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A DISCUSSION AND CONCLUSION

We investigated the causes of instabilities in training neural networks in tasks involving feedback
loops, and empirically demonstrated that these instabilities often arise as a result of poor algorithmic
choices rather than information-theoretic barriers. We hypothesize that the oscillations are caused
by the combination of fractal reward landscapes and noise floor the stochastic gradients, and can
be ameliorated by variance reduction—either during training, or post hoc (via a stabilizer such as
EMA). We now list some directions for future inquiry, containing theoretical and empirical myster-
ies.

Unstable optimizers & trajectory stabilization. Despite many attempts to design faster-
converging optimizers for deep learning, there has been no clear successor to vanilla second-moment
preconditioning (Duchi et al., 2011; Kingma & Ba, 2014) with a well-tuned learning rate schedule
(Agarwal et al., 2020; Schmidt et al., 2021; Kaddour et al., 2023). By decoupling the roles of opti-
mizers and stabilizers, we open a new avenue for innovation in this space. When training deep neural
networks in the presence of feedback loops, our findings suggest: always try EMA whenever it is

affordable, and train at higher learning rates without decaying to 0. Investigations of nuanced
downsides, larger-scale settings, and new optimizer-stabilizer algorithms are left for future work.
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Representation learning in RL. While this work focused on fully offline data, online RL is also
known to suffer from serious training instability, often thought to be caused by the statistical chal-
lenges of interactive learning. On the other hand, GVA appears to be less pronounced in this setting,9
and the interaction between GVA and training with “better” data remains mysterious.

On a related note, the inductive biases of iterate averaging for representation learning remain poorly
understood. Many algorithms for representation learning benefit from EMA (Grill et al., 2020; Yaz
et al., 2018); to what extent can this be explained by a phenomenon related to GVA?

Finally, we observe that our results are consistent with the notion that SGD noise is only harmful,
but this cannot be entirely true due to the fact that sufficiently large batch sizes hurt training; we
leave a better understanding of when and why SGD noise is helpful for future work.

B ADDITIONAL RELATED WORK

In this section, we provide an extended discussion of related work. We split our discussion into two
sections, beginning with our primary focus on stochastic optimization (especially as applied to deep
learning) and ending with works relevant to one of our empirical domains, reinforcement learning
and control.

B.1 STOCHASTIC OPTIMIZATION AND DEEP LEARNING

Stochastic optimization in deep learning. Minibatch SGD (Robbins & Monro, 1951) is the
workhorse of deep learning, and its nuances are explained by mechanisms far outside the purview of
stochastic convex optimization. Batch sizes and learning rates are known to control variance (Smith
et al., 2017); however, not all variance reduction techniques work in practice (Defazio & Bottou,
2019). Nonetheless, analyses of SGD in simplified settings have proven to be useful (Mandt et al.,
2017; Malladi et al., 2022; Li et al., 2019a; 2020). The theoretical literature contains numerous
accounts of why finite-sample gradients might be beneficial, e.g., posterior inference (Mandt et al.,
2017) and saddle point escape (Jin et al., 2017). On the other hand, we show that this stochasticity
can lead to catastrophic error amplification in regimes of practical interest.

Iterate averaging. It is known that returning the last iterate of even deterministic gradient de-
scent is suboptimal, even when the function being optimized is convex (Harvey et al., 2019) (but
is non-smooth). Which averaging scheme is optimal depends on whether the underlying function
is strongly convex or not, and we discuss the various tradeoffs in Appendix D.3.1. Importantly,
there exists memory-efficient averaging schemes (storing at most 2 optimization iterates) which at-
tain optimal rates (Lacoste-Julien et al., 2012). The optimality of EMA for stochastic optimization
has not been studied in the literature, and indeed, we show in Appendix D.3.1 EMA is suboptimal
– even for deterministic optimization via gradient descent – whenever the averaging parameter �
satisfies � ⇠ T�� with � < 1. This theoretically suboptimal regime is precisely the one in which
we observe strong mitigation of GVA in our experiments. In fact, the case of � = 1, which is
analyzed in Lacoste-Julien et al. (2012) in the convex case, is empirically suboptimal and leads to
a drastic reduction in performance early in training, which is then washed out in later iterations.
The stabilizing behavior of iterate averaging of machine learning in practice is well-known (e.g.,
Bottou (2010)), although it has received less emphasis in modern deep learning than other optimizer
hyperparameters.

In addition to theory, iterate averaging in general, and EMA in particular, is extremely common in
practice (Izmailov et al., 2018; Kaddour, 2022; Kaddour et al., 2023; Izmailov et al., 2018; Busbridge
et al., 2023; He et al., 2019). In contradistinction to these works, the present paper is not purporting
to examine iterate averaging in and of itself, but rather is exploring the effects of iterate averaging
in the presence of GVA.

Non-convex side effects of variance reduction techniques. Here, we expand on the discussion
from Section 3.1, concerning why decreasing the learning rate and increasing the batch size are not
satisfactory interventions for GVA:

9In a small anecdotal exploration, we found that even minimal online interventions to improve data coverage
such as DART (Laskey et al., 2017) appear to reduce oscillations significantly.
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• Learning rate: It is understood in practice that large learning rates promote faster and more
robust representation learning in neural networks; theoretical understanding is an active fron-
tier of research, which requires analyzing the trajectory of SGD in the rich (data-adapted)
regime: see (Li & Yuan, 2017; Li et al., 2019b; Chizat et al., 2019; Barak et al., 2022; Damian
et al., 2022; Telgarsky, 2022; Andriushchenko et al., 2023) and references therein.10

• Batch size: It is also well-understood in practice that the mechanisms enabling successful
neural network training break down at extremely large batch sizes. This is especially relevant
in the quest for massively parallel training pipelines (Goyal et al., 2017). One way to analyze
this theoretically is to note that smaller-batch SGD can more effectively memorize individual
examples (Abbe & Sandon, 2020; Abbe et al., 2021), often a desired behavior.

Of greatest relevance to our investigation of iterate averaging, Sandler et al. (2023) presents some
related empirical and theoretical results in the context of supervised learning and explores an equiv-
alence between learning rate decay and EMA. Their empirical results focus on pure supervised
learning and examine the relationships between training trajectories with different learning rates
and how iterate averaging affects this, while we primarily focus on the phenomenon of GVA and the
effect of iterate averaging therein.

SDE limits and analysis of training in deep learning. Taking the continuous time limit of adap-
tive gradient optimization procedures and modeling the result as the solution to a stochastic differ-
ential equation has seen a lot of recent interest; see Mandt et al. (2017); Cheng et al. (2020); Li et al.
(2020); Kunin et al. (2020); Li et al. (2019a); Malladi et al. (2022) and the references therein. Of
greatest relevance to our paper is Busbridge et al. (2023), which proves the convergence of constant
rate SGD along with constant rate EMA to a system consisting of an SDE and an ODE. Proving rig-
orous convergence guarantees in this limit is beyond the scope of this work; instead, for one of the
results in Appendix D, we take the continuous time limit as given and precisely compute in several
toy settings the benefits that EMA has.

Error amplification and closed-loop effects in language generation. The deep RL and deep
NLP literatures are highly connected, and use common vocabulary to describe considerations in-
volving feedback loops (e.g. training on the BC/autoregressive loss is known as teacher forcing
(Arora et al., 2022)). Long-range error amplification stemming from autoregression has been noted
in prior work (Holtzman et al., 2019; Braverman et al., 2020) (sometimes called exposure bias),
motivating the design of decoding heuristics.

B.2 STABILITY IN REINFORCEMENT LEARNING AND CONTROL

Instabilities of online RL. Many works have empirically observed instabilities in online RL, often
arising as a result of distribution shift (Kirkpatrick et al., 2017; Henderson et al., 2018; Machado
et al., 2018; Packer et al., 2018; Zhang et al., 2018; Engstrom et al., 2019; Andrychowicz et al.,
2020). On the theoretical side, most existing work on online RL explores structural assumptions
(e.g., Bellman rank) that allow carefully designed algorithms to control distribution shift (Russo &
Van Roy, 2013; Jiang et al., 2017; Sun et al., 2019; Wang et al., 2020b; Du et al., 2021; Jin et al.,
2021; Foster et al., 2021a), but does not directly address the behavior cloning setting we consider,
in which instability arises despite the absence of distribution shift.

Instabilities of offline RL. While many works have empirically observed instabilities in online
RL (Kirkpatrick et al., 2017; Henderson et al., 2018; Machado et al., 2018; Packer et al., 2018;
Zhang et al., 2018; Engstrom et al., 2019; Andrychowicz et al., 2020), it is generally understood that
these instabilities arise as a result of the distribution shift caused by the complicated dependence
structure of interactive data. In contrast, we observe instabilities in the offline setting, where the
data is fixed and the dependence structure is significantly simpler. In offline RL, too, many works
have observed instabilities (Fujimoto et al., 2019; Kumar et al., 2019), although several theoretical
works suggest that the source of these instabilities may be information theoretic limits as opposed
to algorithmic issues (Wang et al., 2020a; Zanette, 2021; Foster et al., 2021b).

10There is also a regime in which small learning rates promote generalization (Bousquet & Elisseeff, 2002;
Hardt et al., 2016), but this prevails predominantly in online and convex problems.
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In particular, Wang et al. (2021) find that conducting offline RL using pre-trained representations
often suffers from catastrophic error amplification. The authors there apply known planning algo-
rithms on top of pre-trained representations and find that even in the presence of mild distribution
shift, severe degradation in rollout reward occurs. Dong et al. (2020) observe fractality in continuous
MDPs as a generic phenomenon; like Wang et al. (2021), they are primarily interested in learning
and planning as opposed to imitation.

(In-)stability in behavior cloning. Behavior cloning is known to suffer from compounding error,
a phenomemon in which the imitators’s errors accumulate over time and place the learner in states
not observed during training. As we confirm in this paper, these instabilities are readily mitigated
by forcing the expert to demonstrate corrections from imperfect demonstrations, either by forcing
experts to correct from noisy states (e.g. DART (Laskey et al., 2017)), or by sequential iteraction
with the environment (e.g. DAGGER (Ross & Bagnell, 2010)); both interventions require online
interaction with the expert and thus lies outside the scope of this paper. Direct data augmentation
of the expert trajectories via noising is popular in practice (Ke et al., 2021), but does not mitigate
training oscillations.

More recent theoretical work (Tu et al., 2022; Pfrommer et al., 2022; Havens & Hu, 2021) has con-
nected behavior cloning to the theory of incremental stability of the induced closed loop dynamics
(Angeli, 2002). Leveraging this stability often requires stronger oracles, such as the ability to com-
pute first- or zero- order gradients of the expert policy (Pfrommer et al., 2022). Recently, Block et al.
(2023a) proposed a combination of probabilistic and control-theoretic stability to facilitate imitation
of non-smooth expert trajectories in smooth dynamical systems, assuming access to a type of local
stabilization oracle.

Comparison to Emmons et al. (2021); Chang et al. (2023b). These works investigate the fact
that `BC on a validation set is a poor proxy for JH . In Emmons et al. (2021), through a suite of
experiments in a number of domains motivated by robotics, the authors probe how far applying only
supervised learning can get in producing a high reward policy. They focus primarily on architectural
and regularization interventions including depth and width of their imitator policies as well as the
effects of weight decay and dropout on the resulting policies, noting the weak relationship between
reward and `BC at the end of training in all of these examples. In contrast to this work, we focus
on causes and mitigations of instabilities during training as well as the more general phenomenon
applied beyond continuous control tasks.

Chang et al. (2023b) finds empirically that `BC evaluated on a held out validation set is an extremely
poor empirical proxy for rollout rewards in many common benchmarks during a single training run,
but were not primarily interested in the instability itself, and thus did not further investigate this
phenomenon.

The role of stability in learning to control. Considerations of stability (in a dynamical sense,
rather than a training sense) have been most visible in the recent literature on learning to control
linear systems. While stability is not always essential to estimation in control systems (Simchowitz
et al., 2018; Sarkar & Rakhlin, 2019; Ghai et al., 2020), much of the contemporary research on
learning to control linear systems has assumed access to an initial stabilizing control policy (Fazel
et al., 2018; Simchowitz & Foster, 2020; Dean et al., 2018). Indeed, without access to such a con-
troller, certain adaptive control settings require regret scaling exponentially in problem dimension
(Chen & Hazan, 2021), until the system can be estimated to sufficient accuracy that a stabilizing
controller can be synthesized (in some circumstance, however, these effects can be circumvented if
one can construct simulators with reward discounting (Perdomo et al., 2021)). Access to an initial
stabilizing controller forms the basis for both classical (Youla et al., 1976) and more recent (Agarwal
et al., 2019; Simchowitz et al., 2020; Simchowitz, 2020) convex control parameterizations.

Stability appears more implicitly in the recent literature on nonlinear control. For example, assuming
that the output of the dynamical map is bounded and that the system exhibits process noise amounts
to a form of marginal stability in Wasserstein and total variation distances (see e.g. Kakade et al.
(2020)). Lastly, stabilizability of linearizations of nonsmooth dynamics have emerged as an impor-
tant desideratum for optimization-based and data-driven trajectory optimization in smooth nonlinear
systems (Pfrommer et al., 2023; Westenbroek et al., 2021).
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Stiffness in contact and hybrid dynamics. System stability is at least as bad as system “stiff-
ness”, or largest Lipschitz constant dynamics, which can be arbitrarily large in contact and hybrid
dynamical systems even if one does not observe the sort of exponential blow up witnessed in unstable
linear dynamics. At the limit, dynamical discontinuities induce “one-step” instability. Contending
with systems stiffness has been a long-standing challenge in the field of robotics, where contact sys-
tems are modeled non-smoothly (Van Der Schaft & Schumacher, 2007). Recent work has explored
the use of stochastic smoothing to circumvented these challenges in trajectory optimization of a
known stiff system (Parmas et al., 2018; Suh et al., 2022). Further work has shown that stochastic
smoothing makes sequential prediction and planning problems tractable for piecewise affine sys-
tems (Block & Simchowitz, 2022; Block et al., 2023b;c). Whether the dynamics of the noiseless
system are well-approximated by those of the same system with process noise added remains an
open question.

C FULL EXPERIMENTAL RESULTS

In this section, we provide additional experimental results as well as full details for the experiments
included in the main text. The appendix is organized as follows:

• In Appendix C.1 by providing a detailed description of the experimental setup we use in our
empirical MuJoCo results.

• In Appendix C.1.1, we provide an extended discussion of visualizations related to Figure 1.
We continue in Appendix C.1.2 by detailing our large suite of experiments investigating the
effects that various algorithmic interventions have on GVA, both qualitatively and quantita-
tively. These correspond to the findings highlighted in Figure 2 and Figure 3 in the main
paper.

• In Appendix C.1.3 we provide several additional visualizations, including a number of re-
ward landscapes similar to Figure 1 (right) to ensure the robustness of our conclusion that
the reward landscape is extremely sensitive to the parameter. We also demonstrate that the
successful Transformer imitators learn non-Markovian policies; unlike the MLPs, the Trans-
formers observe a history (of length 32 in our experiments) of many past states and actions;
in Appendix C.1.3 we show that the Transformers are attending to previous states and not
just the most recent one; this corroborates findings in Janner et al. (2021); Shafiullah et al.
(2022).

• In Appendix C.2, we give additional details and results relating to our autoregressive lan-
guage generation experiments, described in Section 4.2.

• In Appendix C.4, we present synthetic experiments on 2-dimensional linear dynamical sys-
tems, which serve as accompaniments to our theoretical vignettes. We show empirically that
GVA does not occur in marginally stable linear systems, and show that a natural dynami-
cal systems analogue of the cliff loss described in Section 4.3 indeed exhibits the predicted
GVA in Appendix C.5; we also observe that, as predicted by the theory, EMA mitigates the
oscillations.

All of our experiments are implemented in PyTorch (Paszke et al., 2019), and we use the
x-transformers

11 implementation of the Transformer architecture. All of our MuJoCo tasks
are in Gymnasium (Towers et al., 2023). For our LQR experiments, we implement the dynamics
directly in PyTorch.

C.1 MUJOCO CONTINUOUS CONTROL ENVIRONMENTS

In all of our MuJoCo experiments, we run the following pipeline:

1. Train an expert using online reinforcement learning.
2. Collect expert trajectories by rolling out the (deterministic) expert policy 1000 times.
3. Split the collected trajectories into a training set of size N = 900 and a validation set of size

100 trajectories.
11
https://github.com/lucidrains/x-transformers
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Figure 5: Training curves of the SAC experts for the various MuJoCo continuous control agents,
along with final-iterate mean rewards. Top: Online reinforcement learning training curves; these
exhibit training instabilities, but not of the same nature as those encountered in our offline behavior
cloning settings. Bottom: Unnormalized reward distributions (through out the rest of this paper, we
divide by these means). Outliers are marked by ⇥ symbols.

4. Train an agent to imitate the expert from these N offline trajectories, using standard deep
learning pipelines to optimize the behavior cloning loss `BC.

5. Evaluate the behavior cloner by rolling out the learned policy and evaluating loss `BC on the
validation set.

We now discuss some of the items above in more detail.

Training the expert. All of our experts are trained using the Soft Actor Critic (SAC) algorithm
(Haarnoja et al., 2018) as implemented by stable-baselines3 (Raffin et al., 2021) with the
default parameters for the environment under consideration. We train our experts for 3 million steps;
training curves and reward histograms (over the randomness of environment initial conditions) are
shown in Figure 5.

Collecting expert trajectories. While the SAC online RL algorithm results in a stochastic policy,
we are interested in deterministic experts. Thus, we derandomize the expert’s outputs, via taking the
mean of the action distribution of the randomized SAC agent. We roll out trajectories of length 1000
for every environment. Interestingly, the presence of extreme outliers (Ant) and high-dimensional
states (Humanoid) appear to be uncorrelated with the magnitude of GVA (which is very low for
both of these tasks).

Training the behavior cloner. This is the step that our work is interested in and is where all of
our interventions occur. For every environment, unless specified otherwise, we train the cloner for
20 epochs. Our default hyperparameters are included in Table 1, although each intervention below
changes at least one of them.

Evaluating the behavior cloner. For most training runs, we collect a checkpoint every 5000 gra-
dient steps, with the exception of the run in Figure 1, where we collect checkpoints every gradient
step between iterates 40K and 50K in order to have a more zoomed-in view of the oscillations. For
each checkpoint, we compute `BC on the validation set as well as fixing 20 random seeds and, for
each seed, sampling a trajectory beginning from the seed-induced initial condition and rolling out
the learned policy. Note that the only randomness here is in the initial condition of the agent, as
determined by the seed.

Choice of canonical environment. Overall, we choose to focus our experiments on Walker-v4,
for the following reasons: (1) reward oscillations are significantly more benign for cloners of Ant
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and Humanoid agents; (2) we could not get a HalfCheetah behavior cloner to reach the max-
imum reward. We choose to focus our intensive hyperparameter sweeps on Walker (rather than
Walker and Hopper) to keep the number of runs manageable.

Name Value

Optimizer AdamW
Learning rate 3⇥ 10�4

Epochs 20
Batch size 32
�1 (momentum) 0.9
�2 0.999
Weight decay 0.1
(MLP) Number of layers 4
(MLP) Width 1024
(MLP) Activation ReLU
(Transformer) Number of layers 4
(Transformer) Number of heads 4
(Transformer) Embedding dimension 1024
(Transformer) Positional encoding sinusoidal
(Transformer) History length 32

Table 1: Table of hyperparameters for behavior cloning.

C.1.1 REWARD SENSITIVITY, PER-ITERATE OSCILLATIONS, AND LANDSCAPES

Recall the first finding from the main paper:

(R1) The reward landscape is highly sensitive to small changes in policy parameters.

Figure 6 provides a closer look at this landscape, via additional visualizations and discussion for the
example of GVA from Figure 1:

(a) Per-iterate fluctuations: Zooming into the training trajectory, we see extremely large fluc-
tuations at the level of individual gradient descent iterates (blue dots). Rewards can vary by
> 50% of the total maximum reward. Meanwhile, the behavior cloning loss varies at the
scale of < 1% of the range of `BC.

(b) Weak correlation between JH and `BC: For many pairs of iterates, the behavior cloning
objective and rollout rewards are negatively correlated. Note that cloners achieve high re-
wards without converging to perfect action recovery (red star). Representation is clearly
not the bottleneck: the expert agent is a 2-layer MLP with hidden dimension 128, which is
realizable by all of these networks.

(c) Exhaustive evaluation of cross-sections: For two checkpoints ✓ (iterations 115000 and
120000), selected to exemplify negative progress as training progresses, we evaluate neigh-
borhoods of these policies in 2-dimensional cross-sections of the reward landscape. We
compute stochastic gradients g1,g2 of `BC, for two randomly selected minibatches of size
32. For a choice of step size ⌘ = 3 ⇥ 10�4 (coinciding with the Adam optimizer’s learn-
ing rate), we evaluate rewards and BC losses for the lattice of policies {✓ + i · ⌘g1 + j ·

⌘g2}i,j2{�100,...,100}. These rewards are averaged over 20 random seeds determining the
initial conditions of the environment, which are not re-randomized between evaluations.
Thus, we conclude that these fluctuations arise from extremely high sensitivity to initial
conditions. Aside from providing a qualitative visualization that GVA is evident, this evalu-
ation provides a lower bound of 2⇥104 on the Lipschitz constant of ✓ 7! JH(⇡✓) (choosing
the `2 norm for ✓), even restricted to non-adversarial stochastic gradient directions. The
loss landscape (depicted in Figure 1c, and omitted here) is nearly linear, and much smoother
(Lipschitz constant ⇡ 50).

In addition, in Figure 7 we repeat Figure 6(a) but with each mean reward disaggregated such that
each point represents the rollout reward of a fixed initial condition of the policy at the current iterate.
The points are colored by initial condition so as to illustrate that it is not the case that some initial
conditions are significantly more difficult than others.
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(a) Per-iterate mean rewards and losses. (b) Rewards JH(⇡✓) vs. `BC(⇡✓).

(c) 2-dimensional cross-sections JH(⇡✓ + i · ⌘g1 + j · ⌘g2) of the reward landscape.

Figure 6: Additional visualizations for the experiments highlighted in Figure 1. (a) Rewards JH(⇡✓)
and `BC(⇡✓) plotted at every training iteration in a small range. (b) Scatter plot of JH(⇡✓) against
`BC(⇡✓) for the full range of every-iterate evaluations displayed in Figure 1. (c) Reward landscapes
are shown around good (left) and bad (right) iterates. Note the extremely high Lipschitz constant
(local sensitivity) of the rollout reward in terms of policy parameters; furthermore, there exist good
and bad policies in very close proximity along stochastic gradient directions.

Figure 7: Disaggregated version of Figure 6(a). We visualize rollout rewards of each rollout for
each iterate in the experiment in Figure 1 with points colored by environment random seed (which
only determine initial conditions). We exhibit both the non-EMA (top) and the EMA (bottom) runs.
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C.1.2 EFFECTS OF ALGORITHMIC INTERVENTIONS

Below, we list the exhaustive range of algorithmic interventions probed for in the Walker2d-v4
environment. We begin with the suite of experiments focused on diagnosing GVA (highlighted in
Figure 2):

(1a) Architectures: For both {MLP, Transformer} architectures, we vary the model scale pa-
rameters: depths {2, 4, 6} and embedding dimensions {128, 256, 512, 1024}. For all other
experiments below, we test interventions on the 4-layer 1024-dimensional MLPs and Trans-
formers.

(2) Regularization controls: We consider varied feedforward dropout coefficients
({0, 0.1, . . . , 0.5}) for both MLPs and Transformers, and embedding dropout coefficients
in the same range for Transformers. We also try weight decays {0.01, 0.3}, losses {`1, `2},
and data augmentation scales {0.005, 0.01, 0.02}.

(3) Optimizer configurations: We vary the momentum and adaptive preconditioner param-
eters (�1,�2) of AdamW, noting that these are known to modulate training stability and
generalization. We vary �1 2 {0.7, 0.9, 0.95, 0.99} and �2 2 {0.9, 0.99, 0.999, 0.9999}.
�2 = 0.9999 leads to many non-convergent runs, and are omitted from Figure 9.

(4) Variance reduction controls: We vary the power ↵ in the learning rate schedule ⌘t /

(1 �
t

T
)↵, for ↵ 2 {0, 0.5, 1, 1.5, 2, 2.5, 3}; note that ↵ = 0 corresponds to removing the

learning rate decay. We also try batch sizes of 128 and 512 via 2⇥, 4⇥ and 16⇥ gradient
accumulation with the default batch size of 32.

Next, we list the training runs selected to investigate the scope and hyperparameter sensitivity of
EMA (highlighted in Figure 3):

(1b) Architectures: For all of the architecture choices in (G1) above, we evaluate EMA cloners.
(5) EMA parameter ablations: To check the robustness and hyperparameter sensitivities of

EMA, we perform a search in the hyperparameter space of update frequencies, burn-in du-
rations, and annealing powers. Throughout these sweeps, we clip the annealing coefficient
to a minimum of �min = 1⇥ 10�4. Although this can be harmful, the optimal choice of this
parameter depends on the number of training steps; we recommend setting a low �min and
tuning the annealing power instead.

(6a,b) Ablations of sample size and learning rate decay: We downsample the 900 training trajec-
tories, instead training agents on {10, 20, 50, 100, 200, 500} demonstrations. In all of these
settings, we remove learning rate decay, and find that this improves generalization (as long
as EMA is applied). We evaluate both non-EMA and EMA models.

(7a,b) Additional environments: We perform a limited set of analogous comparisons between
EMA and non-EMA cloners for other continuous control tasks provided by gymnasium.
We evaluate both non-EMA and EMA models.

Quantitative evaluations. Stochastic optimization in deep learning is fundamentally non-
stationary, in the sense that representations change over the course of the training trajectory. Thus,
there is no canonical choice of summary statistic which losslessly captures the magnitude of GVA.
Nonetheless, to provide a digestible comparison of algorithmic interventions and their effect on
GVA, we record a number of basic quantitative metrics:

• Maximum and final rollout rewards Jmax, Jfinal. These serve as indicators of whether the
BC training procedure ever arrives at good policies, modulo stability considerations. GVA
then entails a lack of stable convergence to these iterates, in terms of rollout performance.
We similarly record the minimum and final behavior cloning objectives `min, `final.

• Reward statistics µmid, rangemid from iterates in the middle 50% of training. We
track the mean and range, to summarize the amplitude of GVA-induced reward oscillations
through the course of training.

• Indicators of early success and negative progress tearly, tworse. We record the earliest

iteration (as a percentage of the total number of training steps) at which the model visits a
checkpoint whose mean reward is � 95% of the best one in its training trajectory. We also
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Figure 8: Groups (1a) and (1b): Non-EMA vs EMA rollout evaluations for a variety of architec-
tures. The stabilizing effect of EMA is robust across these architectures and scales. This is most
clearly seen in the rangemid column of (1a), and robustly confirms our empirical result (R1). Look-
ing at the analogous column in (1b), we confirm (R4), that EMA uniformly stabilizes the training of
these architectures.

record the latest iteration where the reward dips below this value. (In the table, � denotes
the absence of such an iteration.)

For all runs, we report the median of these statistics over 3 random seeds. Using these quantitative
results, we next restate and discuss the relevant empirical findings from the main paper, and discuss
these in greater depth in the figure captions. Results are shown in Figures 8, 9, 10, and 11.

(R2) GVA arises from algorithmic suboptimality rather than an information-theoretic limit.

Even with “infinite” training data (i.e. fresh trajectories with i.i.d. initial conditions at each
training step), rollout oscillations persist.

(R3) Training oscillations are not mitigated by many standard approaches to regularization,
including architectural interventions and increased regularization. On the other hand, oscilla-

tions are ameliorated by variance reduction techniques, such as large batch sizes, learning
rate decay, and iterate averaging.

(R4) EMA iterate averaging strongly mitigates rollout oscillations, and its performance is robust
across a variety of architectures and environments.

We close with a final visualization: Figure 12 shows a scatter plot of JH vs. `BC for the final iterates
of all experimental conditions considered in this paper, analogous to Figure 6(b), showing that a
generalization gap remains vs. the true (deterministic) expert policy, and that rollout reward can be
uncorrelated with this gap in the regimes studied in this work.

C.1.3 MISCELLANEOUS VISUALIZATIONS

Additional reward and loss landscapes. We provide additional (lower-resolution) heatmaps
around neighboorhoods of various cloner policies in Figure 13. In addition to stochastic gradi-
ent directions, we visualize cross-sections of these landscapes in random directions, like the main
figures in (Li et al., 2018).12 This confirms the generality of our finding in (R1), concerning the

12Note that Li et al. (2018) choose random directions because the loss landscape looks too flat in stochastic
gradient directions. This provides further supporting evidence that our finding (R1) is generic: while the loss

27



Published as a conference paper at ICLR 2024

Figure 9: Groups (2) through (5): Effects of various algorithmic choices: regularization, optimizer
hyperparameters, variance reduction, and EMA hyperparameters. (2) Standard regularizers do not
reduce the oscillations (and often worsen them) (R2, R3). (3) Large momentum has a stabilizing
effect on the rewards, presumably via variance reduction (R4). However, it can result in other (well-
known) optimization instabilities, leading to non-convergence. (4) Variance reduction techniques do
work (R4); among these, EMA is the most robust (see especially the rangemid column, measuring
oscillation amplitude). (5) EMA tends to fail if updated too infrequently; an initial burn-in period is
helpful for excluding poor initial iterates. EMA with suboptimal annealing (↵, so that �(t) = t�↵)
can delay learning (see tearly column), but still works.
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Figure 10: Groups (6a) and (6b): Ablations of dataset size and learning rate decay. When learning
from fewer trajectories, optimization instabilities can become even worse. In such regimes, the

stabilizing effect of EMA results in end-to-end improvements in sample efficiency. Furthermore,
EMA can replace learning rate decay. This refines (R4), showing that mitigating the non-statistical
phenomenon of GVA can manifest data-efficiency in practice.

Figure 11: Groups (7a) and (7b): Evaluation of non-EMA and EMA cloned agents on additional
tasks, showing a broader scope for (R4) than just the Walker2d environment. Improvements of
an identical nature are observed for Hopper. Sometimes, behavior cloning does not fully work
(HalfCheetah), or the reward oscillations are more benign (Ant, Humanoid), but EMA stabi-

lizes training in all of these circumstances, never resulting in a substantially worse cloned policy.
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Figure 12: Do BC agents succeed by perfectly cloning the expert? Global scatter plot of final-
iterate rollout reward JH vs. 1-step prediction error `BC for all Walker2d agents trained in this
paper. The plot on the right is a zoomed-in region (shown on the left). From (1) the lack of conver-
gence to perfect agreement with the expert policy (including with access to infinite data) and (2) the
lack of a strong correlation between the surrogate objective `BC and true objective JH in the regime
of high performance, we illustrate the following conclusion: although statistical convergence is

sufficient for behavior cloning, it is not necessary. Deep imitation learning succeeds in a regime
that is short of perfectly recovering the demonstrator, and successes and failures are instead gov-
erned by fine-grained algorithmic choices.

fractality of the reward landscape in regions where the loss is extremely smooth and near-convex.
The setup is identical to that described for Figures 1(c) and 6(c), except the following: models are
4-layer 1024-dimensional {MLPs, Transformers} {with, without} EMA; checkpoint indices {1, 2}
denote training steps 50000 and 205000; step size increments are varied by 3 ⇥ {10�3, 10�4, 10�5

(labeled as neighborhood sizes {10�2, 10�3, 10�4)

Non-Markovianity of the Transformer cloner. Of interest (but somewhat orthogonal to the scope
of this paper), our behavior-cloned Transformer agents are reparameterizations of the original MLP
expert policies. They are non-Markov, in the sense that their architecture allows their actions to de-
pend on a sliding window of state history, rather than only the most recent state. A natural question
is whether the internal representations of Transformer agents correspond to the formation of mean-
ingful non-Markov circuits (Elhage et al., 2021; Edelman et al., 2022; Liu et al., 2023b). Preliminary
visualizations in Figure 14 suggest that this is indeed the case: attention heads appear to attend to
the past, perhaps learning internal “in-context resets” (Liu et al., 2023a). Similar findings appear
in the nascent “sequence models for continuous control” literature (Janner et al., 2021; Shafiullah
et al., 2022).

C.2 NATURAL LANGUAGE GENERATION

In this section, we describe the autoregressive language modeling experiments in full detail.
Throughout this section, we use the same standard Transformer architecture, with 12 layers, em-
bedding dimension 1536, context length 1024, and sinusoidal position encodings. We use BPE
tokenizers (Sennrich et al., 2015) with vocabulary size 2000 for TinyStories (version 2, with some
postprocessing to remove Unicode glitches; 598M tokens), and 32000 for English Wikipedia (5.3B
tokens, with a random 99:1 train-validation split). We emphasize that the green lines in the bottom
row are scatter plots.

The purpose of using the LLM-synthesized TinyStories corpus (Eldan & Li, 2023), in accordance
with the authors’ intent, is to provide a significantly cheaper proxy for all algorithmic considerations

landscape looks smooth, the landscape of the long-horizon rollout rewards can appear to be fractal in the same
regions.
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Figure 13: Additional visualizations of reward JH(⇡✓) and loss `BC(⇡✓) landscapes around neigh-
borhoods of policies. {M, T} = {MLP, Transformer}; e = EMA; {1, 2} = {early, late} checkpoints;
{g, r} = {gradient, random} directions. The number (e.g. 10�3) denotes neighborhood radius.

Figure 14: Heatmaps of attention weights of 4-layer, 4-head, 1024-dimensional Transformer cloners,
evaluated on their own rollouts (evaluated at step 200, where a non-Markov policy has access to the
past 32 states in its context). Cloned agents seem to learn policies which compute sliding-window
filters in the first layer, and attend to history in a systematic manner (which we do not attempt to
decode). This serves as a cursory check that the policies are indeed non-Markov, a property that is
impossible for the MLP-based models to share. Weights are taken from the final checkpoint, and
both agents incur normalized rewards of > 0.99.
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Figure 15: Zoomed-in every-iterate evaluations from the 270M-parameter TinyStories training pro-
cedure, enlarged from Figure 4 (top left) in the main paper. These evaluation phases occur for
100 iterations each, starting from checkpoints 5000, 10000, and 15000 (the total number of steps
is 18062). The first two rows show minuscule fluctuations in the “behavior cloning” (next-token-
prediction) loss. The third row measures rollout disagreement between consecutive gradient iter-

ates: the fraction of input sequences where the deterministic (argmax) autoregressive generations at
checkpoints steps t and t � 1. As the losses fluctuate, pairs of consecutive checkpoints disagree on
>50% of autoregressively-generated deterministic completions. This is only true for <5% of EMA
iterates e✓(t)

� .

relevant to the large language model pretraining pipeline. This mitigates the common occurrence of
undertraining when benchmarking LLM training pipelines, while allowing for carefully controlled
experiments at a reasonable computational cost. Nonetheless, the fact that TinyStories is a proxy
distribution comprises a limitation of this empirical study. We hope to address this gap in future
work (and also encourage interested parties to incorporate EMA without learning rate decay into
their LM pipelines).

Each model is trained on a single node with 8 NVIDIA V100 GPUs, with a global batch size of
64 (thus, 65536 tokens), using the AdamW (Loshchilov & Hutter, 2017) optimizer, learning rates
{3, 5, 8} ⇥ 10�4, and weight decay 0.1. For the 2-epoch TinyStories runs, a finer-grained grid of
learning rates is used: ⌘ = {2, 3, 4, 5, 7, 8}⇥10�4. For Wikipedia, we only use 3⇥10�4 (as a quick
preliminary check that our qualitative findings remain on natural data). 1000 steps of learning rate
warmup are used throughout these experiments. With this hardware setup, the TinyStories training
runs take 4 hours per epoch, while a single-epoch Wikipedia training run takes 50 hours.

We restate the empirical finding from the main paper, then discuss each aspect in depth.

(R5) Autoregressive LMs exhibit significant rollout oscillations throughout training. EMA sta-

bilizes the trajectory, accelerates training, and improves generalization, complementing
(and potentially obviating) standard practices in learning rate annealing.

Small fluctuations in the “BC” loss. In the training run with 2 epochs (18K steps) learn-
ing rate decay, and learning rate 3 ⇥ 10�4, we perform zoomed-in evaluations of every iterate
t 2 {5001, . . . , 5099} [ {10001, . . . , 10099} [ {15001, . . . , 15099}. Figure 4 (top and middle
rows) shows that there are small fluctuations in terms of the validation log loss. Strikingly, upon
performing the same evaluations on the EMA iterates, progress is extremely smooth in time (nearly
indistinguishable from linear). Note that this is not to illustrate GVA– in this setting, the next-token-
prediction log loss is `BC. Indeed, these fluctuations are minuscule.
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(a) (b)

Figure 16: Training paths of autoregressive LMs in (model loss, EMA loss) space, for (a) TinyStories
and (b) English Wikipedia language models. In both cases, we find that with a suitable � schedule
(1000-iteration burn-in and � / t�0.67 annealing), EMA never hurts validation perplexity. With
linear learning rate annealing (down to 0), the optimizer and EMA iterates arrive at the same final
validation loss. (In a limited set of experiments, findings are identical with cosine decay). On the
other hand, training at a constant learning rate, EMA iterates are better, even though the optimizer

iterates are worse. Training pipelines which decouple optimization from stabilization can reduce
overfitting and produce lower-loss models.

Large rollout oscillations due to GVA. Figure 4 (bottom) provides a quick check that while
local oscillations in the loss are small, the generations of these models diverge over long-horizon
autoregressive rollouts. Figure 4 (third row) makes this quantitative: for 1000 examples from the
TinyStories validation set, we take 4 prefixes, of length {10%, 25%, 50%, 75%}, and query each of
the 300 model checkpoints for their argmax completion. For each checkpoint t in the intervals above,
we record a switching cost: the fraction of prefixes (“in-distribution prompts”) for which generations
from ✓t�1 and ✓t differ; these are the orange and yellow dots per iterate. The mean switching
costs on the respective intervals are {89.2%, 76.5%, 53.0%} for the optimizer iterates, and {4.9%,
2.3%, 1.1%} for the EMA iterates. In short, these numbers can be interpreted as probabilities that

the greedy step-wise MLE sequence of consecutive LM training iterates disagree over long

rollouts, conditioned on in-distribution prefixes.

Improvements in validation loss. In the continuous control settings, we do not pay much atten-
tion to analyzing the effects of trajectory smoothing on the behavior cloning loss, because obtaining
a high-reward policy is the clear primary objective. In language generation, `BC has a special role
as the main quantity of interest in text compression (as opposed to closed-loop generation): namely,
it is the statistical language model’s log-perplexity. Figure 16a shows that on TinyStories, in terms
of validation set perplexity, the EMA iterates are always at least as good as the optimizer iterates.
Furthermore, beyond 4 training epochs, when models overfit when the learning rate is decayed to 0.
without decay, models do not overfit and keep improving, even up to 16 training epochs. We find
that a partial annealing strategy (decaying linearly from 8⇥ 10�4 to 4⇥ 10�4) produces the best of
all models, with a token perplexity of 2.21 (compared to 2.31 without EMA). While the margin of
overall improvement for 1 epoch over the larger Wikipedia dataset (Figure 16b) is smaller (9.54 vs.
9.39 token perplexity), the finding that EMA never hurts is upheld.

Examples of divergent generations. Below, we provide some examples of argmax completions
from these TinyStories language models. This serves as a quick check that (1) the autoregressive
generations produced by these language models are qualitatively fluent in a restricted linguistic
domain, and (2) minibatch noise-induced fluctuations induce distinct autoregressive generations.
The robust benchmarking of end-to-end generation quality presents methodological ambiguities;
resolving them is outside the scope of this paper.
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Prompt: Once upon a time, in a warm and sunny place, there was a big pit. A little boy
Continuation from data: named Tom liked to play near the pit. One day, Tom lost his red ball. He was very sad. Tom asked
his friend, Sam, to help him search for the ball. They looked high and low, but they could not find the ball. Tom said, "I think my
ball fell into the pit." Sam and Tom went close to the pit. They were scared, but they wanted to find the red ball. They looked
into the pit, but it was too dark to see. Tom said, "We must go in and search for my ball." They went into the pit to search. It
was dark and scary. They could not find the ball. They tried to get out, but the pit was too deep. Tom and Sam were stuck in
the pit. They called for help, but no one could hear them. They were sad and scared, and they never got out of the pit.
All models agree: named Tim and his dog, Spot, liked to play near the pit. They would run, jump, and laugh all day long.
One day, Tim and Spot were playing near the pit when they saw a big ball. [...]

15027-15035: [...] They both wanted to play with the ball, but they didn’t want to share. Tim said, "I want the ball!" Spot
barked, "No, I want the ball!" They started to fight over the ball. Tim’s mom saw them fighting and said, "Stop fighting! You
can both play with the ball if you share." Tim and Spot stopped fighting and started to play together. They had so much fun
playing with the ball near the warm pit. From that day on, they always shared their toys and played happily together.

15036-15037: [...] They both wanted to play with it. Tim said, "Let’s share the ball, Spot!" Spot barked happily, and they both
played with the ball together. As they played, a little girl named Sue came by. She saw Tim and Spot sharing the ball and
wanted to join them. Tim said, "Yes, you can play with us!" So, Tim, Spot, and Sue played together near the warm pit, and
they all had a great time. They learned that sharing is fun and makes everyone happy.

15038-15039: [...] They both wanted to play with it. Tim said, "I want the ball!" Spot barked and wagged his tail. They both
ran to the ball and started to play. As they played, the ball went into the pit. Tim and Spot looked at each other, not knowing
what to do. Then, a friendly frog jumped out of the pit with the ball in its mouth. The frog said, "Here is your ball, Tim and Spot!
I saw you playing and wanted to join in too!" Tim and Spot were so happy and thanked the frog. They all played together and
had a great day.

15040-15049: [...] They both wanted to play with the ball, but they didn’t want to share. Tim said, "I want the ball!" Spot
barked, "No, I want the ball!" They started to fight over the ball. As they fought, the ball rolled into the pit. Tim and Spot
stopped fighting and looked at the pit. They were sad because they couldn’t play with the ball anymore. They learned that
fighting was not good and they should share their toys.

15000-15099 (EMA): [...] Tim said, "Spot, let’s play with the ball!" They played with the ball, but it was too big for them. They
tried to push it, but it would not move. Then, Tim had an idea. He said, "Spot, let’s reverse and push the ball back to where
we found it." They pushed the ball back and it started to roll. They were so happy and played with the ball all day long.

Figure 17: Argmax-decoded generations from a sequence of consecutive training checkpoints
(15027-15049), seeded by a prefix of examples from the TinyStories dataset. These are the full
generations corresponding to Figure 4 (bottom). Note that we do not attempt to evaluate generation
quality systematically in this work; we only note that (1) the argmax generations oscillate between
semantically distinct modes, and (2) the EMA iterates, aside from having better losses, switch their
rollout argmax trajectories (conditioned on in-distribution prompt prefixes) far less frequently.
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We close with a few remarks on larger-scale experiments, in light of the flurry of interest in under-
standing and improving the training of large language models (LLMs).

• Prior work. Our preliminary NLP experiments are certainly not the first to note the benefits
of averaging language models (Kaddour, 2022; Wortsman et al., 2022; Sanyal et al., 2023;
Sandler et al., 2023). In contradistinction to these works, our work contributes a set of
controlled experiments to isolate the phenomenon of GVA.

• Iterate averaging at the LLM scale. Towards understanding considerations which may
appear at the scale of our study, it is difficult to perform completely analogous experiments
with open-source pretrained models. Model releases which target scientific analysis (e.g.
Sellam et al. (2021); Biderman et al. (2023)) only publish a small number of intermediate
checkpoints (if at all), so that frequent EMA cannot be emulated from these artifacts.13 Thus,
we encourage interested parties to explore trajectory stabilization at the scale of frontier

LLMs, and publish both EMA-filtered and frequently-saved checkpoints for evaluation
and analysis.

• Preliminary recommendations. We suggest updating the EMA at every iteration, setting
� = 10�4 (� = 0.9999), employing a burn-in that is roughly the same length as the learning
rate warmup, and tuning the annealing parameter in the range 0.5  ↵  1 (larger ↵ acts like
a smaller learning rate). We also note (based on limited, informal tests) that the stabilizing
benefits of EMA appear to remain when finetuning pretrained LLMs; in this use case, we
recommend setting burn-in to 0, and carefully tuning the annealing parameter based on the
finetuning dataset size and number of passes over the data.

C.3 LINEAR SYSTEMS

In order to generate intuition about the cause and mitigation of GVA, we study a simple linear system
as well as a simple 2-piece affine system. We recall the setting of the Linear Quadratic Regulator
(LQR) (Kalman, 1960). Let xt 2 Rdx and ut 2 Rdu be state and control vectors and suppose that

xt+1 = Axt +But +wt, wt ⇠ N
�
0,�2

I
�
, (C.1)

where A 2 Rdx⇥dx and B 2 Rdx⇥du . For a horizon H , and policy ⇡K : x 7! Kx with K 2

Rdu⇥dx , the reward is given by

JH(⇡K) = E
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⇣
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where Q,R are positive semi-definite matrices.
Remark C.1. In most treatments of LQR, JH is taken to be positive and thus corresponds to a
control cost rather than a reward. In order to remain consistent with the rest of the paper, we take
JH to be negative and thus a reward.

In the infinite horizon case, it is known that an optimal policy K
? can be found by solving the

Discrete Algebraic Riccati Equation (DARE) (Kalman, 1960):

K
? = �

�
R+B

>
SB
��1

(BSA) ,

S = Q+A
>
SA � A

>
SB

�
R+B

>
SB
��1

B
>
SA.

In this section, when the system matrices (A,B,Q,R) are clear from context, we reserve K
? for

this optimal policy. The closed-loop system is called marginally unstable if kA+BK
?
kop = 1 and

marginally stable if kA+BK
?
kop < 1. Stability is a helpful condition for analysis as it implies

that trajectories converge toward zero and thus we do not expect GVA to appear. Marginal stability
does not cause convergence, but as we show in Appendix E.2, when the imitator is sufficiently close
to the Ricatti policy, we also do not expect to see GVA. In both experiments, we follow a similar
pipeline as in the MuJoCo experiments as described in Appendix C.1, with the main difference that
we hard-code our expert. We now describe our two experiments in detail. In our experiments, we
let dx = du = 2 for ease of visualization of trajectories.

13Nor would it be practical to store every training iterate.
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Figure 18: Depiction of marginally stable LQR setting. In (a) we show a contour plot of the reward
(for fixed action u), which is simply a quadratic and in (b) we show a sample expert trajectory in
state space. Each point is the state at a given time step, with the color corresponding to the time.

C.4 LQR WITH MARGINALLY STABLE DYNAMICS

In our first experiment, we let

A =


1.0025 0

0 1.0025

�
, B =


�0.0043 �0.0026
�0.0026 �0.0043

�
, Q = R = I.

To generate these matrices, we chose a small ↵ > 0 and let ✏ = ↵

H
. We then sampled a rotation O

uniformly at random from the orthogonal group. We let A = (1+ ✏)I and B = �✏O. Note that this
system is clearly marginally stable. The rotation is included to make the learning problem slightly
more challenging for the MLP. We let K? be the Riccati policy of this marginally stable system,

K =


1.3867 0.8250
0.8250 �1.3867

�
.

Steps (2-5) of the pipeline in Appendix C.1 are identical to the MuJoCo experiments. A visualization
of the reward landscape, the expert policy, and a sample expert trajectory can be found in Figure 18.
As demonstrated theoretically in Appendix E.2, we expect little to no oscillation in this setting, and
indeed we observe this. In particular, we consider two imitator function classes:

• Linear. This is simply linear regression with dependent features, where we optimize over
the class of functions

�
x 7! Kx|K 2 Rdx⇥du

 
.

• MLP. We also investigate the effect of introducing nonconvexity into the optimization by
optimizing over depth 2 neural networks with the dimension of the hidden layer being 32.
For optimization, we use a AdamW with a learning rate of .0003 and default parameters.
We also use a linear decay with a warmup of 50 steps.

We present the result of this experiment in Figure 19. As expected, we do not see GVA in this
setting; indeed, both the linear imitator and the MLP are able to recover the expert to a sufficiently
high degree of accuracy so as to obviate the lack of stability, as predicted by Proposition D.2. We
also exhibit a scatter plot comparing `BC and J in Figure 20 to emphasize the lack of GVA in this
setting.

C.5 LQR WITH CLIFF

Unsurprisingly, we did not see GVA in the previous experiment. Indeed, we predict GVA to occur
when the rollout dynamics function is highly unstable and possibly discontinuous. To demonstrate
that this is indeed the case even with extremely simple dynamics, we consider a system motivated
by a spring falling off a cliff. Again we suppose that dx = du = 2 and think of x1 as a position
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Figure 19: Training curves of imitator in marginally stable LQR setting. We show both linear
imitators (left) and MLP imitators (right), comparing the reward curves (top) with the `BC curves
on a validation set (bottom). We show the results both of EMA and of no EMA.

Figure 20: Scatter plots comparing `BC to the reward J at different checkpoints of a single run in the
LQR experiments. We show the results both of EMA and of no EMA. We exhibit a linear imitator of
LQR with a cliff setting (left) as well as a linear (center) and MLP (right) imitator of the marginally
stable LQR setting.
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Figure 21: Depiction of the LQR with a cliff setting. In (a) we show a contour plot of the reward
landscape; note that the reward is negative infinity to the left of the cliff, marked in red. In (b) we
show an example expert trajectory in state space. Each point is the state at a given time step, with
the color corresponding to the time. Also marked is the cliff in red .
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Figure 22: Training curves of linear imitator in LQR with a cliff. We show scatter plots of both the
reward curves (top) and the `BC curves on a validation set (bottom). We show the results both of
EMA and of no EMA.

coordinate in a one-dimensional space and x2 as a velocity coordinate. We let

A = exp

✓
⌘ ·


0 1

�1 0

�◆
, B =


0
1

�
, Q = R = I.

for a time parameter ⌘ that we set to be 0.1 in our experiments. As it stands, this system acts as
a discrete time approximation of a spring oscillating in one dimension, where the control is such
that the learner can only affect the velocity directly (perhaps by applying some small force). To this
system, we introduce a ‘cliff’ parameter  < 0 such that if x1 < , then the agent ‘falls off a cliff’
and the episode ends. We modify the reward function by letting

r(x,u) =

⇢
1 if x1 > 
�1 otherwise.

in our experiments, we let  = �0.05. For a visualization of the reward, see Figure 21 (a). We
again use the Ricatti policy K

? (with Q = R = I) as the expert. Note that this policy does not take
into account the infinite negative reward incurred by falling off the cliff and thus is not necessarily
optimal in the above setting.

Here we only train a linear policy and examine the effect that EMA has on training. We use a large,
constant learning rate of 0.3 and apply EMA as a post hoc filter, making this a direct MDP analogue
of the situation considered in Proposition D.5 in Appendix D. We display the results of this exper-
iment in Figure 22. Note that GVA clearly occurs in this setting, as predicted by Proposition D.5,
although we observe that the . Furthermore, we see that EMA is able to mitigate the oscillations
and allow the agent to converge to an at least mediocre policy. We emphasize that the expert policy
here is suboptimal because the Riccati policy does not take into account the infinite negative reward
incurred by falling off the cliff and thus it is not surprising that the EMA’d imitator does not perform
optimally. We also include a scatater plot of `BC vs. J in Figure 20 to emphasize the fact that, even
though there remains some small oscillation in `BC due to the large constant learning rate, GVA is
still very much observable in the complete lack of relationship between the two quantities.

D THEORETICAL ANALYSIS OF TOY EXAMPLES: DETAILS AND ADDITIONAL
RESULTS

In this section, we provide details and formal statements for the theoretical vignettes in Section 3
and Section 4, as well as additional results.
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We begin in Appendix D.1, which studies error amplification in linear dynamical systems. Proposi-
tion D.1, which is a formal version of Proposition 3.1, provides a linear example of extreme sensi-
tivity of rollout reward to parameters despite the lack of sensitivity in the training loss. We proceed
by recalling that for (marginally) stable linear systems, this is not an issue, which is in line with our
empirical results in Appendix C.4. We then shift our focus to exploring the effect of EMA in several
toy examples.

• In Appendix D.2, we introduce and analyze a variant of the cliff loss example studied em-
pirically in Appendix C.5, and demonstrate in Proposition D.3 that, if iterates are distributed
as Gaussians, then the cliff loss can be characterized in terms of the BC loss. For the sake of
simplicty, we assume Gaussianity in our iterates when conducting computations.

• Next, in Appendix D.2.1, we consider the effect of SGD on square loss and its interaction
with EMA; Proposition D.5 demonstrates that the benefits of EMA can be heavily dependent
on the choice of learning rate. We then use this result to give further consequences for the
cliff loss. This constitutes a formal version of Proposition 4.1. In Proposition D.7, we provide
a similar analysis in the continuous time limit for a variety of more complicated learning rate
schedules, with the caveat that this result is restricted to the setting where EMA is started
after a sufficiently large warmup period so as to saturate the population gradient.

• Finally, in Appendix D.3, we consider the extent to which convex theory explains the em-
pirical benefits of EMA. We begin by surveying a number of alternative iterate averaging
schemes in Appendix D.3.1 and demonstrate in Theorem 2 that EMA is provably subopti-
mal for stochastic convex optimization when the EMA parameter is chosen with the scaling
that we find necessary in practice. These results apply to the step size choices which are op-
timal for the convex optimization tasks. To summarize, while the large learning rates we find
empirically effective cannot be explained by the theory, conditional on using these mathe-
matically suboptimal rates, stochastic convex optimization does provide useful intuition.

All proofs are deferred to Appendix E.

D.1 ERROR AMPLIFICATION IN LINEAR DYNAMICAL SYSTEMS

In this section, we study the error amplification and the GVA phenomenon in linear dynamical
systems. We begin with a formal version of Proposition 3.1, which demonstrates that, even with a
Lipschitz dynamical system, the imitation loss may have to quite small in order to guarantee that the
rollout reward is close to optimal. This is the origin of GVA: small perturbations in parameters that
do not appear in BC the loss landscape lead to enormous changes in the rollout reward.
Proposition D.1 (GVA in linear dynamical systems). For any ✏ > 0 and d 2 N, there exists a linear
function f : Rd

⇥ Rd
! Rd and linear policy ⇡✓? : Rd

! Rd such that the following statements
hold:

(a) There exists an MDP M with deterministic transitions such that xh+1 = f(xh,uh) for all t.

(b) The functions x 7! f(x,⇡✓?(x)), (x,u) 7! f(x,u), and x 7! ⇡✓?(x) are globally 1 � ✏,
p
1 + c2, and ✏/c Lipschitz, respectively.

(c) Let the reward function r(x,u) = � kxk
2 be quadratic, so that JH(⇡✓) = �E

hP
H

t=1 kxtk
2
i
,

and let B✏0 denote the set of ✏0-Lipschitz linear functions � : Rd
! Rd satisfying �(0) = 0.

If � = c✏0 � ✏. Then,

sup
�2B

✏0
{JH(⇡✓?) � JH(⇡✓? +�)} � Cd ·

⇢
min

�
H, | 1

�
|
�
, �  0,

HeCH�, otherwise

for a universal constant C > 0.

(d) Let imitation loss be defined as

`BC(⇡✓) =
HX

t=1

k⇡✓(xt) � ⇡✓?(xt)k
2.
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Then

sup
�2B

✏0
`BC(⇡✓)  H kx1k

2
· (✏0)2.

(e) Moreover, there exists a subset B̃� ⇢ B� such that, if ✏ is sufficiently small, then for � 2 B̃
0
�
,

`BC(⇡✓? +�) � H�2 and yet, JH(⇡✓?) � JH(⇡✓? +�)  0.

Note that Proposition D.1 provides an existence result, providing a simple example where GVA may
occur. In effect, (d) ensures that small perturbations around the expert ⇡✓? result in small changes
to the next step prediction loss `BC, while (c) shows that such small changes lead to exponential
blowup in the rollout reward of the policies JH ; statements (a) and (b) demonstrate that such a
phenomenon can even occur in otherwise well-behaved (in the sense of being Lipschitz) systems.

We now complement Proposition D.1 with a negative example, showing that if a linear system is
sufficiently stable, then GVA does not occur. For more intuition and a number of references relevant
to these linear examples, see Simchowitz et al. (2020); Hazan & Singh (2022). To state the result,
recall the dynamics given in Eq. (C.1), as well as the LQR loss given in Eq. (C.2). We consider
linear policies in which there is some K 2 Rdx⇥du such that ut = ⇡✓?(xt) = Kxt, which implies
that the expected dynamics are given by a linear function: E [xH ] = (A+BK)H x0. We have the
following result.
Proposition D.2 (GVA does not occur in sufficiently stable linear systems). Consider the linear
dynamical system in Eq. (C.1) and suppose that the expert policy given by ⇡✓?(xt) = K

?
xt is such

that kA+BKkop  1, i.e., the closed-loop dynamics are marginally stable. Suppose that bK is an
imitator policy trained so that

��K � bK
��
op


✏

HkBkop
for ✏  1 and

��Q+ bKR
��
op

 C. Then

JH(⇡bK) � inf
kK�bKk

op
 ✏

HkBkop

JH(⇡K)  100
⇣
CH2 +H kRkop

⌘
kx0k

2 ✏.

If `BC(⇡K) = E
hP

H

h=1 k(K � K
?)xtk

2
i
, then

sup
kK�bKk

op
✏

`BC(⇡K)  CH
⇣
kx0k

2 + dx
⌘
✏2.

Furthermore, if there exists some � > 0 such that
��A + BK

��
op

 1 � �, then as soon as
��K �

bK
��
op


�

2kBkop
, we have

JH(⇡bK) � inf
kK�kkop

�

2kBkop

JH(⇡K)  100
⇣
CH2 +H kRkop

⌘
kx0k

2 ✏.

Note that in both cases, the rollout error JH does not grow significantly more quickly than `BC, in
contrast to Proposition D.1, suggesting that GVA will not occur.

Note that in the data regimes we consider empirically for the LQR setting, the assumption that�� bK � K
��
op

. 1
H

is reasonable, and SGD will converge relatively quickly to this regime (Nesterov
et al., 2018). Thus, for this setting, we do not expect GVA to persist in training, even for marginally
stable systems. It follows that the conclusion of this proposition is in line with our empirical results
for LQR Appendix C.4.

D.2 BENEFITS OF EMA FOR THE CLIFF LOSS

In this section, we state a formal version of Proposition 4.1, which shows that EMA can reduce
the variance of SGD for the cliff loss in Section 4.3. Recall that we consider a simple parameter
estimation task, where we minimize the “behavior cloning” loss

`BC(✓) =
1

2
k✓ � µk

2, (D.1)
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for some mean vector µ 2 Rd, while the “reward” function is given by a cliff loss:

J(✓) =

(
� k✓ � µk

2
k✓ � µk  ✏

�C otherwise
, (D.2)

where 1 � ✏ > 0 is a fixed scale parameter. This cliff loss is a simplified version of the “LQR-
with-a-cliff” dynamical system given in Appendix C.5, corresponding to trajectories of length H =
1, which simplifies calculations. We begin by showing that despite its simplicity, this setting is
nonetheless nontrivial: when ✓ is drawn from a Gaussian distribution, the expected cliff loss indeed
exhibits cliff-like behavior in the regime where E[`BC(✓)] = ⇥(✏2). To state the result, let ✓? = µ
denote the optimal parameter. Note that the Gaussian assumption is used mainly for the sake of
simplicity, as it allows for exact calculations; in addition in the continuous time limit of SGD as
applied to `BC, the iterates approach a Gaussian process (Mandt et al., 2017), a fact which we use
in the sequel to apply this result.
Proposition D.3. Let ✓ ⇠ N (µ0,⌃) be a Gaussian random vector in Rd. Then, there exists
universal constants c1, c2, c3 > 0 such that the following hold. First,

J(✓?) � E[J(✓)] �
C

2
, whenever E[`BC(✓)] � c1✏

2. (D.3)

On the other hand, suppose that E[`BC(✓)] 
✏
2

8 . Then,

J(✓?) � E[J(✓)]  2E[`BC(✓)] + C · c2 exp

✓
�

c3✏2

2E[`BC(✓)]

◆
.

In particular, if ✏2 � c�1
3 E[`BC(✓)] log(c2C/E[`BC(✓)]), then,

J(✓?) � E[J(✓)]  3E[`BC(✓)].

In the sequel, we show (via Proposition D.3) how small improvements in BC loss can translate to
major improvements in the cliff loss, and how EMA can induce these improvements.

We shall also show how the SGD iterates will exhibit large probabilistic fluctuations in their cliff
loss, even if the expected cliff loss is large. To do so, we require the following.
Lemma D.4. Let z1 ⇠ N (0,�2). Then,

P[|z1|  �✏] � ✏

r
2

⇡
e�✏

2
/2.

In particular, for ✏  1, P[|z1|  �✏] � ✏/3.

Proof. By rescaling, we can assume � = 1. We then bound

P[|z1|  ✏] =

Z
✏

�✏

e�u
2
/2

p
2⇡

du � 2✏

r
1

2⇡
e�✏

2
/2 = ✏

r
2

⇡
e�✏

2
/2.

D.2.1 ANALYSIS OF STOCHASTIC GRADIENT DESCENT ON SQUARE LOSS AND CLIFF LOSS

In this section, we study the benefits of EMA for the square-loss `BC defined in (D.1) just above.
This objective function is equivalent to estimation of the mean parameter µ. We demonstrate math-
ematically that in this problem, iterate averaging effectively decreases the learning rate. Because
rapid O(1/t) learning decay is optimal, we find that for larger learning rates, EMA yields a ben-
efit. Note that a similar qualitative observation in a more restricted setting was made in Sandler
et al. (2023). While this setting is too simple to observe interesting fractal behavior that we observe
in GVA on more sophisticated imitation learning tasks , it does provide some theoretical intuition
for the empirical finding that aggressively decaying the learning rate and iterate averaging result in
similar qualitative behavior.
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We consider stochastic gradient updates on the `BC defined in (D.1) defined as follows,

y
(t) = µ+w

(t), ✓(0) = 0, ✓(t+1) = ✓(t)
� ⌘tyt

✓̃(t)
�

= �t✓
(t) + (1 � �t)✓̃

(t�1)
�

, ✓̄(0) = ✓̃(0)
�

, (D.4)

where w
(t) is a scaled, isotropic Gaussian and ⌘t, �t > 0 are the learning rate and EMA parame-

ters, respectively. Because w
(t) is isotropic, the problem tensorizes across coordinates. Hence, the

following result considers only the dimension one case.
Proposition D.5. Consider the process in (D.4) for dimension d = 1, with constant learning rate
and EMA parameters �t ⌘ � and ⌘t ⌘ ⌘. Let b = |✓(0)

� µ| , and wt

i.i.d
⇠ N (0,�2). Then

2E[`BC(✓̃
(t)
�

)] = E[(✓̃(t)
�

� µ)2]  2b2(1 � �)2T +

8
><

>:

4�2⌘ + 4b2(1 � ⌘)2t � � 2⌘,
16�2⌘ + 32b2(1 �

⌘

4 )
2t �

2  ⌘  2�,

4�2� + 4b2 �
2

⌘2 (1 � �)2t ⌘ � 2�.

Similarly, the BC loss is lower bounded as

2E[`BC(✓̃
(t)
�

)] = E[(�̃(T )
�

)2] � b2(1 � �)2T +
1

4

 (
�2⌘ + b2(1 � ⌘)2(T�1) � � ⌘

�2� + b2 �
2

⌘2 (1 � �)2(T�1) ⌘ � �

!
,

Moreover, in the “no-EMA” setting in which � = 1, we have

2E[`BC(✓
(t))] = ⌘E[(✓(t)

� µ)2] = �2

✓
1 � ((1 � ⌘)2t)

2 � ⌘

◆
+ b2(1 � ⌘)2t.

To understand when this result reveals benefits of EMA, let us first consider the regime where ⌘, � �

1/t. Here, the b2 term capturing transient dependence on initial condition can be neglected. We then
observe that, as long as � & ⌘, EMA with parameter � increases the BC loss by at most a constant
factor relative to no EMA. On the other hand, when � ⌧ ⌘, the BC loss E[`BC(✓̃

(t)
� )] for EMA

scales linearly in �, while the no-EMA BC loss E[`BC(✓(t))] is linear in ⌘ � �. In other words,
when the step size is large, a small EMA parameter significantly aids variance reduction. This is
intuitively clear, as smaller EMA parameters correspond to averages over longer windows.

Consequences for the cliff loss. By combining Proposition D.5 with Proposition D.3 and
Lemma D.4, we now state that EMA is beneficial for the cliff loss setting considered in Ap-
pendix D.2 discrete-time SGD, complementing the results for continuous-time SGD in the prequel.
This amounts to a discrete time analogue of Proposition E.3.
Proposition D.6. Consider the cliff loss J with parameter ✏ > 0, consider the iterates produced in
Proposition D.5 with �2 = 1 and b  1. Then, there exists constants c1, c2, · · · > 0 such that, if the
step size ⌘ and EMA parameter � satisfy

⌘ � c1✏
2

� c2✏
2

� �, (1 � �)2T  �,

then

(a) It holds that

J(✓?) � E[J(✓(T ))] �
C

2
, yet J(✓?) � E[J(✓̃(T )

�
)]  c3

⇣
� + Ce�c4✏

2
/�

⌘
.

(b) Moreover, c5⌘  E[`BC(✓(t))]  c6⌘ and c5�  E[`BC(✓̃
(t)
� )]  c6�

(c) If ✏2 � c7� log(C/�), then it holds that

J(✓?) � E[J(✓(T ))] �
C

2
, yet J(✓?) � E[J(✓̃(T )

�
)]  c8�.

(d) Lastly, even though J(✓?) � E[J(✓(T ))] �
C

2 , we have that

P[J(✓?) � E[J(✓(T ))]  �] � c9�/⌘.
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This proposition reveals that an logarithmic difference in the magnitude of � and ⌘ can lead to
⌦(C)-differences in cliff loss. Since C is an arbitrarily large problem parameter, and since � and
⌘ are proportional to the magnitudes of the respective BC losses due to Proposition D.5, this shows
how minor differences in BC loss due to EMA translate into substantial differences in evaluation
performance.

Despite these separations in expected rollout reward, part (d) of the proposition states that with
probability ⌦(�/⌘), the SGD iterate has performance comparable to that of the EMA’d iterate. This
reproduces the a second feature of GVA: that test rollout performance of the SGD iterate is not
uniformly suboptimal, and some SGD iterates can indeed have loss comparable to that of the EMA’d
weights.

D.2.2 EMA FOR CLIFF LOSS IN THE CONTINUOUS LIMIT

In what follows we analyze the effect of EMA on SGD for the cliff loss. To simplify calculations,
we analyze SGD in the continuous-time limit (Mandt et al., 2017; Malladi et al., 2022; Busbridge
et al., 2023). In particular, we consider the limit as the learning rate tends to zero at an appropriate
rate such that the iterate trajectory becomes a continuous semi-martingale, following e.g. Busbridge
et al. (2023); see Appendix B for further references that consider similar limits.

Formally, as in Section 4, we consider a fixed sequence of positive learning rates (⌘t)k�0, as well as
an adaptive sequence of (potentially stochastic) estimates (g(t))k�0 ⇢ Rd of the gradient of `BC(✓).
The discrete time iterates ✓(t)

2 Rd are defined recursively, with the initial iterate ✓(0) fixed and
subsequent iterates given by

✓(t+1) = ✓(t)
� ⌘t · g(t).

Our primary objective of focus is Exponential Moving Average (EMA) of the iterates ✓(t), defined
recursively by e✓(0)

� = ✓(0) and

e✓(t+1)
�

= (1 � �t) · e✓(t)
�

+ �t · ✓(t+1), (D.5)

where (�t)k�0 ⇢ [0, 1] is a given, non-adaptive sequence of parameters.

Continuous time limit of SGD. To study the continuous time limit of the process above, we take
⌘t # 0 and K " 1 at a fixed rate such that limK!1

P
K

k=0 ⌘t 2 (0,1); concrete choices for the
sequence ⌘t and stochastic gradient process g(t) are given in the sequel. We then abuse notation by
letting ✓(t), e✓(t)

� , �t denote the continuous time analogues of ✓(t), e✓(t)
� , and �t. With this limit, e✓(t)

�

is the solution to the following differential equation:

de✓(t)
�

= �t ·

⇣
✓(t)

� e✓(t)
�

⌘
dt. (D.6)

In what follows, we always suppose that a unique solution to (D.6) exists; this is always true by
the Picard-Lindelöf theorem (Lindelöf, 1894) if �t are uniformly bounded and both �t, and ✓(t) are
continuous in t.14 In the case where gk is a stochastic gradient with mean the population gradient and
finite second moment of its Euclidean norm, ⌘t = ⌘ is constant, and �k = � is constant, Busbridge
et al. (2023, Theorem D.1) shows that as ⌘ # 0, with the correct scaling, ✓̃(t)� is the correct limit of
the e✓(t+1)

� . Similar limits with adaptive gradient updates can be found in Busbridge et al. (2023);
Malladi et al. (2022). In lieu of re-proving such limits here, we appeal to these results and instead
consider a fixed process ✓(t) and compare the behavior of the EMA process e✓(t)

� to the vanilla SGD
process ✓(t) in order to provide intuition as to the effect of EMA on the iterates.

Benefits of EMA for continuous-time SGD after saturation. In practice, EMA is often only
applied to the tail iterates of SGD, i.e., after some amount of warmup. If the warmup is sufficiently
large, then the iterates may already have approximately found a population-level stationary point,
and thus the observed gradients are non-zero only due to the stochasticity therein. Our most basic

14For background on terminology and results from stochastic calculus, we refer the reader to the excellent
exposition of Le Gall (2016).
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result, Proposition D.7, abstracts this limit as a driftless stochastic process. More precisely, we
assume that

✓(t) =

Z
t

0
⌘sdBs, (D.7)

where Bs is the standard Brownian motion in Rd, which corresonds to the limit when E
⇥
g(t)
⇤
= 0.

In this simpler setting, we can examine the benefits of EMA with different schedules of learning
rates.
Proposition D.7. Suppose that ⌘t is chosen via one of the following schedules:

(i) ⌘t = ⌘ for all t (constant learning rate);

(ii) ⌘t = ⌘(1 + t)�
1
2 (inverse square root schedule);

(iii) ⌘t = ⌘ (1 + t)�1 (inverse schedule);

(iv) ⌘t = 1 �
s

t
(linear decay schedule).

Let ✓(t) be as in Eq. (D.7) and e✓(t)
� as in Eq. (D.6) for fixed �. Let the behavior cloning loss `BC

and the reward function J be as in Eq. (D.1) and Eq. (D.2) for parameters C � ✏ > 0 and µ = 0.
If ✓(0) = 0, then there exists an ⌘ > 0 sucht that for all sufficiently large t, there is some � > 0 such
that

J(✓?) � E
h
J
⇣
✓(t)
⌘i

�
C

2
, yet J(✓?) � E

h
J
⇣
e✓(t)
�

⌘i
 2✏ ⌧

C

2
.

In addition, for the inverse learning rate, we may choose this ⌘ such that
max

⇣
E
⇥
`BC

�
✓(t)
�⇤

,E
h
`BC

⇣
✓̃(t)�

⌘i⌘
= O (✏).

This shows that in the continuous-time limit, EMA can substantially improve regret relative to
vanilla SGD. While the three learning rate settings above are obviously not exhaustive, they pro-
vide a number of classic examples. Constant learning rates are frequently analyzed in theory due to
their simplicity, while square root learning rate are typically used in convex optimization to attain
the optimal rate of convergence. Linear decay learning rates are common in deep learning and many
of our experiments use them. Thus we see that in many natural settings, iterate averaging can help
alleviate EMA. In order to broaden the applicability of the result, we also consider an analogue of
Proposition D.5 in continuous time, which is similar to Proposition D.7 but allows for drift and thus
does not assume we begin EMA in a stationary regime. We state this result in Appendix E.5.2.

D.3 FOR OPTIMAL CONVEX LEARNING RATES, EMA DOES NOT HELP

In both Propositions E.3 and D.7 we saw the benefits of EMA in convex settings. We now con-
sider several ways in which the convex theory does not predict improvement due to EMA, which
complements the empirical results in Section 4. We begin by surveying a number of iterate aver-
aging schemes from the literature as applied to stochastic convex optimization in Appendix D.3.1.
Then, in Appendix D.3.2 we prove that EMA with the parameters that we find work empirically
(see Appendix C) is provably suboptimal for convex optimization. This is attributed to the fact that
aggressive learning rate decay – far more than is desirable for neural network training – is optimal
for convex optimization.

D.3.1 COMPARISON OF EFFECTS OF ITERATE AVERAGING SCHEMES

In Appendix D.2 we showed the potential benefits of EMA when there exists a discrepancy between
the training loss and the reward function. In such settings, both the first and second moments of the
distance between the returned parameter and the optimum are relevant to the expected reward. In
this section, we survey some prior work and observe that the benefits are often less clear when such
a discrepancy does not exist. To do this, we compare various existing iterate averaging schemes and
show that some versions of EMA are minimax optimal, while others are not. We focus our discussion
on strongly convex but non-smooth stochastic convex optimization. Specifically, we let ✓t 2 Rd,
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and consider optimizing a function F (✓) : Rd
! R on a convex domain K ⇢ Rd. We assume that

F is µ-strongly convex and L Lipschitz w.r.t. the Euclidean norm, and that diam(K)  D. Lastly,
we assume that gradients are given according to the following oracle:
Definition D.1 (Subgradient Oracle). We assume that there exists an oracle G(✓) and a G � L
which return a random vector g such that (a) kgk  G and (b) EG(✓)[g] 2 @F (✓), where @F (·)
denotes the convex subgradient. We say G(✓) is a deterministic oracle if it is deterministic. In this
case, we can always take G = L.

We consider stochastic optimization algorithms of the form

✓(t+1) = ⇧K

⇣
✓(t)

� ⌘tg
(t)
⌘
, g ⇠ G(✓(t)) (D.8)

✓̃(t)
�

= �t✓
(t) + (1 � �t)✓̃

(t)
�

, (D.9)

and let F ? := min✓2K F (✓). We denote �t = 1, we call this final iterate gradient descent, because
✓̃(t)
� = ✓t. When �t =

1
t
, we call this full iterate averaging because ✓̃(t)

� = 1
t

P
t

s=1 ✓̄s, and denote
it ✓̃avg. Finally, when �t = � is fixed, we call this fixed emponential moving average, denoted
✓̃(�). Lacoste-Julien et al. (2012) show that the averaging parameters �t = 2

t+1 are optimal, and we
denote the resulting parameter ✓̄LJ after the authors. Finally, we consider a scheme that cannot be
represented in the form (D.9): the ↵ suffix averaging analyized in Rakhlin et al. (2011) and defined
to be

✓̃(t)
suf,↵ =

1

d↵te

tX

s=t�d↵te+1

✓(t).

It is known that no setting of step sizes or EMA weights, and in fact, no stochastic optimization
algorithm making at most T queries to the gradient oracle G(✓), can do better than the following
information theoretic optimal rate for

E[F (✓̃T ) � F ?] = ⇥

✓
G2

µT

◆
(information-theoretic optimal) (D.10)

The following theorem summarizes the performance of these various schemes relative to the
information-theoretic optimal benchmark.
Theorem 1. With optimal step size, the final-iterate and suffix averaging schemes described above
suffer the following suboptimal lower bounds:

• In dimension at least T , exists an F which is 1-strongly convex and 3-Lipschitz, and a deter-
ministic gradient oracle such that the final (unaveraged) iterate ✓T under update (D.8) with
the standard step size ⌘t = 1/t = 1/µt satisfies

F (✓(T )) � F ?
� ⌦(log T/T ) with probability one.

More generally, the lower bound on ↵-suffix averaging ✓̃suf,↵ is F (✓̃(T )
suf,↵) � F ?

�

⌦( 1
T
log 1

↵
), which is suboptimal when ↵ = o(T ). This is due to Harvey et al. (2019).

• There exists an F which is O(1)-strongly convex and O(1)-Lipschitz, and a stochastic gra-
dient oracle with G = O(1) such that the average iterate produced by gradient descent with
step size ⌘ = 1/ct for any constant c = ⌦(1) is shown by Rakhlin et al. (2011)

E[F (✓̃avg
T

) � F ?] � c⌦(log T/T )

On the other hand, let ↵ 2 (0, 1) be a constant bounded away from either zero or 1. Then the
↵-suffix average ✓̃(t)

suf,↵, as well as the Lacoste-Julien average ✓̄LJ
t

satisfy

max
n
E[F (✓̃(T )

suf,↵) � F ?], E[F (✓̄LJ
T
) � F ?]

o


G2

Tµ2

The guarantee for suffix averaging and ✓̄LJ are due to Rakhlin et al. (2011) and Lacoste-Julien et al.
(2012), respectively.
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We note that the Lacoste-Julien scheme ✓̄LJ
t

is unique among those discussed that attains the
information-theoretic optimal rate (D.10) and can also be efficiently computed in a streaming fashion
if T is unknown in advance15. In the regimes of interest, however, the functions we are minimizing
are not necessarily continuous, let alone smooth. In the following section, we demonstrate that if
the smoothness assumption is dropped, then EMA becomes supoptimal.

D.3.2 EMA IS SUBOPTIMAL FOR NONSMOOTH CONVEX GD, PROVIDED THE STEP SIZE
SCHEDULE IS OPTIMAL

Given the above discussion of EMA weighting schemes, a natural question to ask is whether the
optimal choice of �t in our empirical results is borne out by our theoretical analysis. We show that
this is not the case and thus a convex mental model for the benefits of EMA we see empirically is
insufficient, absent a discrepancy between the loss we are optimizing and the reward we care about.
Throughout, we let G(✓) denote a gradient oracle, and again consider updates given in (D.8) and
(D.9). Our main result is as follows.
Theorem 2. Let T 2 N be given and let K denote the unit radius Euclidean ball in RT . There exists
a 1-strongly convex, O(1)-Lipschitz function F (✓) on K and a deterministic gradient oracle such
that, for any � 2 (0, 1) the updates (D.8) and (D.9) with either fixed �t ⌘ � = T�� or time varying
�t = t�� suffers a lower bound of

F (✓̄T ) � F ?
� ⌦

✓
� log T

T

◆
.

Moreover, there exists an O(1)-Lipschitz but not strongly convex function F (✓) on K such that
gradient descent update with step size ⌘t =

1p
t

and EMA with either �t ⌘ � = T�� or �t = t��

and T � 2
1

1�� suffers

F (✓̄T ) � F ?
� ⌦

✓
� log T

p
T

◆
.

Finally, running EMA with step size � 
c log T

T
for a sufficiently small universal constant c in either

example suffers F (✓̄T ) � F ?
� ⌦( 1

T 1/4 ). In particular, for all fixed EMA parameters �,

F (✓̄T ) � F ?
�

8
<

:
⌦
⇣

log log T

T

⌘
strongly convex case

⌦
⇣

log log Tp
T

⌘
weakly convex case

We emphasize that Theorem 2 demonstrates that in the regime that we find EMA empirically works,
the convex theory is lacking in explanatory power. This is due to the fact that the ideal step size
choices for convex optimization decay far more rapidly than those in the non-convex optimization
of neural networks. By contrast, if the step size decays more slowly than the EMA parameter, we
can achieve benefits in convex problems, as shown in Proposition D.5. And it is precisely the slow-
or no-step size decay regimes that we empirically evaluate for the nonconvex optimization of deep
neural networks.

E PROOFS

In this section we provide rigorous proofs of the statements from Appendix D.

E.1 PROOF OF PROPOSITION D.1

Proof of Proposition D.1. Consider the dynamical system A = Id, B = cId, and expert policy
parameter K? = �

✏

c
Id. We let f(x,u) = Ax+Bu and ⇡K(x) = Kx. It is clear that these satisfy

the requisite Lipschitz constants. For any other policy � which is at most ✏0 Lipschitz, we have that
kxt+1k  kf(xt,⇡(xt) +�(xt))k = k(A � BK)xt + c�(xt)k  (k(A � BKk + c✏0)kxtk

 (1 � ✏+ c✏0)kxtk.

15Observe that if T is known to the learner, then one can implement tail averaging as a special case of full
iterate averaging, but only begin the averating at time step d↵T e.
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Defining ⇢ := 1 � ✏+ c✏0 = 1 + �, we have

JT (⇡✓?) � JT (⇡✓? +�)  E
"

HX

h=1

kxhk
2

#
 E

"
HX

h=1

⇢2(h�1)
kx1k

2

#
=

HX

h=1

⇢2(h�1)E
⇥
kx1k

2
⇤

= d
HX

h=1

⇢2(h�1).

Moreover, by selecting �(x) = ✏0x, this upper bound is attained. As ⇢ = 1 + �, for 0  � 
1
2 ,

it is standard to bound d
P

H

h=1 ⇢
2(h�1)

� dH

2 (1 + �)2(b
H

2 c�1) = ⌦(H exp(�H)), and similarly,P
H

h=1 ⇢
2(h�1)

 H⇢2(H�1)
 H exp(O(H)). For �  0, then

P
H

h=1 ⇢
2(h�1) is ⇥(min{H, 1

�
})

by a standard computation. The first result follows.

For the second statement, note that

E
���
⇣
K

?
� bK

⌘
xt

���
2
�



���K?
� bK

���
2

op
· kxtk

2


���K?
� bK

���
2

op
· kx1k

2
 ✏2 kx1k

2 ,

where the second inequality follows from the fact that kA+BKkop  1. The result follows by
summing over t.

Lastly, we show the existence of �’s with relatively large imitation cost but that do not suffer expo-
nential error amplification. Define �0 := ✏

0

2 ·I, and define the set B̃✏0 = {� : ck�0��k  ✏0/16}.
This implies that for every � 2 B̃✏0 . Define �̃ := 1

c
(� � �0). Then,

(A+B(K+�)) = (1 � ✏ � ✏0/2)I| {z }
:=Ã

+�̃.

Note that if kx0k  1 almost surely, then by the preceding analysis, it is clear that E
h
kxhk

2
i

 H

and thus by construction, if we let C = eA+ e�, then

E
h
kxHk

2
i
= E

"�����C
H
x0 +

HX

s=1

C
H�s

ws

�����

#
= kCk

H

op E [kx0k] + d ·

HX

s=1

kCk
H�s

op .

If we suppose that ✏ ⌧ H�1, then the above is ⌦(H); thus E [`BC(K)] � ⌦(H�2) as desired. On
the other hand, because kA+B(K+�)kop  kA+BK

?
kop, the rollout reward of the perturbed

policy is greater than that of the expert. The result follows.

E.2 PROOF OF PROPOSITION D.2

The triangle inequality tells us that

���A+B bK
���
op

 kA+BKkop +
���B(K � bK)

���
op

 1 +
✏

H
,

by assumption. In particular, for t 2 [H], we have that

���A+B bK
���
op

 e✏  1 + 2✏
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for ✏ < 1. For each t, we have

x
>
0

✓⇣
A+B bK

⌘t◆>
(Q+ bKR)

⇣
A+B bK

⌘t
x0

� x
>
0

⇣
(A+BK)t

⌘>
(Q+KR) (A+BK)t x0

�

�����x
>
0

✓⇣
A+B bK

⌘t
� (A+BK)t

◆>
(Q+KR) (A+BK)t x0

�����

�

�����x
>
0

✓⇣
A+B bK

⌘t◆>
(( bK � K)R) (A+BK)t x0

�����

�

�����x
>
0

✓⇣
A+B bK

⌘t◆>
(Q+ bKR)

✓⇣
A+B bK

⌘t
� (A+BK)t

◆
x0

�����

� CH✏ kx0k
2 + kx0k

2
kRkop (1 + 2✏)2✏+ CH✏ kx0k

2

� 100C kx0k
2 (H + kRkop)✏.

The first result follows by summing over t. The second result follows similarly after observing that
kA+BKkop  1 for all

���K � bK
���
op


�

2 .

E.3 CLIFF LOSS FOR GAUSSIAN RANDOM VECTORS (PROOF OF PROPOSITION D.3)

In this section, we prove Proposition D.3, which establishes the direct but discontinuous relationship
between the the square BC loss and the cliff loss. Recall our imitation losses and cliff loss for µ
fixed:

`BC(✓) =
1

2
k✓ � µk

2, J(✓) =

⇢
�k✓ � µk

2
k✓ � µk  ✏

�C otherwise
,

The statement (D.3) of Proposition D.3 is a direct consequence of the following lemma:
Lemma E.1. Let ✓ be a random Gaussian vector with covariance matrix ⌃. Then there is some
constant c such that for all ✏ > 0,

inf
µ

P (k✓ � µk > ✏) � 1 � c ·
✏q

E[k✓ � µk
2]
.

Proof. By the classical Carbery-Wright inequality (Carbery & Wright, 2001, Theorem 8), for any
degree q 2 N, there is a constant c > 0 such that for any nonnegative polynomial P (·) of degree q
in a vector-valued log concave random variable z 2 Rd such that

P (P (z)  ✏q)  c ·

✓
✏q

E [P (z)]

◆1/q

= c ·
✏

E [P (z)]1/q
.

Noting that ✓ � µ
d
= µ0

� µ+⌃
1/2

z where z ⇠ N (0, I), we see that k✓ � µk
2 can be expressed

as as a degree 2 polynomial in the log-concave standard Gaussian variable. The result follows.

To prove the second part of Proposition D.3, we recall the following corollary of the classical
Hanson-Wright inequality:
Lemma E.2. Let ✓ be a Gaussian random vector with mean µ0 and covariance ⌃. Then there is a
constant c such that for all t > 0, it holds that

P
⇣
k✓ � µk

2
� 2 · kµ � µ0

k
2
+ 2tr(⌃) + 2t

⌘
 c0e

�cmin

✓
t
2

k⌃k2F
,

t

k⌃kop

◆
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Proof. This follows immediately from the classical Hanson-Wright inequality (Rudelson & Ver-
shynin, 2013) by considering the random vector ✓ = µ0 + ⌃1/2Z with Z isotropic Gaussian and
applying Young’s inequality to upper bound k✓ � µk

2
 2 k✓ � µ0

k
2 + 2 kµ0

� µk
2.

Translated into the language of Proposition D.3, set ✏2 = 2 kµ � µ0
k
2+2tr(⌃)+2t = 4E[`BC(✓)]+

2t. Suppose that ✏2 � 8E[`BC(✓)], so that t = 1
2 (✏

2
� 8E[`BC(✓)]) �

✏
2

4 . Then,

P
⇣
k✓ � µk

2
� ✏2

⌘
 ce

�cmin

✓
✏
4

k⌃k2F
,

✏
2

k⌃kop

◆

Morever, we can upper bound k⌃k
2
F  tr(⌃)2  4E[`BC(✓)]2 and k⌃kop  E[`BC(✓) 

2E[`BC(✓)]. Thus, using ✏2 � 8E[`BC(✓)], min
⇣

✏
4

k⌃k2
F
, ✏

2

k⌃kop

⌘
�

✏
2

2E[`BC(✓)] . By reassigning
constants, we conclude that, if ✏2 � 8E[`BC(✓)],

P
⇣
k✓ � µk

2
� ✏2

⌘
 c2e

�c3
✏
2

2E[`BC(✓)]

Finally, we lower bound

E[J(✓)] � �CP
⇣
k✓ � µk

2
� ✏2

⌘
+ E[�`BC(✓)] � �E[`BC(✓)] � C · c2e

�c1
✏

2E[`BC(✓)] .

This concludes the proof of the second statement of Proposition D.3.

E.4 PROOF OF PROPOSITION D.5

We now turn to the proof of Proposition D.5. Introduce the error �(t) = ✓(t)
�µ and �̃(t)� = ✓̃(t)

� �µ.
We readily compute

�(t) = (1 � ⌘)�(t�1)
� ⌘w(t�1), �̃(t)

�
= (1 � �)�̃(t�1)

�
+ ��

Let’s quickly compute the No-EMA setting:

�(t) = (1 � ⌘)T�1�(1) + ⌘
T�1X

i=0

(1 � ⌘)T�1�i
wi

and thus, with |�(1)| = r and E[w2
t
] = �2,

E[(�(t))2] = b2(1 � ⌘)2T + �2
T�1X

i=0

(1 � ⌘)2(T�1�t)

= b2(1 � ⌘)2T + ⌘2�2
T�1X

i=0

(1 � ⌘)2i

= ⌘2b2(1 � ⌘)2T + �2 1 � ((1 � ⌘)2T )

1 � (1 � ⌘)2

= ⌘2b2(1 � ⌘)2T + �2 1 � ((1 � ⌘)2T )

⌘(2 � ⌘)

= ⌘b2(1 � ⌘)2T + �2 1 � ((1 � ⌘)2T )

2 � ⌘
.

For the EMA setting, defining z = (�(t), �̃(t)� ), we have

z
(t) =


(1 � ⌘) 0

� (1 � �)

�

| {z }
=A

z
(t�1) +


�⌘
0

�

| {z }
=B

w
(t�1)
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Let e1, e2 denote the canonical basis vectors for R2. Using z
(0) = (�(0), �̃(0)� ) = (�(0), �(0)) =

�(0)(e1 + e2), �̃
(t)
� = e

>
2 z

(t), and B2 = ⌘e1, we compute

�̃(T )
�

=
T�1X

t=0

⌘e>2 A
T�(t+1)

Bwte1 + e
>
2 A

T (e1 + e2)�
(0)

And thus, by independence of w1, . . . ,wT�1 ⇠ N (0,�2) and �(0),

E[(�̃(T )
�

)2] = �2
T�1X

t=0

(⌘e>2 A
T�(t+1)

e1)
2 + (�(0))2(e>2 A

T�1(e1 + e2))
2

= �2
T�1X

t=0

(⌘AT�(t+1)[2, 1])2 + (�(0))2(AT�1[2, 1] +A
T�1[2, 2])2

= �2
T�1X

t=0

(⌘At[2, 1])2 + (�(0))2(AT [2, 1] +A
T [2, 2])2

 �2
T�1X

t=0

(⌘At[2, 1])2 + 2(�(0))2(AT [2, 1]2 +A
T [2, 2]2)

= �2
T�1X

t=0

(⌘At[2, 1])2 + 2b2(AT [2, 1]2 + (1 � �)2(T )) := VT + 2b2(1 � �)2T (E.1)

where above, X[i, j] is the i, j-the element of matrix X, and where in the last line, we use that
the diagonal elements of a power of triangular matrix are the powers of its diagonals, as well as
(�(1))2 = b2.

To compute the powers At[2, 1] lets first assume � 6= ⌘, and moreover, that either � � 2⌘ or ⌘ � 2�.
We can address the other cases at the end. Using a formula for diagonal matrix exponentiation with
� 6= ⌘, we obtain

A
t =

"
(1 � ⌘)t 0

� (1�⌘)t�(1��)t

(1�⌘)�(1��) (1 � �)t

#
,

We then have

⌘At[i, j] = ⌘�
(1 � ⌘)t � (1 � �)t

(1 � ⌘) � (1 � �)
= ⌘�

(1 � ⌘)t � (1 � �)t

� � ⌘
 2

⇢
⌘(1 � ⌘)t � � 2⌘
�(1 � �)t ⌘ � 2�

(E.2)

Hence,

VT  4�2

 (
⌘2
P

T�2
t=0 (1 � ⌘)2t � � 2⌘

�2
P

T�2
t=0 (1 � �)2t ⌘ � 2�

!
+ 4b2

 (
(1 � ⌘)2(T�1) � � 2⌘
�
2

⌘2 (1 � �)2(T�1) ⌘ � 2�

!

 4�2

 (
⌘
2

1�(1�⌘)2 � � 2⌘
�
2

1�(1��)2 ⌘ � 2�

!
+ 4b2

 (
(1 � ⌘)2(T�1) � � 2⌘
�
2

⌘2 (1 � �)2(T�1) ⌘ � 2�

!

= 4

 (
�2 ⌘

2�⌘
+ b2(1 � ⌘)2(T�1) � � 2⌘

�2 �

2��
+ b2 �

2

⌘2 (1 � �)2(T�1) ⌘ � 2�

!

= 4

 (
�2⌘ + b2(1 � ⌘)2(T�1) � � 2⌘

�2� + b2 �
2

⌘2 (1 � �)2(T�1) ⌘ � 2�

!

Lets now hand the case ⌘ 2 [ 12�, 2�]. In this case, observe that the entries

A =


(1 � ⌘) 0

� (1 � �)

�
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are non-decreasing in ⌘. Hence, we can upper bound

A
k

 (A0)k entrywise, A
0 =


(1 � ⌘0) 0

� (1 � �)

�
, ⌘0 =

⌘

4
. (E.3)

We can now apply the same upper bound with parameters �, ⌘0 = ⌘

4 . Defining V 0
T

as corresponding
to VT but with ⌘0 instead of VT , we have that

V 0
T

 4(�2⌘0 + b2(1 � ⌘0)2T ) = �2⌘ + 4b2(1 �
⌘

4
)2T

Moreover, its easy to see from (E.1) and Eq.E.3 that

VT  16V 0
T
,

yielding VT  16�2⌘+32b2(1�
⌘

4 )
2T . We conclude with a lower bound on E[(�̃(T )

� )2]. Repeating
the computation from (E.1), and using non-negativity of the entries of the matrices A

t, one can
lower bound

E[(�̃(T )
�

)2] � �2
T�1X

t=0

(⌘At[2, 1])2 + b2(AT [2, 1]2 + (1 � �)2(T )) := V
T
+ b2(1 � �)2T (E.4)

Following the computation in (E.2), we can also lower bound

⌘At[i, j] �

⇢
⌘(1 � ⌘)t � > ⌘
�(1 � �)t ⌘ > �

Thus,

V
T

� �2

 (
⌘2
P

T�2
t=0 (1 � ⌘)2t � > 2⌘

�2
P

T�2
t=0 (1 � �)2t ⌘ > �

!
+ b2

 (
(1 � ⌘)2(T�1) � > ⌘
�
2

⌘2 (1 � �)2(T�1) ⌘ > �

!

 4�2

0

@

8
<

:

⌘
2(1�(1�⌘)2(T�1))

1�(1�⌘)2 � > ⌘
�
2(1�(1��)2(T�1))

1�(1��)2 ⌘ > �

1

A+ b2
 (

(1 � ⌘)2(T�1) � > ⌘
�
2

⌘2 (1 � �)2(T�1) ⌘ > �

!

(i)
�

1

4

 (
�2⌘ + b2(1 � ⌘)2(T�1) � � ⌘

�2� + b2 �
2

⌘2 (1 � �)2(T�1) ⌘ � �

!
,

where in (i) we use that (1� (1� x)2)  2x for x  1, and the assumption that ⌘, �  1/2. Using
continuity of V

T
and our lower bound on it, we directly extend to the ⌘ = � case. Combining with

Eq.E.4,

E[(�̃(T )
�

)2] � b2(1 � �)2T +
1

4

 (
�2⌘ + b2(1 � ⌘)2(T�1) � � ⌘

�2� + b2 �
2

⌘2 (1 � �)2(T�1) ⌘ � �

!
,

E.5 EMA FOR CONTINUOUS GAUSSIAN PROCESSES

In this section, we prove Proposition D.7 using stochastic calculuss. We begin by stating our main
computation, used in tandem with Proposition D.3 to prove Proposition D.7.
Theorem 3. Let t 7! �t be continuous and nonegative, and let ✓(t) be (a) Gaussian process with
almost surely continuous paths, (b) continuous semi-martingale, and (c) have pointwise finite second
moments. Introduce the function

G(t) :=

Z
t

0
�(s)ds,

and consider the random process e✓(t)
� defined by

d

dt
e✓(t)
�

= �t ·

⇣
✓(t)

� e✓(t)
�

⌘
dt, e✓(0)

�
= ✓(0).

Then,
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(a) e✓(t)
� Gaussian for each t.

(b) The following identity holds:

E
h
e✓(t)
�

i
= e�G(t)

· E
h
✓(0)

i
+

Z
t

0
eG(s)�G(t)�s · E

h
✓(s)

i
ds

(c) It holds that

E
h
e✓(t)
�

⌦ e✓(t)
�

i
� e�G(t)

· E
h
✓(0)

⌦ ✓(0)
i
+

Z
t

0
eG(s)�G(t)�s · E

h
✓(s)

⌦ ✓(s)
i
ds,

where the outer product and � denotes the Loewner order.

E.5.1 ANALYSIS OF THE DRIFTLESS PROCESS

In this section, we study the variance reduction of EMA on the Gaussian drift process

✓(t) =

Z
t

0
⌘sdBs,

To quantify this, define

H(s) =

Z
s

0
⌘2
u
du.

Corollary E.1. Suppose that ✓(t) =
R
t

0 ⌘sdBs, where ⌘s is some deterministic process and Bs is a
Brownian motion in Rd. Then e✓(t)

� ,✓(t) are Gaussian for all t, and it holds that

E
h
e✓(t)
�

i
= 0 and Cov

⇣
e✓(t)
�

⌘
�

✓Z
t

0
eG(s)�G(t)�s · H(s) ds

◆
I,

where I is the identity matrix and H(s) =
R
s

0 ⌘2
u
du as above. On the other hand,

Cov
⇣
✓(t)
⌘
= H(t) · I.

Proof. Note that ✓(t) satisfies the conditions of Theorem 3 Furthermore, E
⇥
✓(t)
⇤

= 0 and

Cov
�
✓(t)
�
=
⇣R

t

0 ⌘2
s
ds
⌘
I. The result follows.

As stated above, Corollary E.1 is a toy model for the setting where EMA is only applied after the
training loss has saturated, with ⌘s denoting the continuous analogue of the learning rate in the
discrete time setting of (D.5). We now consider several instantiations of this result, all assuming that
✓(0) is deterministic and �t = � is constant.
Example E.1 (Constant Learning Rate). We first model the constant learning rate setting where
⌘s = ⌘ > 0 for some fixed ⌘. We first observe that H(t) = ⌘2t and thus Cov

�
✓(t)
�
= ⌘2t · I. On

the other hand, we have that

Cov
⇣
e✓(t)
�

⌘
� ⌘2

✓
t �

1 � e��t

�

◆
I � ⌘2t · I = Cov

⇣
✓(t)
⌘
.

Note that as � # 0, Cov
⇣
e✓(t)
�

⌘
tendds to zero, while as � " 1, the covariance tends to Cov

�
✓(t)
�
.

While it demonstrates that EMA can be effective in variance reduction, the first example is not very
realistic, partly because constant learning rates are rarely used in practice. For convex optimization,
it is common to let ⌘t scale inversely with the square root of the iteration. In this case, the separation
is similarly pronounced:
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Example E.2 (Inverse Square Root Learning Rate). If we let ⌘t = ⌘(1 + t)�
1
2 , as is commonly

done in convex optimization, then we may see that H(t) = ⌘2 log(1 + t) and so Cov
�
✓(t)
�
=

⌘2 log(1 + t) · I. To compute the covariance of e✓(t)
� , we apply Jensen’s inequality to conclude that

Z
t

0
�e�(s�t) log(1 + s) ds =

�
1 � e��t

�
·

✓
1

1 � e��t
·

Z
t

0
�e�(s�t) log(1 + s) ds

◆


�
1 � e��t

�
· log

✓
1 +

1

1 � e��t

Z
t

0
�e�(s�t)s ds

◆

=
�
1 � e��t

�
· log

✓
1 +

1

(1 � e��t)

✓
t �

1 � e��t

�

◆◆
.

Thus,

Cov
⇣
e✓(t)
�

⌘
�
�
1 � e��t

�
· log

✓
1 +

1

(1 � e��t)

✓
t �

1 � e��t

�

◆◆
· I

� ⌘2 log(1 + t) · I

= Cov
⇣
✓(t)
⌘
.

As in the previous example, while the variance of the iterate process is unbounded, the variance of
the EMA process remains bounded. In our empirical experiments, however, we often consider a
linear decay schedule (after a warmup). In this case, we have the following:
Example E.3 (Linear Decay Learning Rate). Here we suppose that ⌘s = 1 �

s

t
for s 2 [0, t] and

we compare the final iterate ✓(t) = ✓(t)⌘ of different processes (indexed by t) to the EMA versions
e✓(t)
� = e✓(t)

⌘,� . We compute directly to get that

Cov
⇣
e✓(t)
�

⌘
�

✓
t

2
�

1 � e��t(�t+ 1)

�2t

◆
· I �

t

2
· I = Cov

⇣
✓(t)
⌘
.

In all of our computations, we observe that EMA leads to potentially significant variance reduction,
depending on the value of �. While the previous examples are illustrative, the driftless assumption
is limiting.

E.5.2 ANALYSIS OF THE ORNSTEIN-UHLENBECK PROCESS

We now relax the assumption that the ✓(t) have saturated in the sense that the population gradients
all vanish and demonstrate that even in this relaxed setting, EMA can substantially improve the cliff
reward in the continuous time limit of SGD. This analysis acts as a continuous time analogue of
Proposition D.5. To proceed, we first recall that Mandt et al. (2017) shows that with the appropri-
ate scaling of the learning rate, the continuous time limit of SGD for the quadratic loss `BC is an
Ornstein-Uhlenbeck process:

d✓(t) = �A

⇣
✓(t)

� µ
⌘
dt+⌃dBt, (E.5)

where ⌃ � 0 is positive definite and, in the context of `BC, A and ⌃ are scaled identity matrices,
with the scale depending on the precise learning rate. Above µ 2 Rd is the vector that minimizes
`BC, and Bt is a d-dimensional Brownian motion. We now show that in this limit, corresponding to
a constant learning rate, EMA can offer substantial improvement for the cliff reward.

Proposition E.3. Suppose that ✓(t) and e✓(t)
� are as in (E.5) and (D.6) respectively, with the dimen-

sion d = 1 and A = a > 0 fixed; further suppose that ⌃ = 1. Let ✏  ca�
1
2 for some small constant

c > 0 and let `BC, J be as in (D.1) and (D.2). Furthermore, suppose that ✓(0)
2 R is deterministic.

If
��✓(0)

� µ
�� < K�1✏, then for all t � 0, there is some choice of � > 0 such that

J(✓?) � E
h
J
⇣
✓(t)
⌘i

�
C

2
, yet J(✓?) � E

h
J
⇣
e✓(t)
�

⌘i
 2✏ ⌧

C

2
.

In addition, max
⇣
E
⇥
`BC

�
✓(t)
�⇤

,E
h
`BC

⇣
e✓(t)
�

⌘i⌘
 O (✏).
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The above result shows that as long as ✓(0) is not too far from µ, EMA can lead to substantial
improvement in the cliff reward. Conversely, using a similar computation, it is possible to show that
if
��✓(0)

� µ
�� > K✏ for some fixed K independent of C, ✏, then our approach cannot show similar

gains.

We now characterize the covariance of the EMA and non EMA’d processes under the OU process.
We first recall the classical fact that ✓(t) can be expressed as

✓(t) = e�At
· ✓(0) +

�
I � e�At

�
µ+

Z
t

0
eA(s�t)

· ⌃ dBt, (E.6)

where the last term is an Ito integral (Le Gall, 2016). The following corollary specializes to the
univariate case; the more general case is handled in Corollary E.3 below.
Corollary E.2. Conside the univariate case of (E.5) with scalar A = a 6= 0, ⌃ = 1, and �t ⌘ � >

0 fixed, and a� /2 {1, 2}. Then, it holds for almost every � that e✓(t)
� ,✓(t) are Gaussian for each t,

and

E
h
e✓(t)
�

i
= E

h
✓(t)
i
+
�
e�ta

� e��t
� �

� � a

⇣
✓(0)

� µ
⌘

Cov
⇣
e✓(t)
�

⌘
� e��t Cov

⇣
✓(0)

⌘
�

1 � e��t

2a
�

1

2a(1 � 2a/�)

�
e��t

� e�2at
�

On the other hand,

E
h
✓(t)
i

� µ = e�at

⇣
✓(0)

� µ
⌘
, Cov

⇣
✓(t)

� ✓(0)
|✓(0)

⌘
=

1 � e�2at

2a

Note that if Cov
�
✓(0)

�
= 0, then it holds by rearranging that

Cov
⇣
e✓(t)
�

⌘
 Cov

⇣
✓(t)
⌘

�
a

� � a

�
e��t

� e�2at
�
< Cov

⇣
✓(t)
⌘

and thus EMA leads to variance reduction. We also have the following, more general computation
for higher dimensional processes:
Corollary E.3. Consider (E.5). Suppose that ⌃ � 0 is a positive definite matrices and µ 2 Rd and
✓(t) satisfies (E.5) and ✓(0) is independent of the Brownian motion Bt. Suppose that �t = � > 0
fixed, and I � ��1

A is nonsingular. Then,

E
h
e✓(t)
�

i
= µ+ e��t

⇣
✓(0)

� µ
⌘
+
�
e�tA

� e��t
I
� �

I � ��1
A
��1

⇣
✓(0)

� µ
⌘
.

Furthermore, if ⌃ = �I, AA
> = A

>
A, and if A+A

> and I � ��1(A+A
>) are nonsingular,

Cov
⇣
e✓(t)
�

⌘
� e��t Cov

⇣
✓(0)

⌘
+ �2

�
1 � e��t

� �
A+A

>��1

� �2
⇣
e�(A+A>)t

� e��t
I

⌘ �
I � ��1

�
A+A

>���1 �
A+A

>��1
.

On the other hand,

E
h
✓(t)
i
= µ+ e�At

⇣
✓(0)

� µ
⌘

and

Cov
⇣
✓(t)

� ✓(0)
|✓(0)

⌘
= �2

⇣
I � e�t(A+A>)

⌘ �
A+A

>��1

Proof. We begin by observing that by (E.6), it holds that

E
h
✓(t)
i
= µ+ e�At

⇣
✓(0)

� µ
⌘
.
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Thus by Proposition E.4, we have

E
h
e✓(t)
�

i
= e�G(t)

· ✓(0) +

Z
t

0
eG(s)�G(t)� · E

h
✓(s)

i
ds

= e��t
· ✓(0) +

Z
t

0
e�s��t� ·

⇣
µ+ e�As

⇣
✓(0)

� µ
⌘⌘

ds

= e��t
· ✓(0) +

�
1 � e��t

�
µ+ e��t� ·

Z
t

0
e(I��

�1A)�s
⇣
✓(0)

� µ
⌘
ds,

where the final equality follows because �I commutes with A. A simple calculation then tells us
that

Z
t

0
e(I��

�1A)�s
⇣
✓(0)

� µ
⌘
ds =

�
e�tI�tA

� I
�
(�I � A)�1

⇣
✓(0)

� µ
⌘
,

and thus

E
h
e✓(t)
�

i
= e��t

· ✓(0) +
�
1 � e��t

�
µ+

�
e�tA

� e��t
I
� �

I � ��1
A
��1

⇣
✓(0)

� µ
⌘
.

Thus the expressions of the means of both ✓(t) and e✓(t)
� hold.

For the covariances, we first observe that by (E.6), if A commutes with A
> and ⌃ = �I, then if

A+A
> is invertible, we have

Cov
⇣
✓(t)

� ✓(0)
|✓(0)

⌘
= �2

·

Z
t

0
eA(s�t)+A>(s�t)ds

= �2
⇣
I � e�t(A+A>)

⌘ �
A+A

>��1
.

Now, by Proposition E.5, we have that
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⇣
e✓(t)
�

⌘
� e��t Cov

⇣
✓(0)

⌘
+

Z
t

0
e�(s�t)�s�2

⇣
I � e�s(A+A>)
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A+A

>��1
ds
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⇣
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⌘
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�
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� �
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� �2�

✓Z
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e�(s�t)I�s(A+A>) ds

◆�
A+A

>��1

= e��t Cov
⇣
✓(0)

⌘
+ �2

�
1 � e��t

� �
A+A
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� �2
⇣
e�(A+A>)t

� e��t
I

⌘ �
I � ��1

�
A+A

>���1 �
A+A

>��1
.

The result follows.

E.5.3 PROOF OF THEOREM 3

Theorem 3 follows from three constituent propositions, corresponding to items (b), (c), and (a) of
the theorem, respectively.

Proposition E.4. Let ✓(t) be a continuous semi-martingale (see Le Gall (2016, Definition 4.19))
and let e✓(t)

� be defined such that e✓(0)
� = ✓(0) and (D.6) holds. Suppose that �t is continuous and let

G(t) =
R
t

0 �(s)ds. Then,

e✓(t)
�

= e�G(t)
· ✓(0) +

Z
t

0
eG(s)�G(t)�s · ✓(s) ds. (E.7)

Furthermore, if
��✓(t)

�� has finite first moment for all s  t, then

E
h
e✓(t)
�

i
= e�G(t)

· E
h
✓(0)

i
+

Z
t

0
eG(s)�G(t)�s · E

h
✓(s)

i
ds. (E.8)
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Proof. By the Picard-Lindelöf theorem (Lindelöf, 1894), e✓(t)
� exists and is unique. Noting that e✓(t)

�

given in (E.7) is differentiable by the fundamental theorem of calculus, we have

de✓(t)
�

dt
= ��te

�G(t)✓(0) + �t✓
(t)

� �t ·

Z
t

0
eG(s)�G(t)�s · ✓(s) ds

= �t
⇣
✓(t)

� e✓(t)
�

⌘
.

Because G(0) = 0, we have e✓(0)
� = ✓(0) and thus by the uniqueness of the solution the expression

given in (E.7) is correct.

For the second statement, we may apply Fubini’s theorem and the first moment assumption.

We remark that if (E.7) seems unmotivated, one can construct a guess for this solution informally
in much the same way as the final part of the proof of Proposition E.5 below proceeds. Our second
main computation is to upper bound the covariance matrix of e✓(t)

� by that of ✓(t):

Proposition E.5. Let ✓(t) and �t be as in Proposition E.4. Further suppose that E
h��✓(t)

��2
i
< 1

for all t. Then,

E
h
e✓(t)
�

⌦ e✓(t)
�

i
� e�G(t)

· E
h
✓(0)

⌦ ✓(0)
i
+

Z
t

0
eG(s)�G(t)�s · E

h
✓(s)

⌦ ✓(s)
i
ds, (E.9)

where u ⌦ v = uv
> is the outer product and � denotes the Loewner order.

Proof. We begin by applying the chain rule to get

d
⇣
e✓(t)
� ⌦ e✓(t)

�

⌘

dt
= r

⇣
e✓(t)
�

⌦ e✓(t)
�

⌘k
ij

 
de✓(t)

�

dt

!

k

,

where we are using Einstein notation to express the contraction of the third order tensor coming
from the Jacobean with the first order tensor arising from the time derivative of e✓� . By the definition
of e✓(t)

� , we have then that

d
⇣
e✓(t)
� ⌦ e✓(t)

�

⌘

dt
= e✓(t)

�
⌦

 
de✓(t)

�

dt

!
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de✓(t)

�
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!
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�
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⌦

⇣
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� e✓(t)
�

⌘
+
⇣
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� e✓(t)
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⌘
⌦ e✓(t)

�

⌘

� �t
⇣
✓(t)

⌦ ✓(t)
� e✓(t)

�
⌦ e✓(t)

�

⌘
,

where we used the fact that for any two vectors u,v 2 Rd, it holds that
u ⌦ v + v ⌦ u � u ⌦ u+ v ⌦ v.

We may now take expectations on both sides of the preceding inequality and observe that the expec-
tation exists by the finiteness of the second moment of the norm. Let ⌃(t) = E

⇥
✓(t)

⌦ ✓(t)
⇤

and
e⌃(t) = E

h
e✓(t)
� ⌦ e✓(t)

�

i
; then, by Fubini’s theorem and the above computation, we have

d⌃̃(t)

dt
� �t

⇣
⌃(t) � ⌃̃(t)

⌘
.

Multiplying by exp(G(t)) on both sides (which is positive definite and thus preserves the order) and
rearranging gives

d

dt

⇣
eG(t)

⌃̃(t)
⌘
= eG(t)

·
d⌃̃(t)

dt
+ eG(t)�t⌃̃(t) � eG(t)

⌃(t).

Integrating and again rearranging tells us that

⌃̃(t) � e�G(t)

Z
t

0
eG(s)�s⌃(s) ds.

The result follows.
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Note that both (E.8) and (E.9) should make intuitive sense. Indeed in the two limits, as � # 0 (corre-
sponding to only keeping the first iterate) and � " 1 (only keeping the last iterate), both expressions
behave as expected. We remark that in the case where ✓(t)

2 R is a scalar, then Jensen’s inequality
proves the result directly, without the need for the more complicated computations. As a corollary
of the above, letting Cov(·) denote the covariance matrix of a random vector and combining (E.8)
with (E.9), we see that

Cov
⇣
e✓(t)
�

⌘
� e�G(t)

· Cov
⇣
✓(0)

⌘
+

Z
t

0
eG(s)�G(t)�s · Cov

⇣
✓(s)

⌘
ds.

In order to simplify our computations, we will suppose that ✓(t) is Gaussian for all t. In this case,
the following lemma shows that e✓(t)

� is also Gaussian for all t:

Lemma E.6. Suppose that
�
✓(s)

�
0<st

is a Gaussian process with almost surely continuous sample

paths. Then, e✓(t)
� � e�G(t)✓(0) is also Gaussian.

Proof. We begin by observing that for any partition 0 = s0 < s1 < · · · < sn�1 < sn = t, the
random vector

⇥n =
nX

j=1

�sje
G(sj)�G(t)✓(sj) (sj � sj�1)

is Gaussian with

E [⇥n] =
nX

j=1

�sje
G(sj)�G(t)E

h
✓(sj)

i
(sj � sj�1)

and

E [⇥n ⌦ ⇥n] =
nX

j=1

nX

i=1

�sj�sie
(G(sj)�G(t))+(G(si)�G(t))E

⇣
✓(si) ⌦ ✓(sj)

⌘
(sj � sj�1) (si � si�1) ,

by the fact that
�
✓(s)

�
0<st

is a Gaussian process. Now, by the continuity assumption, we see that as
n " 1, it holds that E [⇥n] and E [⇥n ⌦ ⇥n] approach limits given by the Riemann integral. Thus,
because the limit of a Gaussian sequence is Gaussian (in Lp for all 1  p < 1 by, for example
Le Gall (2016, Proposition 1.1)), we see that e✓(t)

� � e�G(t)✓(0) is Gaussian, as desired.

E.6 INSTANTIATIONS OF CLIFF LOSS IN CONTINUOUS TIME

We now prove the main results. We begin with the simpler result (presented second), where we do
not concern ourselves with drift.

Proof of Proposition D.7. By Lemma E.6, e✓(t)
� is Gaussian. Let t � 0 such that c· ✏q

tr(Cov(✓(t)))


1
2 , which occurs because in all regimes, except the third, Cov

�
✓(t)
�

" 1; in the case of inverse
learning rate, simply set ⌘ large enough so that this holds. By Lemma E.1, it holds that

P
⇣
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⌘

 �C
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� 1 � c ·
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�
Cov

�
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.

Thus E
⇥
J
�
✓(t)
�⇤

 �
C

2 . On the other hand, if we let � such that the upper bound on Cov
⇣
e✓(t)
�

⌘
is

at most c ✏
2

d log(C

✏ )
, then by Lemma E.2 it holds that with probability at least 1 �

✏

C
that

���e✓(t)
�

���  ✏.

By the construction of J , the first result holds. For the second result, note that `BC = J whenever��✓(t)
��  ✏; the result holds by letting ⌘ = ⇥(✏).

Finally, we prove the second result, for OU processes.
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Proof of Proposition E.3. We apply Corollary E.2 to compute the first and second moments of ✓(t)

and e✓(t)
� . Let R =

��✓(0)
� µ

��. We now note that for t � 0, by the assumption that ✏  ca�
1
2 for

some small c, it holds that Cov
�
✓(t)
�

� 4c2✏2. Thus, by Hoffmann-Jorgensen et al. (1979) and the
convexity of the norm followed by Lemma E.1, it holds that
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Thus, by the construction of the cliff loss,

E
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2
.

On the other hand, we note that if � 
a

2 then by the computation of E
h
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i
, we have

���E
h
e✓(t)
�

� µ
i
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���  3R.

On the other hand, for � # 0, we see that Cov
⇣
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�

⌘
# 0 and thus we may apply Lemma E.2 to

conclude that as long as 3R < 1, there is some small � such that
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✏

C
.

The the first statement then follows from the construction of the cliff loss as long as K > 3. The
second statement follows in the same way as in the proof of Proposition D.7.

E.7 PROOF OF THEOREM 2

First, we show a reduction to lower bounding a quantity involving the k-length suffix average.
Lemma E.7. Let F satisfy F (✓) � F ?

� hh,✓i, and let (✓(t)) be a sequence of iterates with
hh,✓(t)

i � 0. Finally, let (wt) be a sequence of weights which are non-increasing. Then, for any
1  k  K, we have
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Proof of Lemma E.7. Under the assumption of the lemma, we lower bound
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t=1

wth✓
(t),hi

�

TX

t=T�k+1

wth✓
(t),hi

� wT�k+1

TX

t=T�k+1

h✓(t),hi

= kwT�k+1 ·
1

k

TX

t=T�k+1

h✓(t),hi.

It is straightforward to also bound the above expression by w1h
>✓(1).

We can now prove our desired lower bounds. We can write

✓̃(T )
�

=
TX

t=1

wt✓
(t),
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where the weights induced by the EMA averaging are

w1 =
TY

t=2

(1 � �t), wk = �t

TY

t=k+1

(1 � �t)

and which, for fixed �, satisfy

w1 = (1 � �)T , wk = �(1 � �)T�k.

Harvey et al. (2019, Theorem 3.4) exhibit a function F which is 1-strongly convex and 3-Lipschitz,
satisfies F (✓) � F ?

� hh,✓i, and sequence of iterates ✓(t) corresponding to gradient descent with
step size ⌘t = 1/t satisfying h✓(t),hi � 0 for all t and

1

k

TX

t=T�k+1

h✓(t),hi � ⌦

✓
log(T/k)

T

◆
, hh,✓1i = ⌦(1).

Similarly, it is shown that there exists an O(1) Lipschitz function inducing iterates that satisfy

1

k

TX

t=T�k+1

h✓(t),hi � ⌦

✓
log(T/k)

p
T

◆
,

Thus, for any non-increasing weighting scheme (wt), we have for all k

F (✓̃(T )
�

) � F ?
� kwT�k+1 log(T/k) ·

⇢
⌦
�
1
T

�
strongly convex case

⌦(
p
T ) non-strongly convex case

We quickly note that for both these functions, we also have the lower bound F (✓̃(T )
� )�F ?

� w1✓1
due to Lemma E.7. For � fixed, the expression w1 = (1 � �)T shows that F (✓̃(T )

� ) � F ?
�

1
T⇢

provived that � = c⇢ log T

T
for c a universal constant. Selecting ⇢ = 1/4 gives us the last statement

of our theorem.

It remains to quantify the worst-case behavior of

max (kwT�k+1 log(T/k), w1)

under EMA.

• Consider EMA with parameter � = T�� and choose k = d1/�e = dT �
e. Then,

kwT�k+1 � k�(1 + �)k = ⌦(�k) = ⌦(1).

Moreover, log(T/k) = ⌦(log(T �)) = ⌦(� log T ). Thus, kwT�k+1 log(T/k) =
⌦(� log T ).

• Consider EMA with decaying parameter �t = t�� . Then, we have for k � T/2

wT�k+1 = (T � k + 1)��

TY

t=T�k+1

(1 � t��) � (T � k + 1)��(1 � (T � k + 1)��)k

(E.10)

Again select k = dT �
e and assume that k  T/2, which requires T �

 T/2, or T �

2
1

1�� . Then, we can lower bound (E.10) by is at least 2��T��(1 � 2T��)k. Aggain, for
k = ⌦(1/T��) and � 2 [0, 1], this expression is ⌦(T��). Hence kwT�k+1 = ⌦(1) and
kwT�k+1 log(T/k) = ⌦(� log T ).
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