

Now, consider the following optimization problem:

sup
f̂1,t,f̂2,t

[
(1− t)

(∫
X
f̂ c
1,t(x)dµ(x) +

∫
X
f̂1,t(x)dρ

⋆(x)

)
+ t

(∫
X
f̂ c
2,t(y)dν(y) +

∫
X
f̂2,t(y)dρ

⋆(y)

)]
. (28)

Trivially, the first and the second term of Eq. 28 break down into two independent optimization
problems. By using the Kantorovich duality theorem (See Kantorovich (1948) or Theorem 5.10
Villani et al. (2009)), the solution value of Eq. 28 is obviously L∗. Moreover, since the solution pair
(f⋆

1,t, f
⋆
2,t) of Eq. 21 satisfies (1− t)f⋆

1,t + tf⋆
2,t = 0, it is included in the optimal potential pair of Eq.

28.

Note that we assumed that µ is absolutely continuous and the space X is convex, and a closure of a
connected open set. Then, on the support of µ, the Kantorovich potentials f̂1,t and f̂2,t is unique up
to constant on the connected support of µ and ν, respectively (See Staudt et al. (2022)). Therefore,
the optimal potentials f⋆

1,t, f
⋆
2,t of Eq. 21 are a Kantorovich potentials of W 2

2 (µ, ρ
⋆) and W 2

2 (ν, ρ
⋆),

respectively.

Finally, since µ ∈ P2,ac, there exists a measurable deterministic optimal transport map T ⋆ which
transport µ to ρ⋆ (See Chapter 1 or Corollary 9.4 in Villani et al. (2009)). Then, by Theorem 5.10
and Remark 5.13 in Villani et al. (2009), we can easily obtain Eq. 22.

Let f1,t(x) = tV (t, x) and f1,t(x) = −(1− t)V (t, x) for every t ∈ (0, 1). Then, we can rewrite Eq.
9 as follows:

sup
Vt

[∫
X
V

c0,t
t (x)dµ(x) +

∫
X
(−Vt)

ct,1(y)dν(y)

]
, (29)

where cs,t(x, y) =
τ∥x−y∥2

t−s for every 0 ≤ s < t ≤ 1.

The following theorem shows the connection between the optimal potential of transport problem
between µ to ρ⋆t , and our potential function V .
Theorem A.2. The optimal V ⋆

t in Eq. 13 satisfies the following:

V ⋆
t = arg sup

Vt

[∫
X
V

c0,t
t (x)dµ(x) +

∫
X
Vt(x)dρ

⋆
t (x)

]
, (30)

up to constant ρ⋆-a.s.. Moreover, there exists {V ⋆
t }0≤t≤1 that satisfies Hamilton-Jacobi-Bellman

(HJB) equation, i.e.

∂tVt +
1

4τ
∥∇Vt∥2 = 0, ρ⋆-a.s. (31)

Proof. By the Step 2 of the proof of the Theorem A.1, we have shown that the optimal (f⋆
1 , f

⋆
2 )

which solves Eq. 21 is a Kantorovich dual function of W 2
2 (µ, ρ

⋆) and W 2
2 (ν, ρ

⋆), respectively. By
directly applying this fact, we obtain Eq. 30.

Now, we prove Eq. 31, the HJB equation. Let ρ⋆ be defined as the Step 2 of the proof of Theorem
A.1. Then, as discussed in Step 2, there exists unique ρ⋆ that satisfies Eq. 27. Since µ is absolutely
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continuous, it is well known that ρ⋆ is also absolutely continuous. Due to the compactness of the
space X , the optimal Vt is differentiable with respect to x ∈ X ρ⋆-a.s.. Now, by applying Theorem
7.36 and Remark 7.37 of Villani et al. (2009), there exists V : (0, 1)×X → R such that

−Vs(x) = inf
y
(cs,t(x, y)− Vt(y)) , (32)

for all 0 < s < t < 1. By applying Hopf-Lax formula, we obtain,

−V (s,Xs) = inf
v:[0,1]×X→X

[∫ t

s

τ∥vt∥2du− Vt(Xt)

]
, (33)

where Ẋt = vt(Xt). Thus, by organizing the Eq. 33, we obtain Eq. 31 as follows:

0 = lim
t→s

inf
v:[0,1]×X→X

[
1

t− s

∫ t

s

τ∥v∥2 − 1

t− s
(Vt(Xt)− Vs(Xs))

]
, (34)

= inf
v

(
τ∥vs∥2 − ∂sVs −∇Vs · vs

)
= −

(
∂sVs +

∥∇Vs∥2

4τ

)
. (35)

Note that law(Xt) = ρ⋆t . Thus, ∂tVt +
∥∇Vt∥2

4τ = 0 ρ⋆t -a.s..

B IMPLEMENTATION DETAILS

For all experiments, we parametrize
−→
T θ,
←−
T θ : X × Rn → X where X is a data space, and z ∈ Rn

is an auxiliary variable. As reported in Choi et al. (2023; 2024b), incorporating the auxiliary variable
slightly improves the performance. For all OTM experiments we have implemented, we use the same
network and the same parameter to DIOTM, unless otherwise stated.

B.1 2D EXPERIMENTS

Data Description In this paragraph, we describe our synthetic datasets:

• 8-Gaussian: For mi = 12
(
cos i

4π, sin
i
4π

)
where i = 0, 1, . . . , 7 and σ = 0.4, the

distribution is defined as the mixture of N (mi, σ
2) with an equal probability.

• 25-Gaussian: For mij = (8i, 8j) where i = −2,−1, . . . , 2 and j = −2,−1, . . . , 2, the
distribution is defined as the mixture of N (mij , σ

2) where σ = 0.01.
• Moon to Spiral: We follow Choi et al. (2024b).
• Two Circles: We first uniformly sample from the circles of radius 8 and 16 with the center

at origin. Then, we add Gaussian noise with standard deviation of 0.2.

Network Architectures We first describe the value function network Vϕ(t, x). The input x ∈ X is
embedded using a two-layer MLP with a hidden dimension of 128. The time variable t is embedded
using a positional embedding of dimension 128, followed by a two-layer MLP, also with a hidden
dimension of 128. These two embeddings are then added and passed through a three-layer MLP. The
SiLU activation function is applied to all MLP layers. Besides, for the transport map networks, we
employ the same network to Choi et al. (2023) with hidden dimension of 128.

Training Hyperparameters We set Adam optimizer with (β1, β2) = (0, 0.9), learning rate of
10−4 and the number of iteration of 120K. We set α = 0.1 and λ = 1.

Discrete OT Solver We used the POT library Flamary et al. (2021) to obtain an accurate transport
plan πpot. We used 1000 training samples for each dataset in estimating πpot to sufficiently reduce
the gap between the true continuous measure and the empirical measure.

B.2 IMAGE TRANSLATION

Training Hyperparameters We follow the large neural network architecture introduced in Xiao
et al. (2021). We use Adam optimizer with (β1, β2) = (0, 0.9), learning rate of 10−4, and trained
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for 60K iterations. We use a cosine scheduler to gradually decrease the learning rate from 10−4

to 5 × 10−5. The batch size of 64 and 32 is employed for 64 × 64 and 128 × 128 image datasets,
respectively. We use α = 0.001 for CelebA image dataset, and α = 0.0005 for AFHQ dataset. We
use ema rate of 0.9999 for 64× 64 image datasets and 0.999 for 128x128 image datasets.

Evaluation Metric Regarding the FID computation, we followed the evaluation scheme of (De Bor-
toli et al., 2024) for the Wild→Cat experiments and (Korotin et al., 2023; Gushchin et al., 2024)
for the CelebA experiments for a fair comparison. Specifically, in the Wild→Cat experiments, we
generated ten samples for each source test image. Since the source test dataset consists of approxi-
mately 500 samples, we generated 5000 generated samples. Then, we computed the FID score with
the training target dataset, which also contains 5000 samples. Also, in the CelebA experiment, we
computed the FID score using the test target dataset, which includes 12247 samples. We generated
the same 12247 samples and compared them with the test target dataset.

C ADDITIONAL QUALITATIVE RESULTS

In this section, we include some qualitative results on image-to-image translation tasks. We visualize
the source images and its transported samples.

Figure 6: Unpaired Male→ Female translation for 64 × 64 CelebA image.
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Figure 7: Unpaired Female→Male translation for 64 × 64 CelebA image.

Figure 8: Unpaired Female→Male translation for 128 × 128 CelebA image.
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Figure 9: Unpaired Male→ Female translation for 128 × 128 AFHQ image.

Figure 10: Unpaired Wild→ Cat translation for 64 × 64 AFHQ image.
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Figure 11: Unpaired Cat→Wild translation for 64 × 64 AFHQ image.
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Figure 12: Qualitative comparison of unpaired Male→ Female translation between OTM and DIOTM
on 128 × 128 CelebA images.
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Figure 13: Qualitative comparison of unpaired Wild→ Cat translation between OTM and DIOTM
for 64 × 64 AFHQ images.
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D ADDITIONAL QUANTITATIVE RESULTS

D.1 ADDITIONAL QUANTITATIVE RESULTS FOR IMAGE-TO-IMAGE TRANSLATION

Evaluation of Image Alignment To evaluate whether our transported image Tθ(x) preserves the
properties of the original source image x, we compute the LPIPS (Zhang et al., 2018) metric between
the source datapoint x and its generation Tθ(x). The reported results are the mean LPIPS values
calculated over a test dataset. As shown in Tab. 4, our model demonstrates comparable results to
other image-to-image (I2I) benchmarks.

Table 4: Comparison of LPIPS (↓) scores for perceptual similarity on Image-to-Image translation
benchmarks.

Model Wild→Cat (64x64) Male→Female (128x128)

DSBM 0.59 0.25
OTM 0.47 0.21

DIOTM 0.45 0.25

FID Curves along Training Process As discussed in Sec. 5.3, our model demonstrates robustness
to the regularization hyperparameter (Fig. 4) and maintains stable training dynamics (Fig. 5).
In this paragraph, we provide the FID curves throughout the training process for various values
of hyperparameter λ. Fig. 14 shows that our model exhibits stable convergence across various
hyperparameters λ. In contrast, OTM converges only under specific hyperparameter settings, i.e.,
λ = 10 for Wild→Cat (64 × 64) and λ = 50 for Male→Female (128× 128).

(a) Visualization of FID curve on Wild→Cat (64× 64).

(b) Visualization of FID curve on Male→Female (128× 128).

Figure 14: Visualization of FID (↓) curves for various hyperparameter λ on Image-to-Image transla-
tion tasks.
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Ablation Study on Time Sampling Distribution We investigate alternative time samplers for line
2 of Algorithm 1, beyond the uniform distribution U [0, 1]. Specifically, we test two time sampling
distributions: Beta(2, 2) and Beta(0.5, 0.5). The Beta(2, 2) distribution samples intermediate time
values (t ≈ 0.5) more frequently, while Beta(0.5, 0.5) tends to sample near the boundaries of the
interval (t ≈ 0, 1) more often. This ablation study on time sampling distribution is evaluated on the
Wild→Cat dataset. As shown in Table 5, the uniform sampler achieves slightly better performance
compared to the other two sampling methods. However, the differences in performance are relatively
minor, indicating that the alternative sampling methods yield results comparable to the uniform
sampler.

Table 5: Ablation study on the time sampling distribution. FID scores are evaluated on the Wild→Cat
(64× 64) dataset.

Sampling Distribution Uniform Beta(0.5,0.5) Beta(2,2)

FID (↓) 10.72 11.85 12.45

D.2 ADDITIONAL QUANTITATIVE RESULTS FOR 2D-TOY EXPERIMENTS

Cyclical Property Our DIOTM model learns the bidirectional transport maps
−→
Tθ,
←−
Tθ simultaneously.

Here,
−→
Tθ and

←−
Tθ denote the optimal transport maps for µ→ ν and ν → µ, respectively. Theoretically,

these two optimal transport maps satisfy T2 ◦ T1(x) = x and T1 ◦ T2(y) = y almost surely under
our assumptions. We refer to this property as a cyclical property. To evaluate whether our model
satisfies this cyclical property, we measured the MSE reconstruction error between x and T2 ◦ T1(x),
i.e. Ex∼µ[∥T2 ◦ T1(x)− x∥2]. For comparison, we trained two OTM models for µ→ ν and ν → µ
and measured the MSE reconstruction error using these models.

As shown in Tab. 6, our DIOTM achieves better reconstruction error on four out of six experiments.
Our model shows a larger reconstruction error in the 25Gaussian-to-Gaussian-to-25Gaussian case
(25G→ G→ 25G). However, this reconstruction is meaningful when the generating distribution
errors are also considered, i.e.,

−→
Tθ#µ ≈ ν and

←−
Tθ#ν ≈ µ (Table 1). We interpret this result as being

due to the larger distribution error of OTM in the G→ 25G case.

Table 6: Evaluation of the cyclical property on synthetic datasets.

Model 8G→G→8G G→8G→G 25G→G→25G G→25G→G M→S→M S→M→S

OTM 1.06 0.040 4.13 0.56 4.01 1.12
DIOTM 0.22 0.015 12.43 0.68 1.11 0.46

D.3 COMPARISON TO OT BENCHMARKS ON HIGH DIMENSIONAL DATA

Table 7: Continuous neural optimal transport benchmark (Korotin et al., 2021). The transport maps
are evaluated based on the L2-UVP (%, ↓) metric and Cosine Similarities (↑). The baseline scores
are taken from Korotin et al. (2021) and † indicates the results by ourselves.

Dimension D=16 D=64

Metric L2-UVP (↓) cos (↑) L2-UVP (↓) cos (↑)
L 41.6 0.73 63.9 0.75

QC 47.2 0.70 75.2 0.70

MM 2.2 0.99 3.2 0.99
MMv1 1.4 0.99 8.1 0.97
MMv2 3.1 0.99 10.1 0.96

MMv2:R 7.7 0.96 6.8 0.97
MM-B 6.4 0.96 13.9 0.94

DIOTM† 2.5 0.98 10.4 0.96
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High-dimensional Experiment In this section, we assess our model using a high-dimensional
Gaussian mixture experiment, following the benchmark proposed in Korotin et al. (2021). Table
7 presents the results. Our model demonstrated reasonable performance, effectively learning the
optimal transport map. Still, our model does not achieve state-of-the-art results. We believe this is
because our primary goal was to achieve better scalability and stable estimation on a high-dimensional
image dataset. To achieve this, our DIOTM does not impose specific structure constraints on two
neural networks in our min-max optimization algorithm, i.e., the transport map and the discriminator,
such as the input convex neural networks ICNN (Amos et al., 2017). Note that most of the baselines in
Table 7 use ICNNs to parameterize their potential functions (discriminator). However, this approach
sacrifices scalability, particularly for image datasets.

Experimental Settings Unless otherwise stated, we follow the hyperparameter and the imple-
mentation of Korotin et al. (2021). We use the number of iterations of 100K, Adam optimizer of
(β1, β2) = (0, 0.9) with the learning rate of 10−3.

For both forward and backward transport maps, we use 3-MLP layers with SiLU activation function.
For the discriminator, we embed time variable t by using sinusoidal embedding of dimension 128,
and then pass it through the two MLP layers with SiLU activation. For the state variable x, we embed
it through 2-MLP layers. Then, we add time and state embeddings and pass them through a 3-layer
MLP with SiLU activation. We use the hidden dimension of 2048 for all MLP layers.

25


	Introduction
	Background
	Method
	Dual Formulation of DI and the Relationship between Interpolation Potential Functions
	Displacement Interpolation Optimal Transport Model

	Related Work
	Experiments
	Optimal Transport Map Evaluation on Synthetic Datasets
	Scalability Evaluation in Image-to-Image Translation Tasks
	Further Analysis

	Conclusion
	Proofs
	Proof of Theorem 3.1

	Implementation Details
	2D Experiments
	Image Translation

	Additional Qualitative Results
	Additional Quantitative Results
	Additional Quantitative Results for Image-to-Image Translation
	Additional Quantitative Results for 2D-Toy Experiments
	Comparison to OT Benchmarks on High Dimensional Data


