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ABSTRACT

Training and inference with large machine learning models that far exceed the memory capacity of
individual devices necessitates the design of distributed architectures, forcing one to contend with
communication constraints. We present a framework for distributed computation over a quantum
network in which data is encoded into specialized quantum states. We prove that for certain models
within this framework, inference and training using gradient descent can be performed with expo-
nentially less communication compared to their classical analogs, and with relatively modest time
and space complexity overheads relative to standard gradient-based methods. To our knowledge,
this is the first example of exponential quantum advantage for a generic class of machine learning
problems with dense classical data that holds regardless of the data encoding cost. Moreover, we
show that models in this class can encode highly nonlinear features of their inputs, and their expres-
sivity increases exponentially with model depth. We also find that, interestingly, the communication
advantage nearly vanishes for simpler linear classifiers. These results can be combined with natural
privacy advantages in the communicated quantum states that limit the amount of information that
can be extracted from them about the data and model parameters. Taken as a whole, these findings
form a promising foundation for distributed machine learning over quantum networks.

1 INTRODUCTION

As the scale of the datasets and parameterized models used to perform computation over data continues to grow Kaplan
et al. (2020); Hoffmann et al. (2022), distributing workloads across multiple devices becomes essential for enabling
progress. The choice of architecture for large-scale training and inference must not only make the best use of computa-
tional and memory resources, but also contend with the fact that communication may become a bottleneck Pope et al.
(2022). When using modern optical interconnects, classical computers communicate by sending bits represented by
optical light. This however does not fully utilize the potential of the physical substrate as a communication resource.
Given suitable computational capabilities and algorithms, the quantum nature of light can be harnessed as a powerful
resource. Here we show that for a broad class of parameterized models, if quantum bits (qubits) are communicated
instead of classical bits, an exponential reduction in the communication required to perform inference and gradient-
based training can be achieved. This protocol additionally guarantees improved privacy of both the user data and
model parameters through natural features of quantum mechanics, without the need for additional cryptographic or
privacy protocols. To our knowledge, this is the first example of generic, exponential quantum advantage on problems
that occur naturally in the training and deployment of large machine learning models. These types of communication
advantages help scope the future roles and interplay between quantum and classical communication for distributed
machine learning.

Quantum computers promise dramatic speedups across a number of computational tasks, with perhaps the most promi-
nent example being the ability revolutionize our understanding of nature by enabling the simulation of quantum sys-
tems, owing to the natural similarity between quantum computers and the world Feynman (1982); Lloyd (1996).
However, much of the data that one would like to compute with in practice seems to come from an emergent classical
world rather than directly exhibiting quantum properties. While there are some well-known examples of exponential
quantum speedups focusing on classical problems, most famously factoring Shor (1994) and related hidden subgroup
problems Childs & van Dam (2008), these tend to be isolated and at times difficult to relate to practical applications.
For example, even though significant speedups are known for certain ubiquitous problems in machine learning such as
matrix inversion Harrow et al. (2009) and principal component analysis Lloyd et al. (2014), the advantage is often lost
when including the cost of loading classical data into the quantum computer or of reading out the result into classical
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memory Aaronson (2015). In applications where an efficient data access model avoids the above pitfalls, the complex-
ity of quantum algorithms tends to depend on condition numbers of matrices which scale with system size in a way
that reduces or even eliminates any quantum advantage Montanaro & Pallister (2015). It is worth noting that much of
the discussion about the impact of quantum technology on machine learning has focused on computational advantage.
However quantum resources are not only useful in reducing computational complexity — they can also provide an
advantage in communication complexity, enabling exponential reductions in communication for some problems Raz
(1999); Bar-Yossef et al. (2008). Inspired by these results, we study a setting where quantum advantage in communi-
cation is possible across a wide class of machine learning models. This advantage holds without requiring any sparsity
assumptions or elaborate data access models such as QRAM Giovannetti et al. (2008).

We focus on compositional distributed learning, known as pipelining Huang et al. (2018); Barham et al. (2022). While
there are a number of strategies for distributing machine learning workloads that are influenced by the requirements
of different applications and hardware constraints Xu et al. (2021); Jouppi et al. (2023), splitting up a computational
graph in a compositional fashion (Figure 1) is a common approach. We describe distributed, parameterized quantum
circuits that can be used to perform inference over data when distributed in this way, and can be trained using gradient
methods (Section 2.1). The ideas we present can also be used to optimize models that use data parallelism as well. In
principle, such circuits could be implemented on quantum computers that are able to communicate quantum states.

For the general class of distributed, parameterized quantum circuits that we study, we show the following:

• Even for simple circuits in this class, there is an exponential quantum advantage in communication for the
problem of estimating the loss and the gradients of the loss with respect to the parameters (Section 3). This
additionally implies a privacy advantage from Holevo’s bound (Section 6).

• For a subclass of these circuits, there is an exponential advantage in communication for the entire training
process, not just gradient estimation. This subclass includes circuits for fine-tuning using pre-trained features,
and the proof is constructed by through convergence rates under convexity assumptions (Section 4).

• The ability to interleave multiple unitaries encoding nonlinear features of data enables expressivity to grow
exponentially with depth, and universal function approximation in some settings implying these models are
highly expressive in contrast to popular belief about linear restrictions in quantum neural networks (Sec-
tion 5).

2 PRELIMINARIES

2.1 LARGE-SCALE LEARNING PROBLEMS AND DISTRIBUTED COMPUTATION

Pipelining is a commonly used method of distributing a machine learning workload, in which different layers of a deep
model are allocated distinct hardware resources Huang et al. (2018); Narayanan et al. (2019). Training and inference
then require communication of features between nodes. Pipelining enables flexible changes to the model architecture
in a task-dependent manner, since subsets of a large model can be combined in an adaptive fashion to solve many
downstream tasks. Additionally, pipelining allows sparse activation of a subset of a model required to solve a task,
and facilitates better use of heterogeneous compute resources since it does not require storing identical copies of a
large model. The potential for large models to be easily fine-tuned to solve multiple tasks is well-known Brown et al.
(2020); Bommasani et al. (2021), and pipelined architectures which facilitate this are the norm in the latest generation
of large language models Rasley et al. (2020); Barham et al. (2022). Data parallelism, in contrast, involves storing
multiple copies of the model on different nodes, training each on a subsets of the data and exchanging information
to synchronize parameter updates. In practice, different parallelization strategies are combined in order to exploit
trade-offs between latency and throughput in a task-dependent fashion Xu et al. (2021); Jouppi et al. (2023); Pope
et al. (2022).

2.2 COMMUNICATION COMPLEXITY

Communication complexity Yao (1979); Kushilevitz & Nisan (2011); Rao & Yehudayoff (2020) is the study of dis-
tributed computational problems using a cost model that focuses on the communication required between players
rather than the time or computational complexity. It is naturally related to the study of the space complexity of stream-
ing algorithms Roughgarden (2015). The key object of study in this area is the tree induced by a communication
protocol whose nodes enumerate all possible communication histories and whose leaves correspond to the outputs of
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Figure 1: Left: Distributed, compositional computation. Dashed lines separate devices with computational and storage
resources. The circular nodes represent parameterized functions that are allocated distinct hardware resources and are
spatially separated, while the square nodes represent data (yellow) and outputs corresponding to different tasks (green).
The vertical axis represents time. This framework of hardware allocation enables flexible modification of the model
structure in a task-dependent fashion. Right: Computation of gradient estimators gℓ at different layers of a model
distributed across multiple devices by pipelining. Computing forward features µℓ and backwards features νℓ (also
known as computing a forward or backward pass) requires a large amount of classical communication (grey) but an
exponentially smaller amount of quantum communication (yellow). L is the classical loss function, and P0 an operator
whose expectation value with respect to a quantum model gives the analogous loss function in the quantum case.

the protocol. The product structure induced on the leaves of this tree as a function of the inputs allows one to bound the
depth of the tree from below, which gives an unconditional lower bound on the communication complexity. The power
of replacing classical bits of communication with qubits has been the subject of extensive study Chi-Chih Yao (1993);
Brassard (2001); Buhrman et al. (2009). For certain problems such as Hidden Matching Bar-Yossef et al. (2008) and a
variant of classification with deep linear models Raz (1999) an exponential quantum communication advantage holds,
while for other canonical problems such as Disjointness only a polynomial advantage is possible Razborov (2002).

At a glance, the development of networked quantum computers may seem much more challenging than the already
herculean task of building a fault tolerant quantum computer. However, for some quantum network architectures, the
existence of a long-lasting fault tolerant quantum memory as a quantum repeater, may be the enabling component that
lifts low rate shared entanglement to a fully functional quantum network Munro et al. (2015), and hence the timelines
for small fault tolerant quantum computers and quantum networks may be more coincident than widely believed. As
such, it is well motivated to consider potential communication advantages alongside computational advantages when
talking about the applications of fault tolerant quantum computers. In Appendix G we briefly survey approaches to
implementing quantum communication in practice, and the associated challenges.

In addition, while we largely restrict ourselves here to discussions of communication advantages, and most other stud-
ies focus on purely computational advantages, there may be interesting advantages at their intersection. For example,
it is known that no quantum state built from a simple (or polynomial complexity) circuit can confer an exponential
communication advantage, however states made from simple circuits can be made computationally difficult to distin-
guish Ji et al. (2018). Hence the use of quantum pre-computation Huggins & McClean (2023) and communication may
confer advantages even when traditional computational and communication cost models do not admit such advantages
do to their restriction in scope.

3 DISTRIBUTED LEARNING WITH QUANTUM RESOURCES

In this work we focus on parameterized models that are representative of the most common models used and studied
today in quantum machine learning, sometimes referred to as quantum neural networks McClean et al. (2015); Farhi
& Neven (2018); Cerezo et al. (2020); Schuld et al. (2020). We will use the standard Dirac notation of quantum
mechanics throughout. A summary of relevant notation and the fundamentals of quantum mechanics is provided in
Appendix A. We define a class models with parameters Θ, taking an input x which is a tensor of size N . The models
take the following general form:

3



Definition 3.1. {Aℓ(θ
A
ℓ , x)}, {Bℓ(θ

B
ℓ , x)} for ℓ ∈ {1, . . . , L} are each a set of unitary matrices of size N ′ ×N ′ for

some N ′ such that logN ′ = O(logN) 1. The θAℓ , θ
B
ℓ are vectors of P parameters each. For every ℓ, i, we assume that

∂Aℓ

∂θA
ℓi

is anti-hermitian up to a real scaling factor and has at most two eigenvalues, and similarly for Bℓ.

The model we consider is defined by

|φ(Θ, x)⟩ ≡

(
1∏

ℓ=L

Aℓ(θ
A
ℓ , x)Bℓ(θ

B
ℓ , x)

)
|ψ(x)⟩ , (3.1)

where ψ(x) is a fixed state of logN ′ qubits.

The loss function is given by
L(Θ, x) ≡ ⟨φ(Θ, x)| P0 |φ(Θ, x)⟩ , (3.2)

where P0 is a Pauli matrix that acts on the first qubit.

In standard linear algebra notation, the output of the model is a unit norm N ′-dimensional complex vector φL, defined
recursively by

φ0 = ψ(x), φℓ = Aℓ(θ
A
ℓ , x)Bℓ(θ

B
ℓ , x)φℓ−1, (3.3)

where the entries of φL are represented by the amplitudes of a quantum state. The loss takes the form L(Θ, x) =

(φ∗
L)

T P0φL, which includes the standard L2 loss as a special case.

Subsequently we omit the dependence on x and Θ (or subsets of it) to lighten notation, and consider special cases where
only subsets of the unitaries depend on x, or where the unitaries take a particular form and may not be parameterized.
Denote by ∇A(B)L the entries of the gradient vector that correspond to the parameters of {Aℓ}({Bℓ}).
While seemingly stringent, the condition on the derivatives is in fact satisfied by many of the most common quantum
neural network architectures Cerezo et al. (2020); Crooks (2019); Schuld et al. (2020). This condition is satisfied for
example if

Aℓ =

P∏
j=1

eiα
A
ℓjθ

A
ℓjP

A
ℓj (3.4)

and the PA
ℓj are both unitary and Hermitian (e.g. Pauli matrices), while βA

ℓj are scalars. Such models, or parameterized
quantum circuits, are naturally amenable to implementation on quantum devices , and for P = O(N2) any unitary
over logN ′ qubits can be written in this form. In the special case where x in a unit norm N -dimensional vector, a
simple choice of |ψ(x)⟩ is the amplitude encoding of x, given by

|ψ(x)⟩ = |x⟩ =
N−1∑
i=0

xi |i⟩ . (3.5)

However, despite its exponential compactness in representing the data, a naive implementation of the simplest choice
is restricted to representing quadratic features of the data that can offer no substantial quantum advantage in a learning
task Huang et al. (2021), so the choice of data encoding is critical to the power of a model. The interesting parameter
regime for classical data and models is one where N,P are large, while L is relatively modest. For general unitaries
P = O(N2), which matches the scaling of the number of parameters in fully-connected networks. When the input
tensor x is a batch of datapoints, N is equivalent to the product of batch size and input dimension.

The model in Definition 3.1 can be used to define distributed inference and learning problems by dividing the input x
and the parameterized unitaries between two players, Alice and Bob. We define their respective inputs as follows:

Alice : |ψ(x)⟩ , {Aℓ},
Bob : {Bℓ}.

(3.6)

The problems of interest require that Alice and Bob compute certain joint functions of their inputs. As a trivial base
case, it is clear that in a communication cost model, all problems can be solved with communication cost at most the
size of the inputs times the number of parties, by a protocol in which each party sends its inputs to all others. We will
be interested in cases where one can do much better by taking advantage of quantum communication.

1We will consider some cases where N ′ = N , but will find it helpful at times to encode nonlinear features of x in these unitaries,
in which case we may have N ′ > N .
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Alice : |ψ(x)⟩

Bob :|x⟩x B1(θ
B
1 )

A1(θ
A
1 )

B2(θ
B
2 )

A2(θ
A
2 )

Figure 2: Distributed quantum circuit implementing L for L = 2. Both L and its gradients with respect to the
parameters of the unitaries can be estimated with total communication that is logarithmic in the number of amplitudes
N and the number of parameters per unitary P .

Given the inputs eq. (3.6), we will be interested chiefly in the two problems specified below.
Problem 1 (Distributed Inference). Alice and Bob each compute an estimate of ⟨φ| P0 |φ⟩ up to additive error ε.

The straightforward algorithm for this problem, illustrated in fig. 2, requires L rounds of communication. The other
problem we consider is the following:
Problem 2 (Distributed Gradient Estimation). Alice computes an estimate of ∇A ⟨φ| P0 |φ⟩, while Bob computes an
estimate of∇B ⟨φ|Z0 |φ⟩, up to additive error ε in L∞.

3.1 COMMUNICATION COMPLEXITY OF INFERENCE AND GRADIENT ESTIMATION

We show that inference and gradient estimation are achievable with a logarithmic amount of quantum communication,
which will represent an exponential improvement over the classical cost for some cases:
Lemma 1. Problem 1 can be solved by communicating O(logN) qubits over O(L/ε2) rounds.

Proof: Appendix B.
Lemma 2. Problem 2 can be solved with probability greater than 1 − δ by communicating
Õ(logN(logP )4 log(L/δ)/ε4) qubits over O(L2) rounds. The time and space complexity of the algorithm is√
P L poly(N, logP, ε−1, log(1/δ)).

Proof: Appendix B.

This upper bound is obtained by simply noting that the problem of gradient estimation at every layer can be reduced
to a shadow tomography problem:
Theorem 1 (Shadow Tomography Aaronson (2017b)). For an unknown state |ψ⟩ of logN qubits, given K
known two-outcome measurements Ei, there is an explicit algorithm that takes |ψ⟩⊗k as input, where k =

Õ(log4K logN log(1/δ)/ε4), and produces estimates of ⟨ψ|Ei |ψ⟩ for all i up to additive error ε with probabil-
ity greater than 1− δ. Õ hides a factor poly(log logK, log logN, log 1/ε).

Using immediate reductions from known problems in communication complexity, we can show that the amount of
classical communication required to solve these problem is polynomial in the size of the input, and additionally give a
lower bound on the number of rounds of communication required by any quantum or classical algorithm:

Lemma 3. i) The classical communication complexity of Problem 1 and Problem 2 is Ω(max(
√
N,L)).

ii) Any algorithm (quantum or classical) for Problem 1 or Problem 2 requires either Ω(L) rounds of communication
or Ω(N/L4) qubits (or bits) of communication.

Proof: Appendix B

The implication of the second result in Lemma 3 is that Ω(L) rounds of communication are necessary in order to
obtain an exponential communication advantage for small L, since otherwise the number of qubits of communication
required can scale linearly with N .
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Combining Lemma 2 and Lemma 3, in the regime where L = O(polylog(N)), which is relevant for classical machine
learning models, we obtain an exponential advantage in communication complexity for both inference and gradient
estimation. The required overhead in terms of time and space is only polynomial when compared to the straightforward
classical algorithms for these problems.

The distribution of the model as in eq. (3.6) is an example of pipelining. Data parallelism is another common approach
to distributed machine learning in which subsets of the data are distributed to identical copies of the model. In
Appendix C we show that it can also be implemented using quantum circuits, which can then trained using gradient
descent requiring quantum communication that is logarithmic in the number of parameters and input size.

Quantum advantage is possible in these problems because there is a bound on the complexity of the final output,
whether it be correlated elements of the gradient up to some finite error or the low-dimensional output of a model.
This might lead one to believe that whenever the output takes such a form, encoding the data in the amplitudes of a
quantum state will trivially give an exponential advantage in communication complexity. We show however that the
situation is slightly more nuanced, by considering the problem of inference with a linear model:

Lemma 4. For the problem of distributed linear classification, there can be no exponential advantage in using quan-
tum communication in place of classical communication.

The precise statement and proof of this result are presented in Appendix E. This result also highlights that the worst
case lower bounds such as Lemma 3 may not hold for circuits with certain low-dimensional or other simplifying
structure.

4 EXPONENTIAL ADVANTAGES IN END-TO-END TRAINING

So far we have discussed the problems of inference and estimating a single gradient vector. It is natural to also consider
when these or other gradient estimators can be used to efficiently solve an optimization problem (i.e. when the entire
training processes is considered rather than a single iteration). Applying the gradient estimation algorithm detailed
in Lemma 2 iteratively gives a distributed stochastic gradient descent algorithm which we detail in Algorithm 2, yet
one may be concerned that a choice of ε = O(logN) which is needed to obtain an advantage in communication
complexity will preclude efficient convergence. Here we present a simpler algorithm that requires a single quantum
measurement per iteration, and can provably solve certain convex problems efficiently, as well as an application of
shadow tomography to fine-tuning where convergence can be guaranteed, again with only logarithmic communication
cost. In both cases, there is an exponential advantage in communication even when considering the entire training
process.

4.1 “SMOOTH” CIRCUITS

Consider the case where Aℓ are product of rotations for all ℓ, namely

Aℓ =

P∏
j=1

e−
1
2 iβ

A
ℓjθ

A
ℓjP

A
ℓj , (4.1)

where PA
ℓj are Pauli matrices acting on all qubits, and similarly for Bℓ. These can also be interspersed with other non-

trainable unitaries. This constitutes a slight generalization of the setting considered in Harrow & Napp (2021), and the
algorithm we present is essentially a distributed distributed version of theirs. Denote by β an 2PL-dimensional vector
with elements βQ

ℓj where Q ∈ {A,B} 2. The quantity ∥β∥1 is the total evolution time if we interpret the state |φ⟩ as a
sequence of Hamiltonians applied to the initial state |x⟩.
In Appendix D.1 we describe an algorithm that converges to the neighborhood of a minimum, or achieves EL(Θ) −
L(Θ⋆) ≤ ε0, for a convex L after

2
∥∥Θ(0) −Θ⋆

∥∥2
2
∥β∥21

ε20
(4.2)

2Harrow & Napp (2021) actually consider a related quantity for which has smaller norm in cases where multiple gradient
measurements commute, leading to even better rates.
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iterations, where Θ⋆ are the parameter values at the minimum of L. The expectation is with respect to the randomness
of quantum measurement and additional internal randomness of the algorithm. The algorithm is based on classically
sampling a single coordinate to update at every iteration, and computing an unbiased estimator of the gradient with a
single measurement. It can thus be seen as a form of probabilistic coordinate descent.

This implies an exponential advantage in communication for the entire training process as long as∥∥Θ(0) −Θ⋆
∥∥2
2
∥β∥21 = polylog(N). Such circuits either have a small number of trainable parameters (P =

O(polylog(N))), else depend weakly on each parameter (e.g. βQ
ℓj = O(1/P ) for arbitrary P ), or have structure

that allows initial parameter guesses whose quality diminishes quite slowly with system size. Nevertheless, over
a convex region the loss can rapidly change by an O(1) amount. One may also be concerned that in the setting∥∥Θ(0) −Θ⋆

∥∥2
2
∥β∥21 = polylog(N) only a logarithmic number of parameters is updated during the entire training

process and so the total effect of the training process may be negligible. It is important to note however that each such
sparse update depends on the structure of the entire gradient vector as seen in the sampling step. In this sense the
algorithm is a form of probabilistic coordinate descent, since the probability of updating a coordinate |βQ

ℓj |/ ∥β∥1 is
proportional to the the magnitude of the corresponding element in the gradient (actually serving as an upper bound for
it).

Remarkably, the time complexity of a single iteration of this algorithm is proportional to a forward pass, and so
matches the scaling of classical backpropagation. This is in contrast to the polynomial overhead of shadow tomography
(Theorem 1). Additionally, it requires a single measurement per iteration, without any of the additional factors in the
sample complexity of shadow tomography.

4.2 FINE-TUNING THE LAST LAYER OF A MODEL

Consider a model given by eq. (3.1) where only the parameters of AL are trained, and the rest are frozen, and denote
this model by |φf ⟩. The circuit up to that unitary could include multiple data-dependent unitaries that represent
complex features in the data. Training only the final layer in this manner is a common method of fine-tuning a pre-
trained model Howard & Ruder (2018). If we now define

EA
Li = |1⟩ ⟨0| ⊗A

†
LP0

∂AL

∂θALi

+ |0⟩ ⟨1| ⊗
(
∂AL

∂θALi

)†

P0AL, (4.3)

the expectation value of EA
Li using the state |+⟩

∣∣µAL
〉

gives ∂L
∂θA

ℓi

. Here

∣∣µA
L

〉
= BL(x)

1∏
k=L−1

Ak(x)Bk(x) |ψ(x)⟩ (4.4)

is the forward feature computed by Alice at layer L with the parameters of all the other unitaries frozen (hence
the dependence on them is dropped). Since the observables in the shadow tomography problem can be chosen in
an online fashion, and adaptively based on previous measurements, we can simply define a stream of measurement
operators by measuring P observables to estimate the gradients w.r.t. an initial set of parameters, updating these
parameters using gradient descent with step size η, and defining a new set of observables using the updated parameters.
Repeating this for T iterations gives a total of PT observables. By the scaling in Lemma 2, the total communication
needed is Õ(logN(log TP )4 log(L/δ)/ε4) over O(L) rounds (since only O(L) rounds are needed to create copies of∣∣µAL

〉
. This implies an exponential advantage in communication for the entire training process (under the reasonable

assumption T = O(poly(N,P ))), despite the additional stochasticity introduced by the need to perform quantum
measurements. For example, assume one has a bound ∥∇L∥22 ≤ K. If the circuit is comprised of unitaries with
Hermitian derivatives, this holds with K = PL. In that case, denoting by g the gradient estimator obtained by shadow
tomography, we have

∥g∥22 ≤ ∥∇L∥
2
2 + ∥∇L − g∥

2
2 ≤ K + ε2PL. (4.5)

It then follows directly from Lemma 6 that for an appropriately chosen step size, if L is convex one can find parameter
values Θ such that L(Θ)− L(Θ⋆) ≤ ε0 using

T = 2

∥∥Θ(0) −Θ⋆
∥∥2
2
(K + ε2PL)2

ε20
(4.6)

7



iterations of gradient descent. Similarly if L is λ-strongly convex then T = 2(K + ε2PL)2/λε0 + 1 iterations are
sufficient. In both cases therefore an exponential advantage is achieved for the optimization process as a whole, since
in both cases one can implement the circuit that is used to obtain the lower bounds in Lemma 3.

5 EXPRESSIVITY OF COMPOSITIONAL MODELS

It is natural to ask how expressive models of the form of eq. (3.1) can be, given the unitarity constraint of quantum
mechanics on the matrices {Aℓ, Bℓ}. This is a nuanced question that can depend on the encoding of the data that
is chosen and the method of readout. On the one hand, if we pick |ψ(x)⟩ as in eq. (3.5) and use {Aℓ, Bℓ} that are
independent of x, the resulting state |φ⟩ will be a linear function of x. On the other hand, one could map bits to qubits
1-to-1 and encode any reversible classical function of data within the unitary matrices {Aℓ(x)} with the use of extra
space qubits. However, this negates the possibility of any space or communication advantages (and does not provide
any real computational advantage without additional processing). As above, one prefers to work on more generic
functions in the amplitude and phase space, allowing for an exponential compression of the data into a quantum state,
but one that must be carefully worked with.

We investigate the consequences of picking {Aℓ(x)} that are nonlinear functions of x, and {Bℓ} that are data-
independent. This is inspired by a common use case in which Alice holds some data or features of the
data, while Bob holds a model that can process these features. Given a scalar variable x, define Aℓ(x) =
diag((e−2πiλℓ1x, . . . , e−2πiλℓNx)) for ℓ ∈ {1, . . . , L}. We also consider parameterized unitaries {Bℓ} that are in-
dependent of the {λℓi} and inputs x, y, and the state obtained by interleaving the two in the manner of eq. (3.1) by
|φ(x)⟩.
We next set λℓ1 = 0 for all ℓ ∈ {1, . . . , L} and λL2 = 0. If we are interested in expressing the frequency

Λj =

L−1∑
ℓ=1

λℓjℓ , (5.1)

where jℓ ∈ {2, . . . , N}, we simply initialize with |ψ(x)⟩ = |+⟩0 |0⟩ and use
Bℓ = |jℓ − 1⟩ ⟨jℓ−1 − 1|+ |jℓ−1 − 1⟩ ⟨jℓ − 1| , (5.2)

with j1 = jL = 2. It is easy to check that the resulting state is |φ(x)⟩ =
(
|0⟩+ e−2πiΛjx |1⟩

)
/
√
2. Since the basis

state |0⟩ does not accumulate any phase, while the Bℓs swap the |1⟩ state with the appropriate basis state at every layer
in order to accumulate a phase corresponding to a single summand in eq. (5.1). Choosing to measure the operator
P0 = X0, it follows that ⟨φ(x)|X0 |φ(x)⟩ = cos(2πΛjx).

It is possible to express O(NL) different frequencies in this way, assuming the Λj are distinct, which will be the
case for example with probability 1 if the {λℓi} are drawn i.i.d. from some distribution with continuous support.
This further motivates the small L regime where exponential advantage in communication is possible. These types of
circuits with interleaved data-dependent unitaries and parameterized unitaries was considered for example in Schuld
et al. (2020), and is also related to the setting of quantum signal processing and related algorithms Low & Chuang
(2017); Martyn et al. (2021). We also show that such circuits can express dense function in Fourier space, and for
small N we additionally find that these circuits are universal function approximators (Appendix F.1), though in this
setting the possible communication advantage is less clear.

The problem of applying nonlinearities to data encoded efficiently in quantum states is non-trivial and is of interest
due to the importance of nonlinearities in enabling efficient function approximation Maiorov & Pinkus (1999). One
approach to resolving the constraints of unitarity with the potential irreversibility of nonlinear functions is the intro-
duction of slack variables via additional ancilla qubits, as typified by the techniques of block-encoding Chakraborty
et al. (2018); Gilyén et al. (2018). Indeed, these techniques can be used to apply nonlinearities to amplitude encoded
data efficiently, as was recently shown in Rattew & Rebentrost (2023). This approach can be applied to the distributed
setting as well. Consider the communication problem where Alice is given x as input and Bob is given unitaries
{U1, U2} over logN qubits. Denote by σ : R→ R a nonlinear function such as the sigmoid, exponential or standard
trigonometric functions, and n = 2N . We show the following:

Lemma 5. There exists a model |φσ⟩ of the form definition 3.1 with L = O(log 1/ε), N ′ = 2n
′

where n′ = 2n + 4
such that

|φσ⟩ = α |0⟩⊗n+4 |ŷ⟩+ |ϕ⟩ (5.3)
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for some α = O(1), where |ŷ⟩ is a state that obeys∥∥∥∥|ŷ⟩ − ∣∣∣∣U2
1

∥σ(U1x)∥2
σ(U1x)

〉∥∥∥∥
2

< ε. (5.4)

|ϕ⟩ is a state whose first n+ 4 registers are orthogonal to |0⟩⊗n+4.

Proof: Appendix B.

This result implies that with constant probability, after measurement of the first n + 4 qubits of |φσ⟩, one obtains a
state whose amplitudes encode the output of a single hidden layer neural network.

It is also worth noting that the general form of the circuits we consider resembles self-attention based models with
their nonlinearities removed (motivated for example by Sun et al. (2023)), as we explain in Appendix F.2. Finally, in
Appendix F.3 we discuss other strategies for increasing the expressivity of these quantum circuits by combining them
with classical networks.

6 PRIVACY OF QUANTUM COMMUNICATION

In addition to an advantage in communication complexity, the quantum algorithms outlined above have an inherent
advantage in terms of privacy. It is well known that the number of bits of information that can be extracted from an
unknown quantum state is proportional to the number of qubits. It follows immediately that since the above algorithm
requires exchanging a logarithmic number of copies of states over O(logN) qubits, even if all the communication
between the two players is intercepted, an attacker cannot extract more than a logarithmic number of bits of classical
information about the input data or model parameters. Specifically, we have:

Corollary 1. If Alice and Bob are implementing the quantum algorithm for gradient estimation described in Lemma 2,
and all the communication between Alice and Bob is intercepted by an attacker, the attacker cannot extract more than
Õ(L2(logN)2(logP )4 log(L/δ)/ε4) bits of classical information about the inputs to the players.

This follows directly from Holevo’s theorem Holevo (1973), since the multiple copies exchanged in each round of the
protocol can be thought of as a quantum state over Õ((logN)2(logP )4 log(L/δ)/ε4) qubits. As noted in Aaronson
(2017b), this does not contradict the fact that the protocol allows one to estimate all P elements of the gradient, since if
one were to place some distribution over the inputs, the induced distribution over the gradient elements will generally
exhibit strong correlations. An analogous result holds for the inference problem described in Lemma 1.

It is also interesting to ask how much information either Bob or Alice can extract about the inputs of the other player
by running the protocol. If this amount is logarithmic as well, it provides additional privacy to both the model owner
and the data owner. It allows two actors who do not necessarily trust each other, or the channel through which they
communicate, to cooperate in jointly training a distributed model or using one for inference while only exposing a
vanishing fraction of the information they hold.

It is also worth mentioning that data privacy is also guaranteed in a scenario where the user holding the data also
specifies the processing done on the data. In this setting, Alice holds both data x and a full description of the unitaries
she wishes to apply to her state. She can send Bob a classical description of these unitaries, and as long as the data and
features are communicated in the form of quantum states, only a logarithmic amount of information can be extracted
about them. In this setting there is of course no advantage in communication complexity, since the classical description
of the unitary will scale like poly(N,P ).

7 DISCUSSION

This work constitutes a preliminary investigation into a generic class of quantum circuits that has the potential for
enabling an exponential communication advantage in problems of classical data processing including training and
inference with large parameterized models over large datasets. Communication constraints may become even more
relevant as models continue to grow, and in setting they are trained on data that is obtained by distributed interaction
with the physical world Driess et al. (2023). Our results also naturally raise further questions regarding the expressive
power and trainability of these types of circuits, which may be of independent interest. We collect some of these in
Appendix H.
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A NOTATION AND REVIEW OF QUANTUM MECHANICS

We denote by {ai} a set of elements indexed by i, with 1-based indexing unless otherwise specified, with the maximal
value of i explicitly specified when it is not clear from context. [N ] denotes the set {0, . . . , N − 1}. The complex
conjugate of a number c is denoted by c∗, and the conjugate transpose of a complex-valued matrix A by A†.

We denote by |ψ⟩ a vector of complex numbers {ψi} representing the state of a quantum system when properly
normalized, and by ⟨ψ| its dual (assuming it exists). The inner product between two such vectors of length N is
denoted by

⟨ψ|φ⟩ =
N−1∑
i=0

ψ∗
i φi. (A.1)

Denoting by |i⟩ for i ∈ [N ] a basis vector in an orthonormal basis with respect to the above inner product, we can also
write

|ψ⟩ =
N−1∑
i=0

ψi |i⟩ . (A.2)

Matrices will be denoted by capital letters, and when acting on quantum states will always be unitary. These can be
specified in terms of their matrix elements using the Dirac notation defined above, as in

A =
∑
ij

Aij |i⟩ ⟨j| . (A.3)

Matrix-vector product are specified naturally in this notation by

Quantum mechanics is, in the simplest possible terms, a theory of probability based on conservation of the L2 norm
rather than the standard probability theory based on the L1 norm Aaronson (2017a); Nielsen & Chuang (2010). The
state of a pure quantum system is described fully by a complex vector of N numbers known as amplitudes which we
denote by {ψi} where i ∈ {0, . . . , N − 1}, and is written using Dirac notation as |ψ⟩. The state is normalized so that

⟨ψ|ψ⟩ =
N−1∑
i=0

ψ∗
i ψi =

N−1∑
i=0

|ψi|2 = 1, (A.4)

which is the L2 equivalent of the standard normalization condition of classical probability theory. It is a curious
fact that the choice of L2 requires the use of complex rather than real amplitudes, and that no consistent theory can
be written in this way for any other Lp norm Aaronson (2017a). The most general state of a quantum system is
a probabilistic mixture of pure states, in the sense of the standard L1-based rules of probability. We will not be
concerned with these types of states, and so omit their description here, and subsequently whenever quantum states
are discussed, the assumption is that they are pure.

Since any closed quantum system conserves probability, the L2 norm of a quantum state is conserved during the evo-
lution of a quantum state. Consequently, when representing and manipulating quantum states on a quantum computer,
the fundamental operation is the application of a unitary matrix to a quantum state.

Given a quantum system with some discrete degrees of freedom, the number of amplitudes corresponds to the number
of possible states of the system, and is thus exponential in the number of degrees of freedom. The simplest such degree
of freedom is a binary one, called a qubit, which is analogous to a bit. Thus a state of logN qubits is described by N
complex amplitudes.

A fundamental property of quantum mechanics is that the amplitudes of a quantum state are not directly measurable.
Given a Hermitian operator

O =

N−1∑
i=0

λi |vi⟩ ⟨vi| (A.5)

with real eigenvalues {λi}, a measurement ofO with respect to a state |ψ⟩ gives the result λi with probability |⟨vi|ψ⟩|2.
The real-valued quantity

⟨ψ| O |ψ⟩ =
N−1∑
i=0

λi |⟨ψ|vi⟩|2 (A.6)
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is the expectation value ofO with respect to |ψ⟩, and its value can be estimated by measurements. After a measurement
with outcome λi, the original state is destroyed, collapsing to the state |vi⟩. This fundamentally destructive nature
of quantum measurement implies that simply encoding information in the amplitudes of a quantum state dues not
necessarily render it useful for downstream computation. The design of quantum algorithms essentially amounts to a
careful and intricate design of amplitude manipulations and measurements in order to extract useful information from
the amplitudes of a quantum state.

B PROOFS

Proof of Lemma 1. Clearly ⟨φ| P0 |φ⟩ can be estimated by preparing |φ⟩ and measuring it O(1/ε2) times. Preparing
each copy of |φ⟩ requires O(L) rounds of communication, with each round involving the communication of a logN ′-
qubit quantum state. Alice first prepares |ψ(x)⟩, and this state is passed back and forth with each player applying Aℓ

or Bℓ respectively for ℓ ∈ {1, . . . , L}.

Proof of Lemma 2. The proof reduces gradient computation the problem of estimating the expectation values of a set
of observables, as was done e.g. in Abbas et al. (2023); Harrow & Napp (2021). We consider the parameters of the
unitaries that Alice possesses first, and an identical argument follows for the parameters of Bob’s unitaries.

We have
∂

∂θAℓi
⟨φ|P0|φ⟩ =2Im ⟨φ| P0

ℓ+1∏
k=L

AkBk
∂Aℓ

∂θAℓi
Bℓ

1∏
k=ℓ−1

AkBk |ψ(x)⟩

≡2Im
〈
νAℓi |µA

ℓ

〉 (B.1)

where

∣∣µA
ℓ

〉
=Bℓ

1∏
k=ℓ−1

AkBk |ψ(x)⟩ ,
∣∣νAℓi〉 =

(
∂Aℓ

∂θAℓi

)† ℓ+1∏
k=L

B†
kA

†
kP0 |φ⟩ , (B.2)

correspond to forward and backward features for the i-the parameter of Aℓ respectively. This is illustrated graphically
in Figure 1. We also write ∣∣νAℓ0〉 = ℓ+1∏

k=L

B†
kA

†
kP0 |φ⟩ . (B.3)

Attaching an ancilla qubit denoted by a to the feature states defined above, we define∣∣ψA
ℓi

〉
≡ 1√

2

(
|0⟩
∣∣µA

ℓ

〉
+ |1⟩

∣∣νAℓi〉) , (B.4)

and a Hermitian measurement operator

EA
ℓi ≡

(
|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗

(
∂Aℓ

∂θAℓi

))
Xa

(
|0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗

(
∂Aℓ

∂θAℓi

)†
)

= |1⟩ ⟨0| ⊗
(
∂Aℓ

∂θAℓi

)
+ |0⟩ ⟨1| ⊗

(
∂Aℓ

∂θAℓi

)†

,

(B.5)

we then have 〈
ψA
ℓ0

∣∣EA
ℓi

∣∣ψA
ℓ0

〉
=
〈
ψA
ℓi

∣∣Xa

∣∣ψA
ℓi

〉
=

∂

∂θAℓi
⟨φ| P0 |φ⟩ ,

(B.6)

where Xa acts on the ancilla.

Note that |ψA
ℓ0⟩⊗k can be prepared by Alice first preparing (|+⟩|ψ(x)⟩)⊗k and sending this state back and forth at most

2L times, with each player applying the appropriate unitaries conditioned on the value of the ancilla. Additionally,
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for any choice of ℓ and any i, Alice has full knowledge of the EA
ℓi . They can thus be applied to quantum states and

classical hypothesis states without requiring any communication.

The gradient can then be estimated using shadow tomography (Theorem 1). Specifically, for each ℓ, Alice pre-
pares Õ(log4 P logN log(L/δ)/ε4) copies of |ψAℓ

0 ⟩, which requires O(L) rounds of communication, each of
Õ(log4 P log2N log(L/δ)/ε4) qubits. She then runs shadow tomography to estimate ∇Aℓ

⟨φ|Z0|φ⟩ up to error ε
with no additional communication. Bob does the same to estimate ∇Bℓ

⟨φ|Z0|φ⟩. In total O(L2) rounds are needed
to estimate the full gradient. The success probability of all L applications of shadow tomography is at least 1− δ by a
union bound.

Based on the results of Brandão et al. (2017), the space and time complexity of each application of shadow tomography
is
√
Ppoly(N, logP, ε−1, log(1/δ)). This is the query complexity of the algorithm to oracles that implement the

measurement operators
{
EQ

ℓi

}
. Instantiating these oracles will incur a cost of at most O(N2). In cases where these

operators have low rank the query complexity complexity will depend polynomially only on the rank instead of on N .

Proof of Lemma 3. We first prove an Ω(
√
N) lower bound on the amount of classical communication. Consider the

following problem:

Problem 3 (Raz (1999)). Alice is given a vector x ∈ SN−1 and two orthogonal linear subspaces of RN each of
dimension N/2, denoted M1,M2. Bob is given an orthogonal matrix O. Alice and Bob must determine whether
Ox ∈M1 or Ox ∈M2, under a promise that Ox has large support on one of the two subspaces.

Raz (1999) showed that the randomized3 classical communication complexity of the problem is Ω(
√
N). We hence-

forth disregard the promise, since doing this makes the problem harder and cannot invalidate the lower bound.

The reduction from Problem 3 to Problem 1 is obtained by simply setting L = 1, B1 = O, |ψ(x)⟩ = |x⟩ ,P0 = Z0,
and

A1 =

N/2−1∑
j=0

|0⟩ |j⟩
〈
v1j
∣∣+ N/2−1∑

j=0

|1⟩ |j⟩
〈
v2j
∣∣ , (B.7)

where the first register contains a single qubit and
{
vkj
}

form an orthonormal basis of Mk, and picking any ε < 1.
Estimating L to this accuracy now solves the desired problem since L = ⟨x|OT (Π1 −Π2)O |x⟩ where Πk is a
projector onto Mk, and hence determining its sign allows Alice and Bob to determine which subspace has large
overlap with Ox.

The reduction from Problem 3 to Problem 2 is obtained by setting L = 2, picking A1, B1 as before, and additionally
B2 = I, A2 = e−iθA

2,1X0/2 initialized at θA2,1 = −π/2. By the parameter shift rule Crooks (2019), we have that if
U = e−iθP for some Pauli matrix P , and U is part of the parameterized circuit that defines |φ⟩, then

∂L
∂θ

=
1

2
(L(θ + π

2
)− L(θ − π

2
)). (B.8)

It follows that
∂L
∂θA2,1

∣∣∣∣∣
θA
2,1=−π/2

=
1

2
(L(0)− L(−π))

=
1

2

(
L(0)− ⟨x|B†

1A
†
1e

−iπ
2 X0Z0e

iπ
2 X0A1B1 |x⟩

)
=
1

2

(
L(0)− ⟨x|B†

1A
†
1X0Z0X0A1B1 |x⟩

)
=
1

2

(
L(0) + ⟨x|B†

1A
†
1Z0A1B1 |x⟩

)
=L(0).

(B.9)

3In this setting Alice and Bob can share an arbitrary number of random bits that are independent of their inputs.
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Estimating ∇A ⟨φ|Z0 |φ⟩ to accuracy ε < 2 allows one to determine the sign of L(0), which as before gives the
solution to Problem 3.

Next, we show that Ω(L) rounds are necessary in both the quantum and classical setting by a reduction from the bit
version of pointer-chasing, as studied in Jain et al. (2002); Ponzio et al. (2001).

Problem 4 (Pointer-chasing, bit version). Alice receives a function fA : [N ] → [N ] and Bob receives a function
fA : [N ]→ [N ]. Alice is also given a starting point x ∈ [N ], and both receive an integer L0. Their goal is to compute
the least significant bit of f (L0)(x), where f (1)(x) = fB(x), f

(2)(x) = fA(fB(x)), . . . .

Jain et al. (2002) show that the quantum communication complexity of L0-round bit pointer-chasing when Bob speaks
first is Ω(N/L4

0) (which holds for classical communication as well). This also bounds the L0 − 1-round complexity
when Alice speaks first (since such a protocol is strictly less powerful given that there are fewer rounds of commu-
nication). On the other hand, there is a trivial L0-round protocol when Alice speaks first that requires logN bits of
communication per round, in which Alice sends Bob x, he sends back f (1)(x), she replies with f (2)(f (1)(x)), and
so forth. This, combined with the lower bound, implies as exponential separation in communication complexity as a
function of the number of rounds.

To reduce this problem to Problem 1, we assume fA, fB are invertible. This should not make the problem any easier
since it implies that fA, fB have the largest possible image. In this setting, fA, fB can be described by unitary
permutation matrices:

UA =
∑
i

|fA(i)⟩ ⟨i| , UB =
∑
i

|fB(i)⟩ ⟨i| . (B.10)

The corresponding circuit eq. (3.6) is then given by
|φ⟩ = SWAP0↔logN−1UB . . . UAUB |x⟩ (B.11)

in the case where Bob applies the function last, with an analogous circuit in the converse situation (if Bob performed
the swap, Alice applies an additional identity map). Estimating Z0 to accuracy ε < 1 using this state will then reveal
the least significant bit of f (L0)(x). This gives a circuit with L layers, where L0 ≤ 2L − 1. Thus any protocol with
less than L0 rounds (meaning less than 2L− 1 rounds) would require communicating Ω(N/L4

0) = Ω(N/L4) qubits,
since the converse will contradict the results of Jain et al. (2002). The reduction to Problem 2 is along similar lines to
the one described by eq. (B.9), with the state in that circuit replaced by eq. (B.11). This requires at most two additional
rounds of communication.

Since quantum communication is at least as powerful than classical communication, these bounds also hold for clas-
sical communication. Since each round involves communicating at least a single bit, this gives an Ω(L) bound on the
classical communication complexity.

Proof of Lemma 8. Consider first a single variable z, with data-dependent unitaries given by eq. (F.1a). If {λℓi} are
chosen i.i.d. from a uniform distribution over say [0, 1], then with probability 1 they are all unique and so are all sums

of the form Λj =
L∑

ℓ=1

λℓjℓ as well as differences Λj − Λk for k < j where the inequality holds element-wise. Set Bℓ

to be the Hadamard transform over logN qubits for all ℓ, and pick the measurement operator P0 = X0. We then have
L1 = ⟨φ|X0 |φ⟩

=
∑

j,k∈[N ]L

e2πi(Λj−Λk)z
(
B†

1

)
1j1

(
B†

2

)
j1j2

. . .
(
B†

L

)
jL−1jL

(X0)jLkL
(BL)kLkL−1

. . . (B1)k11

=
∑

j,k∈[N ]L,j ̸=k

e2πi(Λj−Λk)z
(
B†

1

)
1j1

(
B†

2

)
j1j2

. . .
(
B†

L

)
jL−1jL

(X0)jLkL
(BL)kLkL−1

. . . (B1)k11

=
∑

j∈[N ]L

∑
k<j

2 cos
(
2π(Λj − Λk)z

)(
B†

1

)
1j1

. . .
(
B†

L

)
jL−1jL

(X0)jLkL
. . . (B1)k11

=
∑

j[:−1]∈[N ]L−1

∑
k[:−1]<j[:−1]

N∑
jL=1

2 cos
(
2π(Λj[:−1] − Λk[:−1] + λLjL − λLj̃L

)z
)

∗
(
B†

1

)
1j1

. . .
(
B†

L

)
jL−1jL

(BL)j̃L,kL−1
. . . (B1)k11

(B.12)
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where j̃L = jL+(−1)⌊jL/(N/2+1)⌋N/2. In the third line, we dropped the diagonal terms in the double sum since they
vanish due to the X0 matrix having 0 on its diagonal. In the fourth line, we collected terms and used the symmetry
of
(
B†

1

)
1j1

. . .
(
B†

L

)
jL−1jL

(X0)jLkL
. . . (B1)k11

to the permutation of j and k. In the last line we performed the

sum over kL using the structure of X0. By our assumption about the {λℓi}, each term in the final sum has a unique
frequency so no cancellations are possible. The coefficient of each cosine is nonzero (and is equal to 2N−L or

−2N−L). There are a total of
(

N(N−1)
2

)L−1

N such summands. This completes the first part of the proof for this
choice of {Bℓ}.
Considering instead the case of two variables, with unitaries given by eq. (F.1b), an equivalent calculation gives

L2 =
∑

j[:−1]∈[N ]L−1

∑
k[:−1]<j[:−1]

N∑
jL=1

2 cos
(
ω1
jk
y + ω2

jk
z
)(

B†
1

)
1j1

. . .
(
B†

L

)
jL−1jL

(BL)j̃L,kL−1
. . . (B1)k11

,

(B.13)
where

ω1
jk

= 2π
(
Λj[:N/2+1] − Λk[:N/2+1]

)
, ω2

jk
= 2π

(
Λj[N/2+1:−1] − Λk[N/2+1:−1] + λLjL − λLj̃L

)
. (B.14)

As before, there are
(

N(N−1)
2

)L−1

N summands in total. Since

cos
(
ω1
jk
y + ω2

jk
z
)
= cos

(
ω1
jk
y
)
cos
(
ω2
jk
z
)
− sin

(
ω1
jk
y
)
sin
(
ω2
jk
z
)
, (B.15)

we can rewrite eq. (B.13) as a sum over 2
(

N(N−1)
2

)L−1

N terms that are pairwise orthogonal w.r.t. the L2 inner

product over R2. It follows from the definition of the separation rank that

sep (L2; y, z) = 2

(
N(N − 1)

2

)L−1

N. (B.16)

We next use the assumption that the real and imaginary parts of each element of Bℓ are real analytic function of
parameters Θ. This implies that the same property holds for product of entries of the form(

B†
1

)
1j1

. . .
(
B†

L

)
jL−1jL

(BL)j̃L,kL−1
. . . (B1)k11

(B.17)

for any choice of j, k. This coefficient is equal to 0 iff both the real and imaginary parts are equal to 0. Since the zero
set of a real analytic function has measure 0 Mityagin (2015), the set of values of Θ for which any of the coefficients
in eq. (B.13) vanishes also has measure 0, for all choices of j, k. The result follows.

Proof of Lemma 9. Consider a periodic function f with period 1. Denote by SM [f ] the truncated Fourier series of f
written in terms of trigonometric functions:

SM [f ](y) =

M−1∑
m=0

1/2∫
x=−1/2

f(x) cos (2πmx) dx cos (2πmy) +

M−1∑
m=0

1/2∫
x=−1/2

f(x) sin (2πmx) dx sin (2πmy)

≡
M−1∑
m=0

f̂+m cos (2πmy) +

M−1∑
m=0

f̂−m sin (2πmy) .

(B.18)

If f is p-times continuously differentiable, it is known that the Fourier series converges uniformly, with rate

∥SM [f ]− f∥∞ <
C

Mp−1/2
. (B.19)

for some absolute constant C Osgood (2019). For analytic functions the rate is exponential in M .

We now define the following circuit:

A1(x) = diag((1, . . . , 1︸ ︷︷ ︸
N/2

, 1, e2πix, e2πi2x . . . , e2πi(N/4−1)x︸ ︷︷ ︸
N/4

, 1, e2πix, e2πi2x . . . , e2πi(N/4−1)x︸ ︷︷ ︸
N/4

)), (B.20)
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B1 =
∣∣f̂〉 ⟨0|+ |0⟩ 〈f̂ ∣∣, (B.21)

where ∣∣f̂〉 = 1√∑
m

∣∣∣f̂m∣∣∣
N/4−1∑
m=0

(√
f̂+m
|0⟩+ sign(f̂+m) |1⟩√

2
|0⟩+

√
f̂−m
|0⟩ − isign(f̂−m) |1⟩√

2
|1⟩

)
|m⟩ . (B.22)

Choosing |ψ(x)⟩ = |0⟩ as the initial state, this gives
|φ⟩ =A1B1 |0⟩

=A1

∣∣f̂〉
=

1√∑
m

∣∣∣f̂m∣∣∣
N/4−1∑
m=0

(√
f̂+m
|0⟩+ sign(f̂+m)e2πimx |1⟩√

2
|0⟩+

√
f̂−m
|0⟩ − isign(f̂−m)e2πimx |1⟩√

2
|1⟩

)
|m⟩

(B.23)
It follows that

⟨φ|X0 |φ⟩ =
1∑

m

∣∣∣f̂m∣∣∣
N/4−1∑
m=0

∣∣∣f̂+m∣∣∣ ⟨0|+ sign(f̂+m)e−2πimx ⟨1|√
2

X0
|0⟩+ sign(f̂+m)e2πimx |1⟩√

2

+
∣∣∣f̂−m∣∣∣ ⟨0|+ isign(f̂−m)e−2πimx ⟨1|√

2
X0
|0⟩ − isign(f̂−m)e2πimx |1⟩√

2

=
1∑

m

∣∣∣f̂m∣∣∣
N/4−1∑
m=0

f̂+m cos(2πmx) + f̂−m sin(2πmx)

=
1∑

m

∣∣∣f̂m∣∣∣SN/4[f ](x)

(B.24)

This approximation thus converges uniformly according to eq. (B.19), with error decaying exponentially with number
of qubits logN as long as f is continuously differentiable at least once.

Proof of Lemma 5. The algorithm in Theorem 5 of Rattew & Rebentrost (2023) takes as input a state-preparation
unitary U acting on n = logN qubits such that U |0⟩⊗n

= |z⟩. Using O(log 1/ε) queries to U and U† and n + 4
ancillas, it creates a state |φ⟩ such that measuring 0 on the first n+ 4 qubits of |φ⟩ results in a state |φ̂⟩ that obeys∥∥∥∥|φ̂⟩ − 1

∥σ(z)∥2
|σ(z)⟩

∥∥∥∥
2

< ε. (B.25)

Additionally, the probability of measuring 0 on the first n+ 4 qubits is O(1).

We will be interested in applying this algorithm to the state |U1x⟩. The state preparation unitary can be instantiated
with a single round of communication by Alice starting with the state |0⟩⊗2n+4, applying a unitary that encodes x
in the last n qubits of this state, and then sending it to Bob who applies U1 to the same n qubits. The conjugate of
the state-preparation unitary can be applied in a similar fashion by reversing this procedure. This can include any
conditioning required on the values of the other qubits.

Based on the query complexity of the algorithm in Rattew & Rebentrost (2023) to the state preparation unitary,
O(log(1/ε)) rounds will suffice to obtain a state

|φ̃σ⟩ = α |0⟩⊗n+4 |ỹ⟩+ |ϕ⟩ , (B.26)
such that ∥∥∥∥|ỹ⟩ − ∣∣∣∣ 1

∥σ(U1x)∥2
σ(U1x)

〉∥∥∥∥
2

< ε. (B.27)
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Bob then applies U2 to the state |φ̃σ⟩ conditioned on the first n+ 4 qubits being in the state |0⟩⊗n+4. The state |ϕ⟩ is
unaffected. Unitary of U2 combined with the above bound guarantees∥∥∥∥|ŷ⟩ − ∣∣∣∣U2

1

∥σ(U1x)∥2
σ(U1x)

〉∥∥∥∥
2

< ε. (B.28)

Additionally, from Theorem 3 of Rattew & Rebentrost (2023) we are guaranteed that α = O(1).

C DATA PARALLELISM

Data parallelism involves storing multiple copies of a model on different devices and training each copy on a subset
of the full data. We consider a model of the form

|φ(Θ, x)⟩ ≡

(
1∏

ℓ=L

Uℓ(θℓ, x)

)
|x⟩ , (C.1)

where x is an N1×N2 matrix which we write as x = [xA, xB ] for two N1/2×N2 matrices xA, xB . Assume also that
∥x∥F = 1. This model can be used to define a distributed problem with dara parallelism by considering the following
inputs to both players:

Alice : xA, {Uℓ},
Bob : xB , {Uℓ}.

(C.2)

The state |x⟩ can be prepared in a single round of communication involving log(N1N2) qubits. Alice simply prepares
the state

|xA⟩+
√
1− ∥xA∥2F |N1/2, 0⟩ =(xA)ij

N1/2−1∑
i=0

N2−1∑
j=0

|i, j⟩+
√
1− ∥xA∥2F |N1/2, 0⟩

=(xA)ij

N1/2−1∑
i=0

N2−1∑
j=0

|i, j⟩+ ∥xB∥F |N1/2, 0⟩ ,

(C.3)

using zero-based indexing of the elements of xA. After sending this to Bob, he applies the unitary

1

∥xB∥F
(xB)i,j

N1/2−1∑
i=0

N2−1∑
j=0

|ij⟩ ⟨N1/2, 0|+ h.c.. (C.4)

The resulting state is |x⟩. As before, the gradients with respect to the parameters of the unitaries {Uℓ} can be estimated
by preparing copies of this state and using shadow tomography. The number of copies will again be logarithmic in
N1, N2 and the number of trainable parameters.

D ADVANTAGES IN END-TO-END TRAINING

In the following, we make use of well-known convergence rates for stochastic gradient descent:
Lemma 6 (Bubeck (2014)). Given an objective function L(Θ) with a minimum at Θ⋆ and a stochastic gradient oracle
that returns a noisy estimate of the gradient g(Θ) such that Eg(Θ) = ∇L(Θ),E ∥g∥22 ≤ G2, and denoting by Θ(0) a
point in parameter space and R =

∥∥Θ(0) −Θ⋆
∥∥
2
, we have:

i) If L is convex in a Euclidean ball of radiusR around Θ⋆, then gradient descent with step size η = R
G

√
2
T achieves

EL( 1
T

T∑
t=1

Θ(t))− L(Θ⋆) ≤ RG
√

2

T
. (D.1)

ii) If L is λ-strongly convex in a Euclidean ball of radius R around Θ⋆, then gradient descent with step size ηt =
2

λ(t+1) achieves

EL( 1

T (T + 1)

T∑
t=1

2tΘ(t))− L(Θ⋆) ≤ 2G2

λ(T + 1)
. (D.2)
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D.1 DISTRIBUTED PROBABILISTIC COORDINATE DESCENT

Algorithm 1 Distributed Probabilistic Coordinate Descent
Input: Alice: x, {Aℓ},ΘA, {ηt}, T . Bob: {Bℓ},ΘB , {ηt}, T.
Output: Alice: Updated parameters Θ(T )

A . Bob: Updated parameters Θ(T )
B .

1: Alice and Bob each pre-process their coefficient vectors βA, βB to enable efficient sampling.
2: Alice sends ∥βA∥1 to Bob. ▷ O(logP ) bits of classical communication.
3: for t ∈ {1, . . . , T} do
4: Bob samples b ∼ Bernoulli(∥βA∥1 / ∥β∥1) and sends b to Alice ▷ 1 bit of classical communication.
5: if b == 0 then
6: Bob samples (ℓ, i) from the discrete distribution defined by abs(βB)
7: Bob create the state

∣∣ψB
ℓ0

〉
▷ O(L) rounds of quantum communication

8: Bob measures ÊB
ℓi , as defined in eq. (D.3), obtaining a result m ∈ {−1, 1}

9: Bob sets θBℓi ← θBℓi − ηtsign(βB
ℓi )||β||1m

10: else
11: Alice runs steps 6-9, (replacing B with A)
12: end if
13: end for

Given distributed states of the form eq. (4.1), optimization over Θ can be performed using Algorithm 1. We verify the
correctness of this algorithm and provide convergence rates following Harrow & Napp (2021). Define the Hermitian
measurement operator

ÊQ
ℓi =

(
|0⟩ ⟨0| ⊗ I − i |1⟩ ⟨1| ⊗ PQ

ℓi

)†
Xa

(
|0⟩ ⟨0| ⊗ I − i |1⟩ ⟨1| ⊗ PQ

ℓi

)
, (D.3)

with eigenvalues in {−1, 1}. Note that βQ
ℓi

〈
ψQ
ℓ0

∣∣∣ ÊQ
ℓi

∣∣∣ψQ
ℓ0

〉
= ∂L

∂θQ
ℓi

, and this is essentially a compact way of represent-

ing a Hadamard test for the relevant expectation value. Now consider a gradient estimator that first samples (Q, ℓ, i)
with probability |βQ

ℓi |/||β||1, then returns a one-sparse vector with gQℓi = sign(βQ
ℓi) ∥β∥1m, where m is the result of a

single measurement of ÊQ
ℓi using the state

∣∣∣ψQ
ℓ0

〉
. For this estimator we have

EgQℓi = sign(βQ
ℓi) ∥β∥1

∣∣∣βQ
ℓi

∣∣∣
∥β∥1

〈
ψA
ℓ0

∣∣ ÊQ
ℓi

∣∣ψA
ℓ0

〉
=

∂L
∂θQℓi

, (D.4)

where the expectation is taken over both the index sampling process and the quantum measurement. The procedure
generates a valid gradient estimator.

In order to show convergence, one simply notes that by construction, ∥g∥2 = ∥β∥1. It then follows immediately from
Lemma 6 that, with an appropriately chosen step size, Algorithm 1 achieves EL(Θ) − L(Θ⋆) ≤ ε0 for a convex L
using

2
∥∥Θ(0) −Θ⋆

∥∥2
2
∥β∥21

ε20
(D.5)

queries. For a λ-strongly convex L, only

2 ∥β∥21
λε0

+ 1 (D.6)

queries are required. The pre-processing in step 1 of Algorithm 1 requires time O(P logP ) and subsequently enables
sampling in time O(1) using e.g. Walker (1974) 4.
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Algorithm 2 Shadow Tomographic Distributed Gradient Descent
Input: Alice: x, {Aℓ},ΘA, η, T . Bob: {Bℓ},ΘB , η, T.

Output: Alice: Updated parameters Θ(T )
A . Bob: Updated parameters Θ(T )

B .

1: for t ∈ {1, . . . , T} do
2: for ℓ ∈ {1, . . . , L} do
3: Alice creates Õ(log4 P logD log(L/δ)/ε4) copies of

∣∣ψA
ℓ0(Θ

(t))
〉

▷ O(L) rounds of communication
4: Alice runs Shadow Tomography to estimate {EEA

ℓi(Θ
(t))} up to error ε, denoting these gAℓi(Θ

(t)).
5: Bob creates Õ(log4 P logD log(L/δ)/ε4) copies of

∣∣ψB
ℓ0(Θ

(t))
〉

▷ O(L) rounds of communication
6: Bob runs Shadow Tomography to estimate {EEB

ℓi (Θ
(t))} up to error ε, denoting these gBℓi(Θ

(t)).
7: Alice sets θA(t+1)

ℓi ← θ
A(t)
ℓi − ηgAℓi(Θ(t)).

8: Bob sets θB(t+1)
ℓi ← θ

B(t)
ℓi − ηgBℓi(Θ(t)).

9: end for
10: end for

D.2 SHADOW TOMOGRAPHIC DISTRIBUTED GRADIENT DESCENT

E COMMUNICATION COMPLEXITY OF LINEAR CLASSIFICATION

We consider the following classification problem:

Problem 5 (Distributed Linear Classification). Alice and Bob are given x, y ∈ SN , with the promise that |x · y| ≥ γ
for some 0 ≤ γ ≤ 1. Their goal is to determine the sign of x · y.

This is one of the simplest distributed inference problem in high dimensions that one can formulate. x can be thought
of as the input to the model, while y defines a separating hyperplane with some margin. Since with finite margin
we are only required to resolve the inner product between the vectors to some finite precision, it might seem that an
exponential quantum advantage should be possible for this problem by encoding the inputs in the amplitudes of a
quantum state. However, we show that classical algorithms can leverage this structure as well, and consequently that
the quantum advantage in communication that can be achieved for this problem is at most polynomial in N . We prove
this with respect to the the randomized classical communication model, in which Alice and Bob are allowed to share
random bits that are independent of their inputs 5.

Lemma 7. The quantum communication complexity of Problem 5 is Ω(min(
√
1/N,

√
N/ ⌈γN⌉)). The randomized

classical communication complexity of Problem 5 is O(max(N, 1/γ2)).

Proof. We first describe a protocol that allows Alice and Bob to solve the linear classification problem with margin γ
usingO(1/γ2) bits of classical communication and shared randomness, assuming γ > 0. Note that this bound accords
with the notion that the margin rather than the ambient dimension sets the complexity of these types of problems, which
is also manifest in the sample complexity of learning with linearly separable data.

Alice and Bob share kN bits sampled i.i.d. from a uniform distribution over {0, 1}, and that these bits are arranged in
a k ×N matrix R. Alice and Bob then receive x and y respectively, which are valid inputs to the linear classification
problem with margin γ. For any N -dimensional vector z, define the random projection

f : Rn → Rk, f(z) =
1

k
(2R− 1)z, (E.1)

where addition is element-wise. Applying the Johnson-Lindenstrauss lemma for projections with binary variables
Achlioptas (2003), we obtain that if k = C/ε2, for some absolute constant C, then with probability larger than 2/3

4An even simpler algorithm that sorts the lists as a pre-processing step and uses inverse CDF sampling will enable sampling
with cost O(logP )

5This resource can have a dramatic effect on the communication complexity of a problem. The canonical example is equality of
N bit strings, which can be solved with constant success probability using 1 bit of communication and shared randomness, while
requiring N bits of communication otherwise.
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we have for any z, z′ ∈ {x, y, 0} (all of these being vectors in RN ), f is an approximate isometry in the sense

(1− ε) ∥z − z′∥22 ≤ ∥f(z)− f(z
′)∥22 ≤ (1 + ε) ∥z − z′∥22 . (E.2)

The key feature of this result is that k is completely independent of N . Applying it repeatedly gives

∥f(x)− f(y)∥22 − ∥f(x)∥
2
2 − ∥f(y)∥

2
2 ≤(1 + ε) ∥x− y∥22 − 2(1− ε)

f(x) · f(y) ≥(1 + ε)x · y − 2ε.
(E.3)

Obtaining an upper bound in a similar fashion using the converse inequalities, we have
(1 + ε)x · y − 2ε ≤ f(x) · f(y) ≤ (1− ε)x · y + 2ε. (E.4)

Assume now that x, y are valid inputs to the linear classification problem with margin γ, and specifically that x ·y ≥ γ.
The lower bound above gives

(1 + ε)γ − 2ε ≤ f(x) · f(y), (E.5)

and if we choose ε = γ/8 we obtain
γ

2
≤ (1 +

γ

8
)γ − γ

4
≤ f(x) · f(y), (E.6)

where we used γ ≤ 1. Similarly, if instead x · y ≤ −γ we obtain

f(x) · f(y) ≤ −(1− γ

8
)γ +

γ

4
≤ −γ

2
. (E.7)

It follows that if Alice computes f(x) and sends the resulting O(k) = O(1/γ2) bits that describe this vector to Bob
(assuming some finite precision that is large enough so as not to affect the margin, which will contribute ), Bob can
simply compute f(x) · f(y) which will reveal the result of the classification problem, which he can then communicate
to Alice using a single bit.

If γ = 0 there is a trivial O(N) classical algorithm where Alice sends Bob x.

We next describe the quantum lower bound for Problem 5. Denote by dH the Hamming distance between binary
vectors. We will use lower bounds for the following problem:

Problem 6 (Gap Hamming with general gap). Alice and Bob are given x̂, ŷ ∈ {0, 1}N respectively. Given a promise
that either dH(x̂, ŷ) ≥ N/2 + g/2 or dH(x̂, ŷ) ≤ N/2− g/2, Alice and Bob must determine which one is the case.

There is a simple reduction from Problem 6 to Problem 5 for certain values of γ, which we will then use to obtain
a result for all γ. Assuming Alice is given x̂ and Bob is given ŷ, they construct unit norm real vectors by x =
(2x̂− 1)/

√
N, y = (2ŷ − 1)/

√
N with addition performed element-wise.

If dH(x, y) ≥ N/2 + g/2 then

x · y =
∑

i,xi=yi

1

N
+

∑
i,xi ̸=yi

(− 1

N
)

≥N + g

2

1

N
+
N − g

2
(− 1

N
)

=
g

N
.

(E.8)

Similarly, dH(x̂, ŷ) ≤ N/2 − g/2 ⇒ x · y ≤ −g/N . It follows that x, y are valid inputs for a linear classification
problem over the unit sphere with margin 2g/N . From the results of Nayak & Wu (1998), any quantum algorithm for
the Gap Hamming problem with gap g ∈ {1, . . . , N} requires Ω(

√
N/g) qubits of communication. It follows that the

linear classification problem requires Ω(
√
1/γ) qubits of communication. This bound holds for integer γN . To get a

result for general 0 < γ ≤ 1 we simply note that the communication complexity must be a non-decreasing function
of 1/γ, since any inputs which constitute a valid instance with some γ are also a valid instance for any γ′ < γ. Given
some real γ, the resulting communication problem is at least as hard as the one with margin ⌈γN⌉ /N ≥ γ. It follows
that a Ω(

√
N/ ⌈γN⌉) bound holds for all 0 < γ ≤ 1.

If γ = 0, by a similar argument we can apply the lower bound for γ = 1/N , implying that Ω(
√
N) qubits of

communication are necessary. Once again there is only a polynomial advantage at best.
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F EXPRESSIVITY OF QUANTUM CIRCUITS

F.1 ADDITIONAL RESULTS ON OSCILLATORY FEATURES

Extending the unitaries considered in Section 5 to more than one variable, for two scalar variables x, y define

Aℓ(x) =diag((e−2πiλℓ1x, . . . , e−2πiλℓNx)), (F.1a)

Aℓ(x, y) =diag((e−2πiλℓ1x, . . . , e−2πiλℓN/2x, e−2πiλℓ,N/2+1y, . . . , e−2πiλℓNy)) (F.1b)
for ℓ ∈ {1, . . . , L}. Once again {Bℓ} are data-independent unitaries, and we denote by |φ(x)⟩ , |φ(x, y)⟩ the states
defined by interleaving these unitaries in the manner of eq. (3.1), and by L1,L2 the corresponding loss functions when
measuring X0.

While the circuits in Section 5 enable one to represent a small number of frequencies from a set that is exponential
in L, one can easily construct circuits that are supported on an exponentially large number of frequencies, as detailed
in Lemma 8. We also use measures of expressivity of classical neural networks known as separation rank to show
that circuits within the class eq. (3.1) can represent complex correlations between their inputs. For a function f of two
variables y, z, its separation rank is defined by

sep(f) ≡ min

{
R : f(x) =

R∑
i=1

gi(y)hi(z)

}
. (F.2)

If for example f cannot represent any correlations between y and z, then sep(f) = 1. When computed for certain
classes of neural networks, y, z are taken to be subsets of a high-dimensional input. The separation rank can be
used for example to quantify the inductive bias of convolutional networks towards learning local correlations Cohen
& Shashua (2016), the effect of depth in recurrent networks Levine et al. (2017), and the ability of transformers to
capture correlations across sequences as a function of their depth and width Levine et al. (2020).

We find that the output of estimating an observable using circuits of the form eq. (F.1) can be supported on an expo-
nential number of frequencies, and consequently has a large separation rank:

Lemma 8. For {λℓi} drawn i.i.d. from any continuous distribution and parameterized unitaries {Bℓ} such that the
real and imaginary parts of each entry in these matrices is a real analytic function of parameters Θ drawn from a
subset of RPL, aside from a set of measure 0 over the choice of {λℓi}, {Bℓ},

i) The number of nonzero Fourier components in L1 is
(

N(N−1)
2

)L−1

N .

ii)

sep(L2) = 2

(
N(N − 1)

2

)L−1

N. (F.3)

Proof: Appendix B

This almost saturates the upper bound on the number of frequencies that can be expressed by a circuit of this form
that is given in Schuld et al. (2020). The separation rank implies that complex correlations between different parts of
the sequence can in principle be represented by such circuits. The constraint on {Bℓ} is quite mild, and applies to
standard choices of parameterize unitaries.

The main shortcoming of a result such as Lemma 8 is that it is not robust to measurement error as it is based on
constructing states that are equal weight superpositions of an exponential number of terms. It is straightforward to
show that circuits of this form can serve as universal function approximators, at least for a small number of variables.
For high-dimensional functions it is unclear when a communication advantage is possible, as we describe below.

Lemma 9. Let f be a p-times continuously differentiable function with period 1, and denote by f̂:M the vector of the
first M Fourier components of f . If

∥∥∥f̂:M∥∥∥
1
= 1 then there exists a circuit of the form eq. (3.1) over O(logM) qubits

such that

∥L − f∥∞ ≤
C

Mp−1/2
(F.4)

for some absolute constant C.
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Proof: Appendix B

This result improves upon the result in Pérez-Salinas et al. (2019); Schuld et al. (2020) about universal approximation
with similarly structured circuits both because it is non-asymptotic and because it shows uniform convergence rather
than convergence in L2. Non-asymptotic results universal approximation results were also obtained recently by Gonon
& Jacquier (2023), however their approximation error scales polynomially with the number of qubits, as opposed to
exponentially as in Lemma 9.

The result of Lemma 9 applies to an L = 1 circuit. The special hierarchical structure of the Fourier transform implies
that the same result can be obtained using even simpler circuits with larger L. Consider instead single-qubit data-
dependent unitaries over L+ 1 qubits that take the form

Aℓ = |0⟩0 ⟨0|0 + |1⟩0 ⟨1|0
(
|0⟩ℓ+1 ⟨0|ℓ+1 + e2πi2

ℓ−1x |1⟩ℓ+1 ⟨1|ℓ+1

)
, (F.5)

for ℓ ∈ {1, . . . , L}. This is simply a single term in a hierarchical decomposition of the same feature matrix we had in
the shallow case, since

L∏
ℓ=1

Aℓ = |0⟩0 ⟨0|0 ⊗ I1:L + |1⟩0 ⟨1|0 ⊗ I1 ⊗

2L−1∑
m=0

e2πimx |m⟩ ⟨m|

 , (F.6)

which is identical to eq. (B.20). As before, set

B1 =
∣∣f̂〉 ⟨0|+ |0⟩ 〈f̂ ∣∣, (F.7)

with N/4 = 2L and Bℓ = I for ℓ > 1. This again gives an approximation of f up to normalization. The data-
dependent unitaries are particularly simple when decomposed in this way. The fact that they act on a single qubit and
thus have ”small width” is reminiscent of classical depth-separation result such as Cohen et al. (2015), where it is
shown that (roughly speaking) within certain classes of neural network, in order to represent the function implemented
by a network of depth L, a shallow network must have width exponential in L. In this setting as well the expressive
power as measured by the convergence rate of the approximation error grows exponentially with L by eq. (B.19).

The circuits above can be generalized in a straightforward way to multivariate functions of the form f :
[−1/2, 1/2]D → R and combined with multivariate generalization of eq. (B.19). In this case the scalar m is replaced
by a D-dimensional vector taking MD possible values, and we can define

A1(x) = |0⟩0 ⟨0|0 ⊗ I1:D logM−1 + |1⟩0 ⟨1|0 ⊗ I1 ⊗

 ∑
m∈[M ]D

e2πim·x |m⟩ ⟨m|

 . (F.8)

Note that using this feature map, the number of neurons is linear in the spatial dimension D. Because of this, such
circuits are not strictly of the form eq. (3.1) since it is not the case that M ′ = O(N) where N ′ is the Hilbert space on
which the unitaries in the circuit act and N is the input size. An alternative setting where the features themselves are
also learned from data could enable much more efficient approximation of functions that are sparse in Fourier space.

F.2 UNITARY TRANSFORMERS

Transformers based on self-attention Vaswani et al. (2017) form the backbone of large language models Brown et al.
(2020); Barham et al. (2022) and foundation models more generally Bommasani et al. (2021). A self-attention layer,
which is the central component of transformers, is a map between sequences in RS×N (where S is the sequence length)
defined in terms of weight matrices WQ,WK ,WV ∈ RN×N , given by

X ′(X) = softmax

(
XWQW

T
KX

T

√
N

)
XWV ≡ A(X)XWV , (F.9)

where softmax(x)i = exi/
∑
i

exi for a vector x, and acts row-wise on matrices. There is an extensive literature

on replacing the softmax-based attention matrix A(X) with matrices that can be computed more efficiently, which
can markedly improve the time complexity of inference and training without a significant effect on performance
Katharopoulos et al. (2020); Levine et al. (2020). In some cases A(X) is replaced by a unitary matrix Lee-Thorp
et al. (2021). Remarkably, recent work shows that models without softmax layers can in fact outperform standard
transformers on benchmark tasks while enabling faster inference and a reduced memory footprint Sun et al. (2023).
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Considering a simplified model that does not contain the softmax operation as in Levine et al. (2020) and dropping
normalization factors, the linear attention map is given by

X ′
lin(X) = XWQW

T
KX

TXWV . (F.10)
Iterating this map twice gives

X ′
lin(X

′
lin(X)) = XW

(1)
Q W

(1)T
K XTXW

(1)
V W

(2)
Q W

(2)T
K W

(1)T
V XTXW

(1)
K W

(1)T
Q XTXW

(1)
Q W

(1)T
K XTXW

(1)
V W

(2)
V .

(F.11)
Iterating this map K times (with different weight matrices at each layer) gives a function of the form:

X
(K)
lin (X) = XR0

(3K−1)/2∏
ℓ=1

(
XTXRℓ

)
, (F.12)

where the {Rℓ} matrices depend only on the trainable parameters. If we now constrain these to be parameterized
unitary matrices, and additionally replace XTX with a unitary matrix UX encoding features of the input sequence
itself, then the i-th row of the output of this model is encoded in the amplitudes of a state of the form eq. (3.6) with
L = (3K − 1)/2 + 1, |ψ(x)⟩ = |Xi⟩ , Aℓ(x) = UX , Bℓ = Rℓ.

F.3 ENSEMBLING AND POINT-WISE NONLINEARITIES

An additional method for increasing expressivity while maintaining an advantage in communication is through en-
sembling. Given K models of the form Definition 3.1 with P parameters each, one can combine their loss functions
L1, . . . ,LK into any differentiable nonlinear function

L̃(L1(Θ1, x), . . . ,LK(ΘK , x), Θ̃, x) (F.13)

that depends on additional parameters Θ̃. As long asK and |Θ̃| scale subpolynomially withN and P , the gradients for
this more expressive model can be computed while maintaining the exponential communication advantage in terms of
N,P .

G REALIZING QUANTUM COMMUNICATION

Given the formidable engineering challenges in building a large, fault tolerant quantum processor Arute et al. (2019);
Google Quantum AI (2023), the problem of exchanging coherent quantum states between such processors might
seem even more ambitious. We briefly outline the main problems that need to be solved in order to realize quantum
communication and the state of progress in this area, suggesting that this may not be the case.

We first note that sending a quantum state between two processors can be achieved by the well-known protocol of
quantum state teleportation Bennett et al. (1993); Gordon & Rigolin (2005). Given an n qubit state |ψ⟩, Alice can
send |ψ⟩ to Bob by first sharing n Bell pairs of the form

|b⟩ = 1√
2
(|0⟩ |0⟩+ |1⟩ |1⟩) , (G.1)

(sharing such a state involves sending a one of the two qubits to Bob) and subsequently performing local processing
on the Bell pairs and exchanging n bits of classical communication. Thus quantum communication can be reduced
to communicating Bell pairs up to a logarithmic overhead, and does not require say transmitting an arbitrary quantum
state in a fault tolerant manner, which appears to be a daunting challenge given the difficulty of realizing quantum
memory on a single processor. Bell pairs can be distributed by a third party using one-way communication.

In order to perform quantum teleportation, the Bell pairs must have high fidelity. As long as the fidelity of the
communicated Bell pairs is above .5, purification can be used produce high fidelity Bell pairs Bennett et al. (1995),
with the fidelity of the purified Bell pair increasing exponentially with the number of pairs used. Thus communicating
arbitrary quantum states can be reduced to communicating noisy Bell pairs.

Bell pair distribution has been demonstrated across multiple hardware platforms including superconducting waveg-
uides Magnard et al. (2020), optical fibers Krutyanskiy et al. (2022), free space optics at distances of over 1, 200
kilometers Li et al. (2022). At least in theory, even greater distances can be covered by using quantum repeaters,
which span the distance between two network nodes. Distributing a Bell pair between the nodes can then be reduced
to sharing Bell pairs only between adjacent repeaters and local processing Azuma et al. (2022).
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A major challenge in implementing a quantum network is converting entangled states realized in terms of photons
used for communication to states used for computation and vice versa, known as transduction Lauk et al. (2020).
Transduction is a difficult problem due to the several orders of magnitude in energy that can separate optical photons
from the energy scale of the platform used for computation. Proof of principle experiments have been performed across
a number of platforms including trapped ions Krutyanskiy et al. (2022), solid-state systems Pompili et al. (2021), and
superconducting qubits operating at microwave frequencies Balram & Srinivasan (2021); Wang et al. (2022).

H SOME OPEN QUESTIONS

H.1 EXPRESSIVITY

Circuits that interleave parameterized unitaries with unitaries that encode features of input data are also used in Quan-
tum Signal Processing Low & Chuang (2017); Martyn et al. (2021), where the data-dependent unitaries are time
evolution operators with respect to some Hamiltonian of interest. The original QSP algorithm involved a single pa-
rameterized rotation at each layer, and it is also known that extending the parameter space from U(1) to SU(2) by
including an additional rotation improves the complexity of the algorithm and improves its expressivity Motlagh &
Wiebe (2023). In both cases however the expressive power (in terms of the degree of the polynomial of the singular
values that can be expressed) grows only linearly with the number of interleaved unitaries. Given the natural connec-
tion to the distributed learning problems considered here, it is interesting to understand the expressive power of such
circuits with more powerful multi-qubit parameterized unitaries.

We present a method of applying a single nonlinearity to a distributed circuit using the results of Rattew & Rebentrost
(2023). Since this algorithm requires a state-preparation unitary as input and produces a state with a nonlinearity
applied to the amplitudes, it is natural to ask whether it can be applied recursively to produce a state with the output
of a deep network with nonlinearties encoded in its amplitudes. This will require extending the results of Rattew &
Rebentrost (2023) to handle noisy state-preparation unitaries, yet the effect of errors on compositions of block encod-
ings Chakraborty et al. (2018); Gilyén et al. (2018), upon which these results are based, is relatively well understood.
It is also worth noting that these approaches rely on the approximation of nonlinear functions by polynomials, and so
it may also be useful to take inspiration directly from classical neural network polynomial activations, which in some
settings are known to outperform other types of nonlinearities Michaeli et al. (2023).

H.2 OPTIMIZATION

The results of Section 4 rely on sublinear convergence rates for general stochastic optimization of convex functions
(Lemma 6). It is known however that using additional structure, stochastic gradients can be used to obtain linear
convergence (meaning that the error decays exponentially with the number of iterations). This is achievable when
subsampling is the source of stochasticity Le Roux et al. (2012), or with occasional access to noiseless gradients in
order to implement a variance reduction scheme Johnson & Zhang (2013); Moritz et al. (2016); Gower et al. (2016),
neither of which seem applicable to the setting at hand. It is an interesting open question to ascertain whether there
is a way to exploit the structure of quantum circuits to obtain linear convergence rates using novel algorithms. Aside
from advantages in time complexity, this could imply an exponential advantage in communication for a more general
class of circuits.

Conversely, it is also known that given only black-box access to a noisy gradient oracle, an information-theoretic lower
bound of Ω(1/T ) on the error holds given T oracle queries, precluding linear convergence without additional structure,
even for strongly convex objectives Agarwal et al. (2010). Harrow & Napp (2021) provide a similar lower bound for
their algorithm, at least for a restricted class of circuits. Perhaps these results be used to show optimality of algorithms
that rely on the standard variational circuit optimization paradigm that involves making quantum measurements at
every iteration and using these to update the parameters. This might imply that linear convergence is only possible if
the entire optimization process is performed coherently.

In this context, we note that the treatment of gradient estimation at every layer and every iteration as an independent
shadow tomography problem is likely highly suboptimal, since no use is made of the correlations across iterations
between the states and the observables of interest. While in Section 4.2 this is not the case, that algorithm applies
only to fine-tuning of a single layer. Is there a way to re-use information between iterations to reduce the resource
requirements of gradient descent using shadow tomography? One approach could be warm-starting the classical
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resource states by reusing them between iterations. Improvements along these lines might find applications for other
problems as well.

H.3 STRONGER LOWER BOUNDS

The lower bound in Lemma 3 applies to circuits that contain general unitaries, and thus have depth poly(N) when
compiled using any reasonable set of quantum gates. One can ask whether the lower bound can be strengthened
to apply to more restricted classes of unitaries as well, and in particular log-depth unitaries. The rapid growth of
complexity of random circuits composed from local gates with depth suggests that this might be possible Brown &
Susskind (2017). This is particularly interesting since Algorithm 1 requires only a single measurement per iteration and
may thus be suitable for implementation on near-term devices whose coherence times restrict them to implementing
logN depth circuits.
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