
Published as a conference paper at ICLR 2024

ERROR FEEDBACK RELOADED: FROM QUADRATIC TO
ARITHMETIC MEAN OF SMOOTHNESS CONSTANTS

Peter Richtárik
AI Initiative
KAUST∗, Saudi Arabia

Elnur Gasanov
AI Initiative
KAUST, Saudi Arabia

Konstantin Burlachenko
AI Initiative
KAUST, Saudi Arabia

ABSTRACT

Error Feedback (EF) is a highly popular and immensely effective mechanism for fixing
convergence issues which arise in distributed training methods (such as distributed GD
or SGD) when these are enhanced with greedy communication compression techniques
such as TopK. While EF was proposed almost a decade ago (Seide et al., 2014), and de-
spite concentrated effort by the community to advance the theoretical understanding of
this mechanism, there is still a lot to explore. In this work we study a modern form of
error feedback called EF21 (Richtárik et al., 2021) which offers the currently best-known
theoretical guarantees, under the weakest assumptions, and also works well in practice.
In particular, while the theoretical communication complexity of EF21 depends on the
quadratic mean of certain smoothness parameters, we improve this dependence to their
arithmetic mean, which is always smaller, and can be substantially smaller, especially in
heterogeneous data regimes. We take the reader on a journey of our discovery process.
Starting with the idea of applying EF21 to an equivalent reformulation of the underlying
problem which (unfortunately) requires (often impractical) machine cloning, we continue
to the discovery of a new weighted version of EF21 which can (fortunately) be executed
without any cloning, and finally circle back to an improved analysis of the original EF21
method. While this development applies to the simplest form of EF21, our approach
naturally extends to more elaborate variants involving stochastic gradients and partial par-
ticipation. Further, our technique improves the best-known theory of EF21 in the rare
features regime (Richtárik et al., 2023). Finally, we validate our theoretical findings with
suitable experiments.

1 INTRODUCTION

Due to their ability to harness the computational capabilities of modern devices and their capacity to extract
value from the enormous data generated by organizations, individuals, and various digital devices and sen-
sors, Machine Learning (ML) methods (Bishop, 2016; Shalev-Shwartz & Ben-David, 2014) have become
indispensable in numerous practical applications (Krizhevsky et al., 2012; Lin et al., 2022; Vaswani et al.,
2017; Onay & Öztürk, 2018; Poplin et al., 2017; Gavriluţ et al., 2009; Sun et al., 2017).

The necessity to handle large datasets has driven application entities to store and process their data in power-
ful computing centers (Yang et al., 2019; Dean et al., 2012; Verbraeken et al., 2020) via distributed training
algorithms. Beside this industry-standard centralized approach, decentralized forms of distributed learning
are becoming increasingly popular. For example, Federated Learning (FL) facilitates a collaborative learn-
ing process in which various clients, such as hospitals or owners of edge devices, collectively train a model

∗King Abdullah University of Science and Technology

1

Published as a conference paper at ICLR 2024

on their devices while retaining their data locally, without uploading it to a centralized location (Konečný
et al., 2016b;a; McMahan et al., 2017; Li et al., 2020a; Kairouz et al., 2021; Wang et al., 2021).

Distributed training problems are typically formulated as optimization problems of the form

min
x∈Rd

{
f(x) := 1

n

n∑
i=1

fi(x)

}
, (1)

where n is the number of clients/workers/nodes, vector x ∈ Rd represents the d trainable parameters, and
fi(x) is the loss of the model parameterized by x on the training data stored on client i ∈ [n] := {1, . . . , n}.
One of the key issues in distributed training in general, and FL in particular, is the communication bottle-
neck (Konečný et al., 2016b; Kairouz et al., 2021). The overall efficiency of a distributed algorithm for
solving (1) can be characterized by multiplying the number of communication rounds needed to find a solu-
tion of acceptable accuracy by the cost of each communication round:

communication complexity = # communication rounds × cost of 1 communication round. (2)
This simple formula clarifies the rationale behind two orthogonal approaches to alleviating the communica-
tion bottleneck. i) The first approach aims to minimize the first factor in (2). This is done by carefully de-
ciding on what work should be done on the clients in each communication round in order for it to reduce the
total number of communication rounds needed, and includes methods based on local training (Stich, 2018;
Lin et al., 2018; Mishchenko et al., 2022; Condat et al., 2023; Li et al., 2019) and momentum (Nesterov,
1983; 2004; d’Aspremont et al., 2021). Methods in this class communicate dense d-dimensional vectors.
ii) The second approach aims to minimize the second factor in (2). Methods in this category compress the
information (typically d-dimensional vectors) transmitted between the clients and the server (Alistarh et al.,
2017; Khirirat et al., 2018; Bernstein et al., 2018; Safaryan et al., 2021).

1.1 COMMUNICATION COMPRESSION

Vector compression can be achieved through the application of a compression operator. Below, we outline
two primary classes of these operators: unbiased (with conically bounded variance) and contractive.
Definition 1 (Compressors). A randomized mapping C : Rd → Rd is called i) an unbiased compressor if
for some ω > 0 it satisfies

E [C(x)] = x, E
[
∥C(x)− x∥2

]
≤ ω∥x∥2, ∀x ∈ Rd, (3)

and ii) a contractive compressor if for some α ∈ (0, 1] it satisfies
E
[
∥C(x)− x∥2

]
≤ (1− α)∥x∥2, ∀x ∈ Rd. (4)

It is well known that whenever a compressor C satisfies (3), then the scaled compressor C/(ω + 1) satisfies
(4) with α = 1 − (ω + 1)−1. In this sense, the class of contractive compressors includes all unbiased
compressors as well. However, it is also strictly larger. For example, the TopK compressor, which retains
the K largest elements in absolute value of the vector it is applied to and replaces the rest by zeros, and
happens to be very powerful in practice (Alistarh et al., 2018), satisfies (4) with α = K

d , but does not satisfy
(3). From now on, we write C(α) to denote the class of compressors satisfying (4).

It will be convenient to define the following functions of the contraction parameter

θ = θ(α) := 1−
√
1− α; β = β(α) := 1−α

1−
√
1−α

; ξ = ξ(α) :=
√

β(α)
θ(α) = 1+

√
1−α
α − 1. (5)

Note that 0 ≤ ξ(α) < 2
α − 1. The behavior of distributed algorithms utilizing unbiased compressors for

solving (1) is relatively well-understood from a theoretical standpoint (Khirirat et al., 2018; Mishchenko
et al., 2019; Li et al., 2020b; Gorbunov et al., 2021; Tyurin & Richtárik, 2023). By now, the community
possesses a robust theoretical understanding of the advantages such methods can offer and the mechanisms
behind their efficacy (Gorbunov et al., 2020; Khaled et al., 2023; Tyurin & Richtárik, 2023). However, it is
well known that the class of contractive compressors includes some practically very powerful operators, such
as the greedy sparsifier TopK (Stich et al., 2018; Alistarh et al., 2018) and the low-rank approximator RankK

2

Published as a conference paper at ICLR 2024

Algorithm 1 EF21: Error Feedback 2021
1: Input: initial model x0 ∈ Rd; initial gradient estimates g01 , g

0
2 , . . . , g

0
n ∈ Rd stored at the server and the

clients; stepsize γ > 0; number of iterations T > 0
2: Initialize: g0 = 1

n

∑n
i=1 g

0
i on the server

3: for t = 0, 1, 2, . . . , T − 1 do
4: Server computes xt+1 = xt − γgt and broadcasts xt+1 to all n clients
5: for i = 1, . . . , n on the clients in parallel do
6: Compute ut

i = Ct
i (∇fi(x

t+1)− gti) and update gt+1
i = gti + ut

i
7: Send the compressed message ut

i to the server
8: end for
9: Server updates gt+1

i = gti + ut
i for all i ∈ [n], and computes gt+1 = 1

n

∑n
i=1 g

t+1
i

10: end for
11: Output: Point x̂T chosen from the set {x0, . . . , xT−1} uniformly at random

(Vogels et al., 2019; Safaryan et al., 2022), which are biased, and hence their behavior is not explainable
by the above developments. These compressors have demonstrated surprisingly effective performance in
practice (Seide et al., 2014; Alistarh et al., 2018), even when compared to the best results we can get with
unbiased compressors (Szlendak et al., 2022), and are indispensable on difficult tasks such as the fine-tuning
of foundation models in a geographically distributed manner over slow networks (Wang et al., 2023).

However, our theoretical understanding of algorithms based on contractive compressors in general, and these
powerful biased compressors in particular, is very weak. Indeed, while the SOTA theory involving unbi-
ased compressors offers significant and often several-degrees-of-magnitude improvements over the baseline
methods that do not use compression (Mishchenko et al., 2019; Horváth et al., 2019b; Li et al., 2020b; Gor-
bunov et al., 2020; 2021; Tyurin & Richtárik, 2023), the best theory we currently have for methods that can
provably work with contractive compressors, i.e., the theory behind the error feedback method called EF21
developed by Richtárik et al. (2021) (see Algorithm 1) and its variants (Fatkhullin et al., 2021; Condat et al.,
2022; Fatkhullin et al., 2023), merely matches the communication complexity of the underlying methods
that do not use any compression (Szlendak et al., 2022).

To the best of our knowledge, the only exception to this is the very recent work of Richtárik et al. (2023)
showing that in a rare features regime, the EF21 method (Richtárik et al., 2021) outperforms gradient descent
(which is a special case of EF21 when Ct

i (x) ≡ x for all i ∈ [n] and t ≥ 0) in theory. However, Richtárik
et al. (2023) obtain no improvements upon the current best theoretical result for vanilla EF21 (Richtárik
et al., 2021) in the general smooth nonconvex regime, outlined in Section 1.2, we investigate in this work.

1.2 ASSUMPTIONS

We adopt the same very weak assumptions as those used by Richtárik et al. (2021) in their analysis of EF21.
Assumption 1. The function f is L-smooth, i.e., there exists L > 0 such that

∥∇f(x)−∇f(y)∥ ≤ L ∥x− y∥ , ∀x, y ∈ Rd. (6)
Assumption 2. The functions fi are Li-smooth, i.e., for all i ∈ [n] there exists Li > 0 such that

∥∇fi(x)−∇fi(y)∥ ≤ Li ∥x− y∥ , ∀x, y ∈ Rd. (7)

Note that if (7) holds, then (6) holds, and L ≤ LAM := 1
n

∑n
i=1 Li. So, Assumption 1 does not further limit

the class of functions already covered by Assumption 2. Indeed, it merely provides a new parameter L better
characterizing the smoothness of f than the estimate LAM obtainable from Assumption 2 could.

Since our goal in (1) is to minimize f , the below assumption is necessary for the problem to be meaningful.
Assumption 3. There exists f∗ ∈ R such that inf f ≥ f∗.

3

Published as a conference paper at ICLR 2024

1.3 SUMMARY OF CONTRIBUTIONS

In our work we improve the current SOTA theoretical communication complexity guarantees for distributed
algorithms that work with contractive compressors in general, and empirically powerful biased compressors
such as TopK and RankK in particular (Richtárik et al., 2021; Fatkhullin et al., 2021).

In particular, under Assumptions 1–3, the best known guarantees were obtained by Richtárik et al. (2021)
for the EF21 method: to find a (random) vector x̂T satisfying E

[∥∥∇f(x̂T)
∥∥2] ≤ ε, Algorithm 1 requires

T = O
(
(L+ LQMξ(α))ε−1

)
iterations, where LQM :=

√
1
n

∑n
i=1 L

2
i is the Quadratic Mean of the smoothness constants L1, . . . , Ln.

Our main finding is an improvement of this result to
T = O

(
(L+ LAMξ(α))ε−1

)
, (8)

where LAM := 1
n

∑n
i=1 Li is the Arithmetic Mean of the smoothness constants L1, . . . , Ln. We obtain this

improvement in three different ways:

i) by client cloning (see Sections 2.1 and 2.2 and Theorem 2),

ii) by proposing a new smootness-weighted variant of EF21 which we call EF21-W (see Section 2.3
and Theorem 3), and

iii) by a new smoothness-weighted analysis of classical EF21 (see Section 2.4 and Theorem 4).

We obtain refined linear convergence results cases under the Polyak-Łojasiewicz condition. Further, our
analysis technique extends to many variants of EF21, including EF21-SGD which uses stochastic gradients
instead of gradients (Section E), and EF21-PP which enables partial participation of clients (Section G). Our
analysis also improves upon the results of Richtárik et al. (2023) who study EF21 in the rare features regime
(Section H). Finally, we validate our theory with suitable computational experiments (Sections 3, I and J).

2 EF21 RELOADED: OUR DISCOVERY STORY

We now take the reader along on a ride of our discovery process.

2.1 STEP 1: CLONING THE CLIENT WITH THE WORSE SMOOTHNESS CONSTANT

The starting point of our journey is a simple observation described in the following example.
Example 1. Let n = 4 and f(x) = 1

4 (f1(x) + f2(x) + f3(x) + f4(x)). Assume the smoothness constants
L1, L2, L3 of f1, f2, f3 are equal to 1, and L4 is equal to 100. In this case,EF21 needs to run for

T1 := O
(
(L+ LQMξ(α))ε−1

)
= O

((
L+

√
2501.5ξ(α)

)
ε−1
)

iterations. Now, envision the existence of an additional machine capable of downloading the data from the
fourth “problematic” machine. By rescaling local loss functions, we maintain the overall loss function as:
f(x) = 1

4 (f1(x)+f2(x)+f3(x)+f4(x)) =
1
5

(
5
4f1(x) +

5
4f2(x) +

5
4f3(x) +

5
8f4(x) +

5
8f4(x)

)
:= f̃(x).

Rescaling of the functions modifies the smoothness constants to L̂i =
5
4Li for i = 1, 2, 3, and L̂i =

5
8L4 for

i = 4, 5. EF21, launched on this setting of five nodes, requires

T2 := O
((

L+ L̃QMξ(α)
)
ε−1
)
≈ O

((
L+

√
1564ξ(α)

)
ε−1
)

iterations, where L̃QM is the quadratic mean of the new smoothness constants L̂1, . . . , L̂5.

4

Published as a conference paper at ICLR 2024

This simple observation highlights that the addition of just one more client significantly enhances the con-
vergence rate. Indeed, EF21 requires approximately ξ(α)

ε (
√
2501.5 −

√
1564) ≈ 10 ξ(α)

ε fewer iterations.
We will generalize this client cloning idea in the next section.

2.2 STEP 2: GENERALIZING THE CLONING IDEA

We will now take the above motivating example further, allowing each client i to be cloned arbitrarily many
(Ni) times. Let us see where this gets us. For each i ∈ [n], let Ni denote a positive integer. We define
N :=

∑n
i=1 Ni (the total number of clients after cloning), and observe that f can be equivalently written as

f(x)
(1)
= 1

n

n∑
i=1

fi(x) =
1
n

n∑
i=1

Ni∑
j=1

1
Ni

fi(x) =
1
N

n∑
i=1

Ni∑
j=1

N
nNi

fi(x) =
1
N

n∑
i=1

Ni∑
j=1

fij(x), (9)

where fij(x) :=
N

nNi
fi(x) for all i ∈ [n] and j ∈ [Ni]. Notice that we scaled the functions as before, and

that fij is Lij-smooth, where Lij :=
N

nNi
Li.

Analysis of the convergence rate. The performance of EF21, when applied to the problem (9) involving N
clients, depends on the quadratic mean of the new smoothness constants:

M(N1, . . . , Nn) :=

√
1
N

n∑
i=1

Ni∑
j=1

L2
ij =

√
n∑

i=1

N
n2Ni

L2
i = 1

n

√
n∑

i=1

L2
i

Ni/N
. (10)

Note that if Ni = 1 for all i ∈ [n], then M(1, . . . , 1) = LQM.

Optimal choice of cloning frequencies. Our goal is to find integer values N1 ∈ N, . . . , Nn ∈ N minimizing
the function M(N1, . . . ,Mn) defined in (10). While we do not have a closed-form formula for the global
minimizer, we are able to explicitly find a solution that is at most

√
2 times worse than the optimal one in

terms of the objective value. In particular, if we let N⋆
i = ⌈Li/LAM⌉ for all i ∈ [n], then

LAM ≤ min
N1∈N,...,Nn∈N

M(N1, . . . , Nn) ≤ M(N⋆
1 , . . . , N

⋆
n) ≤

√
2LAM,

and moreover, n ≤ N⋆ :=
∑

i N
⋆
i ≤ 2n. That is, we need at most double the number of clients in our client

cloning construction. See Lemma 2 in the Appendix for details.

By directly applying EF21 theory from (Richtárik et al., 2021) to problem (9) involving N⋆ clients, we
obtain the advertised improvement from LQM to LAM.
Theorem 2 (Convergence of EF21 applied to problem (9) with N⋆ machines). Consider Algorithm 1
(EF21) applied to the “cloning reformulation” (9) of the distributed optimization problem (1), where N⋆

i =
⌈Li/LAM⌉ for all i ∈ [n]. Let Assumptions 1–3 hold, assume that Ct

ij ∈ C(α) for all i ∈ [n], j ∈ [Ni] and
t ≥ 0, set

Gt := 1
N

N∑
i=1

Ni∑
j=1

∥∥gtij −∇fij(x
t)
∥∥2 ,

and let the stepsize satisfy 0 < γ ≤ 1
L+

√
2LAMξ(α)

. If for T ≥ 1 we define x̂T as an element of the set

{x0, x1, . . . , xT−1} chosen uniformly at random, then

E
[∥∥∇f(x̂T)

∥∥2] ≤ 2(f(x0)−f∗)
γT + G0

θ(α)T .

When we choose the largest allowed stepsize and g0ij = ∇fij(x
0) for all i, j, this leads to the complexity

(8); that is, by cloning client machines, we can replace LQM in the standard rate with
√
2LAM. A similar

result can be obtained even if we do not ignore the integrality constraint, but we do not include it for brevity

5

Published as a conference paper at ICLR 2024

reasons. However, it is important to note that the cloning approach has several straightforward shortcomings,
which we will address in the next section.1

2.3 STEP 3: FROM CLIENT CLONING TO UPDATE WEIGHTING

It is evident that employing client cloning improves the convergence rate. Nevertheless, there are obvious
drawbacks associated with this approach. Firstly, it necessitates a larger number of computational devices,
rendering its implementation less appealing from a resource allocation perspective. Secondly, the utiliza-
tion of EF21 with cloned machines results in a departure from the principles of Federated Learning, as it
inherently compromises user privacy – transferring data from one device to another is prohibited in FL.

However, a simpler approach to implementing the cloning idea emerges when we assume the compressors
used to be deterministic. To illustrate this, let us initially examine how we would typically implement EF21
with cloned machines:

xt+1 = xt − γ 1
N

n∑
i=1

Ni∑
j=1

gtij , (11)

gt+1
ij = gtij + Ct

ij(∇fij(x
t+1)− gtij), i ∈ [n], j ∈ [Ni]. (12)

We will now rewrite the same method in a different way. Assume we choose g0ij = g0i for all j ∈ [Ni].
We show by induction that gtij is the same for all j ∈ [Ni]. We have just seen that this holds for t = 0.
Assume this holds for some t. Then since ∇fij(x

t+1) = N
nNi

∇fi(x
t+1) for all j ∈ [Ni] combined with the

induction hypothesis, (12) and the determinism of Ct
ij , we see that gt+1

ij is the same for all j ∈ [Ni]. Let
us define gti ≡ gtij for all t. This is a valid definition since we have shown that gtij does not depend on j.
Because of all of the above, iterations (11)–(12) can be equivalently written in the form

xt+1 = xt − γ
n∑

i=1

wig
t
i , (13)

gt+1
i = gti + Ct

i

(
1

nwi
∇fi(x

t+1)− gti

)
, i ∈ [n], (14)

where wi = Li∑
j Lj

. This transformation effectively enables us to operate the method on the original n
clients, eliminating the need for N clients! This refinement has led to the creation of a new algorithm that
outperforms EF21 in terms of convergence rate, which we call EF21-W (Algorithm 2). While we relied on
assuming that the compressors are deterministic in order to motivate the transition from N to n clients, it
turns out that EF21-W converges without the need to invoke this assumption.
Theorem 3 (Theory for EF21-W). Consider Algorithm 2 (EF21-W) applied to the distributed optimization
problem (1). Let Assumptions 1–3 hold, assume that Ct

i ∈ C(α) for all i ∈ [n] and t ≥ 0, set

Gt :=
n∑

i=1

wi

∥∥∥gti − 1
nwi

∇fi(x
t)
∥∥∥2 ,

1In our work, we address an optimization problem of the form minwj≥0 ∀j∈[n];
∑n

i=1 wi=1

∑n
i=1

a2
i

wi
, where ai rep-

resent certain constants. This formulation bears a resemblance to the meta problem in the importance sampling strategy
discussed in (Zhao & Zhang, 2015). Despite the apparent similarities in the abstract formulation, our approach and the
one in the referenced work diverge significantly in both motivation and implementation. While Zhao & Zhang (2015) ap-
plies importance sampling to reduce the variance of a stochastic gradient estimator by adjusting sampling probabilities,
our method involves adjusting client cloning weights without sampling. Furthermore, our gradient estimator is biased,
unlike the unbiased estimator in the referenced paper, and we aim to minimize the quadratic mean of the smoothness
constants, which is inherently different from the objectives in Zhao & Zhang (2015). Although both approaches can be
expressed through a similar mathematical framework, they are employed in vastly different contexts, and any parallelism
may be coincidental rather than indicative of a direct connection.

6

Published as a conference paper at ICLR 2024

Algorithm 2 EF21-W: Weighted Error Feedback 2021
1: Input: initial model parameters x0 ∈ Rd; initial gradient estimates g01 , g

0
2 , . . . , g

0
n ∈ Rd stored at the

server and the clients; weights wi = Li/
∑

j Lj; stepsize γ > 0; number of iterations T > 0
2: Initialize: g0 =

∑n
i=1 wig

0
i on the server

3: for t = 0, 1, 2, . . . , T − 1 do
4: Server computes xt+1 = xt − γgt and broadcasts xt+1 to all n clients
5: for i = 1, . . . , n on the clients in parallel do
6: Compute ut

i = Ct
i (

1
nwi

∇fi(x
t+1)− gti) and update gt+1

i = gti + ut
i

7: Send the compressed message ut
i to the server

8: end for
9: Server updates gt+1

i = gti + ut
i for all i ∈ [n], and computes gt+1 =

∑n
i=1 wig

t+1
i

10: end for
11: Output: Point x̂T chosen from the set {x0, . . . , xT−1} uniformly at random

where wi =
Li∑
j Lj

for all i ∈ [n], and let the stepsize satisfy 0 < γ ≤ 1
L+LAMξ(α) . If for T > 1 we define

x̂T as an element of the set {x0, x1, . . . , xT−1} chosen uniformly at random, then

E
[∥∥∇f(x̂T)

∥∥2] ≤ 2(f(x0)−f∗)
γT + G0

θ(α)T . (15)

2.4 STEP 4: FROM WEIGHTS IN THE ALGORITHM TO WEIGHTS IN THE ANALYSIS

In the preceding section, we introduced a novel algorithm: EF21-W. While it bears some resemblance to the
vanilla EF21 algorithm (Richtárik et al., 2021) (we recover it for uniform weights), the reliance on particular
non-uniform weights enables it to achieve a faster convergence rate. However, this is not the end of the story
as another insight reveals yet another surprise.

Let us consider the scenario when the compressors in Algorithm 2 are positively homogeneous2. Introducing
the new variable ht

i = nwig
t
i , we can reformulate the gradient update in Algorithm 2 to

ht+1
i = nwig

t+1
i

(14)
= nwi

[
gti + Ct

i

(
∇fi(x

t+1)
nwi

− gti

)]
= ht

i + Ct
i (∇fi(x

t)− ht
i),

indicating that ht
i adheres to the update rule of the vanilla EF21 method! Furthermore, the iterates xt also

follow the same rule as EF21:

xt+1 (13)
= xt − γ

n∑
i=1

wig
t = xt − γ

n∑
i=1

wi
1

nwi
ht
i = xt − γ 1

n

n∑
i=1

ht
i.

So, what does this mean? One interpretation suggests that for positively homogeneous contractive compres-
sors, the vanilla EF21 algorithm is equivalent to EF21-W, and hence inherits its faster convergence rate that
depends on LAM rather than on LQM. However, it turns out that we can establish the same result with-
out having to resort to positive homogeneity altogether. For example, the ”natural compression” quantizer,
which rounds to one of the two nearest powers of two, is not positively homogeneous (Horváth et al., 2019a).
Theorem 4 (New theory for EF21). Consider Algorithm 1 (EF21) applied to the distributed optimization
problem (1). Let Assumptions 1–3 hold, assume that Ct

i ∈ C(α) for all i ∈ [n] and t ≥ 0, set

Gt := 1
n

n∑
i=1

1
nwi

∥gti −∇fi(x
t)∥2 ,

2A compressor C : Rd → Rd is positively homogeneous if C(tx) = tC(x) for all t > 0 and x ∈ Rd.

7

Published as a conference paper at ICLR 2024

where wi =
Li∑
j Lj

for all i ∈ [n], and let the stepsize satisfy 0 < γ ≤ 1
L+LAMξ(α) . If for T > 1 we define

x̂T as an element of the set {x0, x1, . . . , xT−1} chosen uniformly at random, then

E
[
∥∇f(x̂T)∥2

]
≤ 2(f(x0)−f∗)

γT + G0

θ(α)T . (16)

This last result effectively pushes the weights from the algorithm in EF21-W to the proof, which enabled us
to show that the original EF21 method also enjoys the same improvement: from LQM to LAM.

3 EXPERIMENTS

3.1 NON-CONVEX LOGISTIC REGRESSION ON BENCHMARK DATASETS

In our first experiment, we employed a logistic regression model with a non-convex regularizer, i.e.,

fi(x) :=
1
ni

ni∑
j=1

log
(
1 + exp(−yij · a⊤ijx)

)
+ λ

d∑
j=1

x2
j

x2
j+1

,

where (aij , yij) ∈ Rd × {−1, 1} represents the j-th data point out from a set of ni data points stored at
client i, and λ > 0 denotes a regularization coefficient. We utilized six datasets from LIBSVM (Chang &
Lin, 2011). The dataset shuffling strategy, detailed in Appendix I.5, was employed to emulate heterogeneous
data distribution. Each client was assigned the same number of data points. Figure 1 provides a comparison
between EF21 employing the original stepsize (Richtárik et al., 2021) and EF21-W with the better stepsize.
The initial gradient estimators were chosen as g0i = ∇fi(x

0) for all i ∈ [n]. As evidenced empirically, the
EF21-W algorithm emerges as a practical choice when utilized in situations characterized by high variance
in smoothness constants. As evident from the plots, the algorithm employing the new step size exhibits
superior performance compared to its predecessor.

Next, we conducted a comparative analysis of the performance of EF21-W-PP and EF21-W-SGD, as elu-
cidated in the appendix, compared to their non-weighted counterparts. In the EF21-PP/EF21-W-PP algo-
rithms, each client participated independently in each round with probability pi = 0.5. Moreover, in the
case of EF21-SGD/EF21-W-SGD algorithms, a single data point was stochastically sampled from a uniform
distribution at each client during each iteration of the algorithm. As observed in Figure 2, the algorithms
employing the new learning rates demonstrate faster convergence. Notably, Figure 2 (c) depicts more pro-
nounced oscillations with updated step sizes, as the new analysis permits larger step sizes, which can induce
oscillations in stochastic methods.

3.2 NON-CONVEX LINEAR MODEL ON SYNTHETIC DATASETS

In our second set of experiments, we trained a linear regression model with a non-convex regularizer. The

function fi for the linear regression problem is defined as follows: fi(x) := 1
ni

∥Aix− bi∥2+λ
∑d

j=1

x2
j

x2
j+1

.

Here, Ai ∈ Rni×d and bi ∈ Rni represent the feature matrix and labels stored on client i encompassing
ni data points. The data employed in four experiments, as illustrated in Figure 3, was generated in such a
manner that the smoothness constant L remained fixed, while Li varied so that the difference between two
crucial to analysis terms LQM and LAM changed from a relatively large value to negligible. As evident
from Figure 3, the performance of EF21-W consistently matches or surpasses that of the original EF21,
particularly in scenarios characterized by significant variations in the smoothness constants. For additional
details and supplementary experiments, we refer the reader to Sections I and J.

8

Published as a conference paper at ICLR 2024

0 10000 20000 30000 40000
Rounds

106

4 × 105

6 × 105

||
f(x

)||
2

EF21-W
EF21

(a) AUSTRALIAN, Lvar ≈ 1016

0 5000 10000 15000 20000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W
EF21

(b) W1A, Lvar ≈ 3.28

0 5000 10000 15000 20000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W
EF21

(c) W2A, Lvar ≈ 2.04

0 5000 10000 15000 20000
Rounds

10 3

10 2

10 1

||
f(x

)||
2

EF21-W
EF21

(d) W3A, Lvar ≈ 1.58

0 5000 10000 15000 20000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W
EF21

(e) MUSHROOMS, Lvar ≈ 5× 10−1

0 5000 10000 15000 20000
Rounds

10 3

10 2

||
f(x

)||
2

EF21-W
EF21

(f) PHISHING, Lvar = 9× 10−4

Figure 1: Comparison of EF21 versus our new EF21-W with the Top1 compressor on the non-convex logistic regression
problem. The number of clients n is 1, 000. The step size for EF21 is set according to (Richtárik et al., 2021), and the
step size for EF21-W is set according to Theorem 3. The coefficient λ for (b)–(f) is set to 0.001, and for (a) is set to 1, 000

for numerical stability. We let Lvar := L2
QM − L2

AM = 1
n

∑n
i=1 L

2
i −

(
1
n

∑n
i=1 Li

)2.

0 5000 10000 15000 20000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W-SGD
EF21-SGD

(a) W1A, SGD

0 10000 20000 30000 40000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W-PP
EF21-PP

(b) W1A, PP

0 20000 40000 60000 80000
Rounds

105

106

||
f(x

)||
2

EF21-W-SGD
EF21-SGD

(c) AUSTRALIAN, SGD

0 20000 40000 60000 80000
Rounds

105

106

||
f(x

)||
2

EF21-W-PP
EF21-PP

(d) AUSTRALIAN, PP

Figure 2: Comparison of EF21-W with partial partial participation (EF21-W-PP) or stochastic gradients (EF21-W-SGD)
versus EF21 with partial partial participation (EF21-PP) or stochastic gradients (EF21-SGD) (Fatkhullin et al., 2021)). The
Top1 compressor was employed in all experiments. The number of clients n = 1, 000. All stepsizes are theoretical. The
coefficient λ was set to 0.001 for (a), (b) and to 1, 000 for (c), (d).

0 2000 4000 6000 8000 10000
Rounds

10 20

10 14

10 8

10 2

104

||
f(x

)||
2

EF21
EF21-W

(a) Lvar ≈ 4.4× 106

LQM ≈ 2126, LAM ≈ 252

0 2000 4000 6000 8000 10000
Rounds

10 22

10 16

10 10

10 4

102

||
f(x

)||
2

EF21
EF21-W

(b) Lvar ≈ 1.9× 106

LQM ≈ 1431, LAM ≈ 263

0 2000 4000 6000 8000
Rounds

10 21

10 15

10 9

10 3

103

||
f(x

)||
2

EF21
EF21-W

(c) Lvar ≈ 1.0× 105

LQM ≈ 433, LAM ≈ 280

0 2000 4000 6000 8000 10000
Rounds

10 21

10 15

10 9

10 3

103

||
f(x

)||
2

EF21
EF21-W

(d) Lvar ≈ 5.4× 103

LQM ≈ 294, LAM ≈ 285

Figure 3: Comparison of EF21 vs. EF21-W with the Top1 compressor on the non-convex linear problem. The number of
clients n is 2, 000. The coefficient λ has been set to 100. The step size for EF21 is set according to (Richtárik et al.,
2021), and the step size for EF21-W is set according to Theorem 3. In all cases, the smoothness constant L equals 50.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

This work of all authors was supported by the KAUST Baseline Research Scheme (KAUST BRF). The work
Peter Richtárik and Konstantin Burlachenko was also supported by the SDAIA-KAUST Center of Excellence
in Data Science and Artificial Intelligence (SDAIA-KAUST AI). We wish to thank Babis Kostopoulos—a
VSRP intern at KAUST who spent some time working on this project in Summer 2023—for helping with
some parts of the project. We offered Babis co-authorship, but he declined.

REFERENCES

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. QSGD: Communication-
efficient SGD via gradient quantization and encoding. In Advances in Neural Information Processing
Systems, 2017.

Dan Alistarh, Torsten Hoefler, Mikael Johansson, Sarit Khirirat, Nikola Konstantinov, and Cédric Renggli.
The convergence of sparsified gradient methods. In Advances in Neural Information Processing Systems,
2018.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. signsgd: Com-
pressed optimisation for non-convex problems. In International Conference on Machine Learning, pp.
560–569. PMLR, 2018.

C.M. Bishop. Pattern Recognition and Machine Learning. Information Science and Statistics. Springer
New York, 2016. ISBN 9781493938438. URL https://books.google.com.sa/books?id=
kOXDtAEACAAJ.

Konstantin Burlachenko, Samuel Horváth, and Peter Richtárik. Fl pytorch: optimization research simulator
for federated learning. In Proceedings of the 2nd ACM International Workshop on Distributed Machine
Learning, pp. 1–7, 2021.

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support vector machines. ACM Transactions
on Intelligent Systems and Technology (TIST), 2(3):1–27, 2011.

Laurent Condat, Kai Yi, and Peter Richtárik. EF-BV: A unified theory of error feedback and variance
reduction mechanisms for biased and unbiased compression in distributed optimization. In Advances in
Neural Information Processing Systems, volume 35, 2022.

Laurent Condat, Grigory Malinovsky, and Peter Richtárik. Tamuna: Accelerated federated learning with
local training and partial participation. arXiv preprint arXiv:2302.09832, 2023.

Alexandre d’Aspremont, Damien Scieur, and Adrien Taylor. Acceleration methods. Foundation and Trends
in Optimization, 5(1–2):1–245, 2021.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao, Marc’aurelio Ranzato,
Andrew Senior, Paul Tucker, Ke Yang, et al. Large scale distributed deep networks. Advances in Neural
Information Processing Systems, 25, 2012.

Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, and Peter Richtárik. EF21 with bells & whistles:
Practical algorithmic extensions of modern error feedback. arXiv preprint arXiv:2110.03294, 2021.

Ilyas Fatkhullin, Alexander Tyurin, and Peter Richtárik. Momentum provably improves error feedback! In
Advances in Neural Information Processing Systems, volume 36, 2023.

10

https://books.google.com.sa/books?id=kOXDtAEACAAJ
https://books.google.com.sa/books?id=kOXDtAEACAAJ

Published as a conference paper at ICLR 2024

Dragoş Gavriluţ, Mihai Cimpoeşu, Dan Anton, and Liviu Ciortuz. Malware detection using machine learn-
ing. In 2009 International Multiconference on Computer Science and Information Technology, pp. 735–
741. IEEE, 2009.

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik. A unified theory of SGD: Variance reduction, sam-
pling, quantization and coordinate descent. In The 23rd International Conference on Artificial Intelligence
and Statistics, 2020.

Eduard Gorbunov, Konstantin Burlachenko, Zhize Li, and Peter Richtárik. MARINA: Faster non-convex
distributed learning with compression. In 38th International Conference on Machine Learning, 2021.

Samuel Horváth, Chen-Yu Ho, Ľudovı́t Horváth, Atal Narayan Sahu, Marco Canini, and Peter Richtárik.
Natural compression for distributed deep learning. arXiv preprint arXiv:1905.10988, 2019a.

Samuel Horváth, Dmitry Kovalev, Konstantin Mishchenko, Sebastian Stich, and Peter Richtárik. Stochastic
distributed learning with gradient quantization and variance reduction. arXiv preprint arXiv:1904.05115,
2019b.

Samuel Horváth, Chen-Yu Ho, Ludovit Horvath, Atal Narayan Sahu, Marco Canini, and Peter Richtárik.
Natural compression for distributed deep learning. In Mathematical and Scientific Machine Learning, pp.
129–141. PMLR, 2022.

IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. Technical report, IEEE, 2008. URL
https://ieeexplore.ieee.org/document/4610935. IEEE Std 754-2008.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open
problems in federated learning. Foundations and Trends® in Machine Learning, 14(1–2):1–210, 2021.

Ahmed Khaled and Peter Richtárik. Better theory for SGD in the nonconvex world. Transactions on Machine
Learning Research, 2022.

Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou, Robert M. Gower, and Peter Richtárik. Unified analysis
of stochastic gradient methods for composite convex and smooth optimization. Journal of Optimization
Theory and Applications, 2023.

Sarit Khirirat, Hamid Reza Feyzmahdavian, and Mikael Johansson. Distributed learning with compressed
gradients. arXiv preprint arXiv:1806.06573, 2018.

Jakub Konečný, H. Brendan McMahan, Daniel Ramage, and Peter Richtárik. Federated optimization: dis-
tributed machine learning for on-device intelligence. arXiv:1610.02527, 2016a.

Jakub Konečný, H. Brendan McMahan, Felix Yu, Peter Richtárik, Ananda Theertha Suresh, and Dave Ba-
con. Federated learning: strategies for improving communication efficiency. In NIPS Private Multi-Party
Machine Learning Workshop, 2016b.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems, volume 25, 2012.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE Signal Processing Magazine, 37:50–60, 2020a.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of FedAvg
on non-iid data. arXiv preprint arXiv:1907.02189, 2019.

11

https://ieeexplore.ieee.org/document/4610935

Published as a conference paper at ICLR 2024

Zhize Li, Dmitry Kovalev, Xun Qian, and Peter Richtárik. Acceleration for compressed gradient descent in
distributed and federated optimization. In International Conference on Machine Learning, 2020b.

Zhize Li, Hongyan Bao, Xiangliang Zhang, and Peter Richtárik. PAGE: A simple and optimal probabilis-
tic gradient estimator for nonconvex optimization. In International Conference on Machine Learning
(ICML), 2021.

Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: Measuring how models mimic human false-
hoods. In Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 3214–3252, Dublin, Ireland, May 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.acl-long.229. URL https://aclanthology.org/2022.
acl-long.229.

Tao Lin, Sebastian U Stich, Kumar Kshitij Patel, and Martin Jaggi. Don’t use large mini-batches, use local
SGD. arXiv preprint arXiv:1808.07217, 2018.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence
and statistics, pp. 1273–1282. PMLR, 2017.

Konstantin Mishchenko, Eduard Gorbunov, Martin Takáč, and Peter Richtárik. Distributed learning with
compressed gradient differences. arXiv preprint arXiv:1901.09269, 2019.

Konstantin Mishchenko, Grigory Malinovsky, Sebastian Stich, and Peter Richtárik. Proxskip: Yes! Local
gradient steps provably lead to communication acceleration! Finally! In International Conference on
Machine Learning, pp. 15750–15769. PMLR, 2022.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of convergence o
(1/kˆ 2), 1983. URL https://cir.nii.ac.jp/crid/1370576118744597902.

Yurii Nesterov. Introductory lectures on convex optimization: a basic course (Applied Optimization). Kluwer
Academic Publishers, 2004.

Ceylan Onay and Elif Öztürk. A review of credit scoring research in the age of big data. Journal of Financial
Regulation and Compliance, 26(3):382–405, 2018.

Ryan Poplin, Avinash V. Varadarajan, Katy Blumer, Yun Liu, Michael V. McConnell, Gregory S. Corrado,
Lily Peng, and Dale R. Webster. Predicting cardiovascular risk factors from retinal fundus photographs
using deep learning. arXiv preprint arXiv:1708.09843, 2017.

Peter Richtárik, Igor Sokolov, and Ilyas Fatkhullin. EF21: A new, simpler, theoretically better, and practi-
cally faster error feedback. In Advances in Neural Information Processing Systems, volume 34, 2021.

Peter Richtárik, Elnur Gasanov, and Konstantin Burlachenko. Error feedback shines when features are rare.
arXiv preprint arXiv:2305.15264, 2023.

Mher Safaryan, Egor Shulgin, and Peter Richtárik. Uncertainty principle for communication compression in
distributed and federated learning and the search for an optimal compressor. Information and Inference:
A Journal of the IMA, 11(2):557–580, 04 2021. ISSN 2049-8772. doi: 10.1093/imaiai/iaab006. URL
https://doi.org/10.1093/imaiai/iaab006.

Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtárik. FedNL: Making Newton-type methods
applicable to federated learning. In Internatioanl Conference on Machine Learning, 2022.

12

https://aclanthology.org/2022.acl-long.229
https://aclanthology.org/2022.acl-long.229
https://cir.nii.ac.jp/crid/1370576118744597902
https://doi.org/10.1093/imaiai/iaab006

Published as a conference paper at ICLR 2024

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech DNNs. In Fifteenth Annual Conference of the
International Speech Communication Association, 2014.

S. Shalev-Shwartz and S. Ben-David. Understanding Machine Learning: From Theory to Algorithms. Un-
derstanding Machine Learning: From Theory to Algorithms. Cambridge University Press, 2014. ISBN
9781107057135. URL https://books.google.com.sa/books?id=ttJkAwAAQBAJ.

Sebastian U Stich. Local SGD converges fast and communicates little. arXiv preprint arXiv:1805.09767,
2018.

Sebastian U. Stich, J.-B. Cordonnier, and Martin Jaggi. Sparsified SGD with memory. In Advances in Neural
Information Processing Systems, 2018.

Yu Sun, Yuan Liu, Guan Wang, Haiyan Zhang, et al. Deep learning for plant identification in natural
environment. Computational Intelligence and Neuroscience, 2017.

Rafał Szlendak, Alexander Tyurin, and Peter Richtárik. Permutation compressors for provably faster dis-
tributed nonconvex optimization. In International Conference on Learning Representations, 2022.

Alexander Tyurin and Peter Richtárik. DASHA: Distributed nonconvex optimization with communication
compression and optimal oracle complexity. In International Conference on Learning Representations,
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing Systems,
volume 30, 2017.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S Reller-
meyer. A survey on distributed machine learning. ACM Computing Surveys, 53(2):1–33, 2020.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. PowerSGD: Practical low-rank gradient com-
pression for distributed optimization. In Advances in Neural Information Processing Systems, 2019.

Jianyu Wang, Zachary Charles, Zheng Xu, Gauri Joshi, H. Brendan McMahan, Blaise Aguera y Arcas,
Maruan Al-Shedivat, Galen Andrew, Salman Avestimehr, Katharine Daly, Deepesh Data, Suhas Dig-
gavi, Hubert Eichner, Advait Gadhikar, Zachary Garrett, Antonious M. Girgis, Filip Hanzely, Andrew
Hard, Chaoyang He, Samuel Horvath, Zhouyuan Huo, Alex Ingerman, Martin Jaggi, Tara Javidi, Pe-
ter Kairouz, Satyen Kale, Sai Praneeth Karimireddy, Jakub Konecny, Sanmi Koyejo, Tian Li, Luyang
Liu, Mehryar Mohri, Hang Qi, Sashank J. Reddi, Peter Richtarik, Karan Singhal, Virginia Smith, Mahdi
Soltanolkotabi, Weikang Song, Ananda Theertha Suresh, Sebastian U. Stich, Ameet Talwalkar, Hongyi
Wang, Blake Woodworth, Shanshan Wu, Felix X. Yu, Honglin Yuan, Manzil Zaheer, Mi Zhang, Tong
Zhang, Chunxiang Zheng, Chen Zhu, and Wennan Zhu. A field guide to federated optimization. arXiv
preprint arXiv:2107.06917, 2021.

Jue Wang, Yucheng Lu, Binhang Yuan, Beidi Chen, Percy Liang, Christopher De Sa, Christopher Re, and
Ce Zhang. Cocktailsgd: Fine-tuning foundation models over 500mbps networks. In International Con-
ference on Machine Learning, pp. 36058–36076. PMLR, 2023.

Tao Yang, Xinlei Yi, Junfeng Wu, Ye Yuan, Di Wu, Ziyang Meng, Yiguang Hong, Hong Wang, Zongli
Lin, and Karl H. Johansson. A survey of distributed optimization. Annual Reviews in Control, 47:
278–305, 2019. ISSN 1367-5788. doi: https://doi.org/10.1016/j.arcontrol.2019.05.006. URL https:
//www.sciencedirect.com/science/article/pii/S1367578819300082.

13

https://books.google.com.sa/books?id=ttJkAwAAQBAJ
https://www.sciencedirect.com/science/article/pii/S1367578819300082
https://www.sciencedirect.com/science/article/pii/S1367578819300082

Published as a conference paper at ICLR 2024

Peilin Zhao and Tong Zhang. Stochastic optimization with importance sampling for regularized loss min-
imization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International Conference on
Machine Learning, volume 37 of Proceedings of Machine Learning Research, pp. 1–9, Lille, France,
07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/v37/zhaoa15.html.

14

https://proceedings.mlr.press/v37/zhaoa15.html

Published as a conference paper at ICLR 2024

A BASIC RESULTS AND LEMMAS

In this section, we offer a few results that serve as essential prerequisites for establishing the main findings
in the paper.

A.1 OPTIMAL CLIENT CLONING FREQUENCIES

Lemma 1 (Optimal weights). Let ai > 0 for i ∈ [n]. Then

min
w1>0,...,wn>0∑n

i=1 wi=1

n∑
i=1

a2i
wi

=

(
n∑

i=1

ai

)2

, (17)

which is achieved when w∗
i = ai∑

j aj
. This means that

min
w1>0,...,wn>0∑n

i=1 wi=1

1

n

√√√√ n∑
i=1

a2i
wi

=
1

n

n∑
i=1

ai. (18)

We now show that the cloning frequencies given by N⋆
i =

⌈
Li

LAM

⌉
form a

√
2-approximation for the opti-

mization problem of finding the optimal integer client frequencies.
Lemma 2 (

√
2-approximation). If we let N⋆

i =
⌈

Li

LAM

⌉
for all i ∈ [n], then

LAM ≤ min
N1∈N,...,Nn∈N

M(N1, . . . , Nn) ≤ M(N⋆
1 , . . . , N

⋆
n) ≤

√
2LAM.

Proof. Recall that

M(N1, . . . , Nn) :=
1

n

√√√√ n∑
i=1

L2
i

Ni/N
.

The first inequality in the claim follows by relaxing the integrality constraints, which gives us the bound

min
w1>0,...,wn>0∑n

i=1 wi=1

1

n

√√√√ n∑
i=1

L2
i

wi
≤ min

N1∈N,...,Nn∈N

1

n

√√√√ n∑
i=1

L2
i

Ni/N
,

and subsequently applying Lemma 17.

Next, we argue that the quantity N⋆ :=
∑

i N
⋆
i is at most 2n. Indeed,

N⋆ =

n∑
i=1

N⋆
i =

n∑
i=1

⌈
Li

LAM

⌉
≤

n∑
i=1

(
Li

LAM
+ 1

)
= 2n. (19)

We will now use this to bound M(N⋆
1 , . . . , N

⋆
n) from above:

M(N⋆
1 , . . . , N

⋆
n) =

1

n

√√√√ n∑
i=1

L2
i

N⋆
i /N

⋆

(19)
=

√
2√
n

√√√√ n∑
i=1

L2
i

N⋆
i

=

√
2√
n

√√√√ n∑
i=1

Li

LAM

N⋆
i

LiLAM.

Since
Li

LAM

N⋆
i

≤ 1 for all i ∈ [n], the proof is finished as follows:

M(N⋆
1 , . . . , N

⋆
n) ≤

√
2√
n

√√√√ n∑
i=1

LiLAM =

√
2√
n

√
LAM

√√√√ n∑
i=1

Li =
√
2LAM.

15

Published as a conference paper at ICLR 2024

A.2 DESCENT LEMMA

Lemma 3 (Li et al. (2021)). Let Assumption 1 hold and xt+1 = xt − γgt, where gt ∈ Rd is any vector, and
γ > 0 is any scalar. Then, we have

f(xt+1) ≤ f(xt)− γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2 + γ

2
∥gt −∇f(xt)∥2. (20)

A.3 YOUNG’S INEQUALITY

Lemma 4 (Young’s inequality). For any a, b ∈ Rd and any positive scalar s > 0 it holds that
∥a+ b∥2 ≤ (1 + s)∥a∥2 + (1 + s−1)∥b∥2. (21)

A.4 2-SUBOPTIMAL BUT SIMPLE STEPSIZE RULE

Lemma 5 (Lemma 5, Richtárik et al. (2021)). Let a, b > 0. If 0 < γ ≤ 1√
a+b

, then aγ2+bγ ≤ 1. Moreover,
the bound is tight up to the factor of 2 since

1√
a+ b

≤ min

{
1√
a
,
1

b

}
≤ 2√

a+ b
.

A.5 OPTIMAL COEFFICIENT IN YOUNG’S INEQUALITY

Lemma 6 (Lemma 3, Richtárik et al. (2021)). Let 0 < α ≤ 1 and for s > 0, let θ(α, s) := 1−(1−α)(1+s)
and β(α, s) := (1− α)

(
1 + s−1

)
. Then, the solution of the optimization problem

min
s

{
β(α, s)

θ(α, s)
: 0 < s <

α

1− α

}
(22)

is given by s∗ = 1√
1−α

− 1. Furthermore, θ(α, s∗) = 1−
√
1− α, and β(α, s∗) = 1−α

1−
√
1−α

.

16

Published as a conference paper at ICLR 2024

B CLONING REFORMULATION FOR POLYAK-ŁOJASCHEWITZ FUNCTIONS

For completeness, we also provide a series of convergence results under Polyak-Łojasiewicz condition. We
commence our exposition with the subsequent definition.
Assumption 4 (Polyak-Łojasiewicz). There exists a positive scalar µ > 0 such that for all points x ∈ Rd,
the following inequality is satisfied:

f(x)− f(x∗) ≤ 1

2µ
∥∇f(x)∥2, (23)

where x∗ := argmin f(x).
Theorem 5. Let Assumptions 1, 2, and 4 hold. Assume that Ct

i ∈ C(α) for all i ∈ [n] and t ≥ 0. Consider
Algorithm 1 (EF21) applied to the “cloning” reformulation 9 of the distributed optimization problem (1),
where N∗

i = ⌈ Li

LAM
⌉ for all i ∈ [n]. Let the stepsize be set as

0 ≤ γ ≤ min


(
L+

√
2LAM

√
2β

θ

)−1

,
θ

2µ

 ,

where θ = 1−
√
1− α and β = 1−α

1−
√
1−α

. Let

Ψt := f(xt)− f(x∗) +
γ

θ
Gt.

Then, for any T ≥ 0, we have
E
[
ΨT
]
≤ (1− γµ)TΨ0.

Proof. This theorem is a corollary of Theorem 2 in (Richtárik et al., 2021) and Lemma 2.

17

Published as a conference paper at ICLR 2024

C PROOF OF THEOREM 3 (THEORY FOR EF21-W)

In this section, we present a proof for Theorem 3. To start this proof, we establish a corresponding contrac-
tion lemma. We define the following quantities:

Gt
i :=

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2 ; Gt :=

n∑
i=1

wiG
t
i, (24)

where the weights wi are defined as specified in Algorithm 2, that is,

wi =
Li∑n
j=1 Lj

. (25)

C.1 A LEMMA

With these definitions in place, we are now prepared to proceed to the lemma.
Lemma 7. Let Ct

i ∈ C(α) for all i ∈ [n] and t ≥ 0. Let W t := {gt1, gt2, . . . , gtn, xt, xt+1}. Then, for iterates
of Algorithm 2 we have

E
[
Gt+1

i | W t
]
≤ (1− θ(α, s))Gt

i + β(α, s)
1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2 , (26)

and

E
[
Gt+1

]
≤ (1− θ(α, s))E

[
Gt
]
+ β(α, s)L2

AME
[∥∥xt+1 − xt

∥∥2] , (27)

where s > 0 is an arbitrary positive scalar, and
θ(α, s) := 1− (1− α)(1 + s), and β(α, s) := (1− α)

(
1 + s−1

)
. (28)

Proof. The proof is straightforward and bears resemblance to a similar proof found in a prior work (Richtárik
et al., 2021).

E
[
Gt+1

i | W t
] (24)

= E

[∥∥∥∥gt+1
i − ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]

= E

[∥∥∥∥gti + Ct
i

(
∇fi(x

t+1)

nwi
− gti

)
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
(4)
≤ (1− α)

∥∥∥∥∇fi(x
t+1)

nwi
− gti

∥∥∥∥2
= (1− α)

∥∥∥∥∇fi(x
t+1)

nwi
− ∇fi(x

t)

nwi
+

∇fi(x
t)

nwi
− gti

∥∥∥∥2
(21)
≤ (1− α)(1 + s)

∥∥∥∥∇fi(x
t)

nwi
− gti

∥∥∥∥2
+(1− α)

(
1 + s−1

) 1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2 ,

with the final inequality holding for any positive scalar s > 0. Consequently, we have successfully estab-
lished the first part of the lemma.

18

Published as a conference paper at ICLR 2024

By employing (24) and the preceding inequality, we can derive the subsequent bound for the conditional
expectation of Gt+1:

E
[
Gt+1 | W t

] (24)
= E

[
n∑

i=1

wiG
t+1
i | W t

]
(24)
=

n∑
i=1

wiE

[∥∥∥∥gt+1
i − ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
(26)
≤ (1− θ(α, s))

n∑
i=1

wi

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2
+β(α, s)

n∑
i=1

wi

w2
i n

2

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2 . (29)

Applying Assumption 2 and (25), we further proceed to:

E
[
Gt+1 | W t

] (29)
≤ (1− θ(α, s))

n∑
i=1

wi

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2 + β(α, s)

n∑
i=1

wi

w2
i n

2

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

(24)
= (1− θ(α, s))Gt + β(α, s)

n∑
i=1

1

win2

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

(7)
≤ (1− θ(α, s))Gt + β(α, s)

(
n∑

i=1

L2
i

win2

)∥∥xt+1 − xt
∥∥2

(25)
= (1− θ(α, s))Gt + β(α, s)

 n∑
i=1

L2
i

Li∑n
j=1 Lj

n2

∥∥xt+1 − xt
∥∥2

= (1− θ(α, s))Gt + β(α, s)

(
n∑

i=1

Li

∑n
j=1 Lj

n2

)∥∥xt+1 − xt
∥∥2

= (1− θ(α, s))Gt + β(α, s)L2
AM

∥∥xt+1 − xt
∥∥2 . (30)

Using the tower property, we get

E
[
Gt+1

]
= E

[
E
[
Gt+1 | W t

]] (30)
≤ (1− θ(α, s))E

[
Gt
]
+ β(α, s)L2

AME
[∥∥xt+1 − xt

∥∥2] ,
and this finalizes the proof.

C.2 MAIN RESULT

We are now prepared to establish the proof for Theorem 3.

Proof. Note that, according to (13), the gradient estimate for Algorithm 2 gets the following form:

gt =

n∑
i=1

wig
t
i . (31)

19

Published as a conference paper at ICLR 2024

Using Lemma 3 and Jensen’s inequality applied to the function x 7→ ∥x∥2 (since
∑n

i=1 wi = 1), we obtain
the following bound:

f(xt+1)
(20)
≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥∥∥∥gt −
n∑

i=1

∇fi(x
t)

∥∥∥∥∥
2

(31)
= f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥∥∥∥
n∑

i=1

wi

(
gti −

∇fi(x
t)

nwi

)∥∥∥∥∥
2

≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

n∑
i=1

wi

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2
(24)
= f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2
Gt. (32)

Subtracting f∗ from both sides and taking expectation, we get

E
[
f(xt+1)− f∗] ≤ E

[
f(xt)− f∗]− γ

2
E
[∥∥∇f(xt)

∥∥2]
−
(

1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ γ

2
E
[
Gt
]
. (33)

Let δt := E [f(xt)− f∗], st := E [Gt] and rt := E
[∥∥xt+1 − xt

∥∥2] . Subsequently, by adding (27) with a
γ

2θ(α,s) multiplier, we obtain

δt+1 +
γ

2θ(α, s)
st+1

(33)
≤ δt − γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)
rt +

γ

2
st +

γ

2θ
st+1

(27)
≤ δt − γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)
rt +

γ

2
st

+
γ

2θ(α, s)

(
β(α, s)L2

AMrt + (1− θ(α, s))st
)

= δt +
γ

2θ(α, s)
st − γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2
− γ

2θ(α, s)
β(α, s)L2

AM

)
rt

≤ δt +
γ

2θ(α, s)
st − γ

2

∥∥∇f(xt)
∥∥2 .

The last inequality is a result of the bound γ2 β(α,s)L2
AM

θ(α,s) + Lγ ≤ 1, which is satisfied for the stepsize

γ ≤ 1

L+ LAMξ(α, s)
,

where ξ(α, s) :=
√

β(α,s)
θ(α,s) . Maximizing the stepsize bound over the choice of s using Lemma 6, we obtain

the final stepsize. By summing up inequalities for t = 0, . . . , T − 1, we get

0 ≤ δT +
γ

2θ
sT ≤ δ0 +

γ

2θ
s0 − γ

2

T−1∑
t=0

E
[∥∥∇f(xt)

∥∥2] .
Multiplying both sides by 2

γT , after rearranging we get
T−1∑
t=0

1

T
E
[∥∥∇f(xt)

∥∥2] ≤ 2δ0

γT
+

s0

θT
.

20

Published as a conference paper at ICLR 2024

It remains to notice that the left hand side can be interpreted as E
[∥∥∇f(x̂T)

∥∥2], where x̂T is chosen from

{x0, x1, . . . , xT−1} uniformly at random.

C.3 MAIN RESULT FOR POLYAK-ŁOJASIEWICZ FUNCTIONS

The main result is presented next.
Theorem 6. Let Assumptions 1, 2, and 4 hold. Assume that Ct

i ∈ C(α) for all i ∈ [n] and t ≥ 0. Let the
stepsize in Algorithm 2 be set as

0 < γ ≤ min

{
1

L+
√
2LAMξ(α)

,
θ(α)

2µ

}
.

Let
Ψt := f(xt)− f(x∗) +

γ

θ
Gt.

Then, for any T > 0 the following inequality holds:
E
[
ΨT
]
≤ (1− γµ)TΨ0. (34)

Proof. We proceed as in the previous proof, starting from the descent lemma with the same vector but using
the PL inequality and subtracting f(x⋆) from both sides:

E
[
f(xt+1)− f(x⋆)

] (20)
≤ E

[
f(xt)− f(x⋆)

]
− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2
Gt

(23)
≤ (1− γµ)E

[
f(xt)− f(x⋆)

]
−
(

1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2
Gt. (35)

Let δt := E [f(xt)− f(x⋆)], st := E [Gt] and rt := E
[∥∥xt+1 − xt

∥∥2]. Thus,

δt+1 +
γ

θ
st+1

(44)
≤ (1− γµ)δt −

(
1

2γ
− L

2

)
rt +

γ

2
st +

γ

θ
st+1

(27)
≤ (1− γµ)δt −

(
1

2γ
− L

2

)
rt +

γ

2
st +

γ

θ

(1− θ)st + β

(
1

n

n∑
i=1

Li

)2

rt


= (1− γµ)δt +

γ

θ

(
1− θ

2

)
st −

(
1

2γ
− L

2
− βL2

AMγ

θ

)
rt,

where θ and β are set as in Lemma 6. Note that our extra assumption on the stepsize implies that 1 − θ
2 ≤

1− γµ and
1

2γ
− L

2
− βL2

AMγ

θ
≥ 0.

The last inequality follows from the bound γ2 2βL2
AM

θ + γL ≤ 1. Thus,

δt+1 +
γ

θ
st+1 ≤ (1− γµ)

(
δt +

γ

θ
st
)
.

It remains to unroll the recurrence.

21

Published as a conference paper at ICLR 2024

D PROOF OF THEOREM 4 (IMPROVED THEORY FOR EF21)

We commence by redefining gradient distortion as follows:

Gt :=
1

n2

n∑
i=1

1

wi
∥∇fi(x

t)− gti∥2. (36)

We recall that the gradient update step for standard EF21 (Algorithm 1) takes the following form:
gt+1
i = gti + Ct

i (∇fi(x
t+1)− gti), (37)

gt+1 =
1

n

n∑
i=1

gt+1
i . (38)

D.1 TWO LEMMAS

Once more, we start our proof with the contraction lemma.
Lemma 8. Let Ct

i ∈ C(α) for all i ∈ [n] and t ≥ 0. Define W t := {gt1, gt2, . . . , gtn, xt, xt+1}. Let
Assumption 2 hold. Then

E
[
Gt+1 | W t

]
≤ (1− θ(α, s))Gt + β(α, s)L2

AM∥xt+1 − xt∥2, (39)
where θ(α, s) := 1− (1− α)(1 + s) and β(α, s) := (1− α)(1 + s−1) for any s > 0.

Proof. The proof of this lemma starts as the similar lemma in the standard analysis of EF21:

E
[
Gt+1 | W t

] (36)
=

1

n2

n∑
i=1

1

wi
E
[
∥∇fi(x

t+1)− gt+1
i ∥2 | W t

]
(37)
=

1

n2

n∑
i=1

1

wi
E
[
∥gti + Ct

i (∇fi(x
t+1)− gti)−∇fi(x

t+1)∥2 | W t
]

(4)
≤ 1

n2

n∑
i=1

1− α

wi
∥∇fi(x

t+1)− gti)∥2

=
1

n2

n∑
i=1

1− α

wi
∥∇fi(x

t+1)−∇fi(x
t) +∇fi(x

t)− gti)∥2

(21)
≤ 1

n2

n∑
i=1

1− α

wi

(
(1 + s−1)∥∇fi(x

t+1)−∇fi(x
t))∥2 + (1 + s)∥gti −∇fi(x

t)∥2
)

(40)

22

Published as a conference paper at ICLR 2024

for all s > 0. We proceed the proof as follows:

E
[
Gt+1 | W t

] (40)
≤ 1

n2

n∑
i=1

1− α

wi

(
(1 + s−1)∥∇fi(x

t+1)−∇fi(x
t))∥2 + (1 + s)∥gti −∇fi(x

t)∥2
)

= (1− θ(α, s))
1

n2

n∑
i=1

1

wi
∥gti −∇fi(x

t)∥2 + β(α, s)

n2

n∑
i=1

1

wi
∥∇fi(x

t+1)−∇fi(x
t))∥2

(36)
= (1− θ(α, s))Gt +

β(α, s)

n2

n∑
i=1

1

wi
∥∇fi(x

t+1)−∇fi(x
t)∥2

(7)
≤ (1− θ(α, s))Gt +

β(α, s)

n2

n∑
i=1

L2
i

wi
∥xt+1 − xt∥2. (41)

Note that this is the exact place where the current analysis differs from the standard one. It fully coincides
with it when wi = 1

n , i.e., when we assign the same weight for each individual gradient distortion ∥gti −
∇fi(x

t)∥2. However, applying weights according to “importance” of each function, we proceed as follows:

E
[
Gt+1 | W t

] (41)
≤ (1− θ(α, s))Gt +

β(α, s)

n2

n∑
i=1

L2
i

wi
∥xt+1 − xt∥2

(25)
= (1− θ(α, s))Gt +

β(α, s)

n2

n∑
i=1

L2
i

Li

(
n∑

i=1

Li

)
∥xt+1 − xt∥2

= (1− θ(α, s))Gt +
β(α, s)

n2

∑
j

Lj

(
n∑

i=1

Li

)
∥xt+1 − xt∥2

= (1− θ(α, s))Gt + β(α, s)L2
AM∥xt+1 − xt∥2,

what finishes the proof.

To prove the main convergence theorem, we also need the following lemma.
Lemma 9. For the variable gt from Algorithm 1, the following inequality holds:

∥gt −∇f(xt)∥2 ≤ Gt. (42)

Proof. The proof is straightforward:

∥gt −∇f(xt)∥2 (38)
=

∥∥∥∥∥
n∑

i=1

1

n

(
gti −∇fi(x

t)
)∥∥∥∥∥

2

=

∥∥∥∥∥
n∑

i=1

wi
1

win

(
gti −∇fi(x

t)
)∥∥∥∥∥

2

≤
n∑

i=1

wi

∥∥∥∥ 1

win

(
gti −∇fi(x

t)
)∥∥∥∥2

=

n∑
i=1

1

win2
∥gt −∇fi(x

t)∥2 (36)
= Gt,

where the only inequality in this series of equations is derived using Jensen’s inequality.

23

Published as a conference paper at ICLR 2024

D.2 MAIN RESULT

We are now equipped with all the necessary tools to establish the convergence theorem.

Proof. Let us define the Lyapunov function

Φt := f(xt)− f∗ +
γ

2θ(α, s)
Gt.

Let us also define W t := {gt1, gt2, . . . , gtn, xt, xt+1}. We start as follows:
E
[
Φt+1 | W t

]
= E

[
f(xt+1)− f∗ | W t

]
+

γ

2θ(α, s)
E
[
Gt+1 | W t

]
(20)
≤ f(xt)− f∗ − γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2 + γ

2
∥gt −∇f(xt)∥2

+
γ

2θ(α, s)
E
[
Gt+1 | W t

]
(42)
≤ f(xt)− f∗ − γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2 + γ

2
Gt

+
γ

2θ(α, s)
E
[
Gt+1 | W t

]
(39)
≤ f(xt)− f∗ − γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2 + γ

2
Gt

+
γ

2θ(α, s)

(
(1− θ(α, s))Gt + β(α, s)L2

AM∥xt+1 − xt∥2
)

= f(xt)− f∗ +
γ

2θ(α, s)
Gt − γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2
− γβ(α, s)

2θ(α, s)
L2
AM

)
︸ ︷︷ ︸

≥0

∥xt+1 − xt∥2

≤ f(xt)− f∗ +
γ

2θ(α, s)
Gt − γ

2
∥∇f(xt)∥2

= Φt − γ

2
∥∇f(xt)∥2.

The inequality in the last but one line is valid if

γ ≤ 1

L+ LAM

√
β(α,s)
θ(α,s)

,

according to Lemma 5. By optimizing the stepsize bound through the selection of s in accordance with
Lemma 6, we derive the final stepsize and establish the optimal value for θ in defining the Lyapunov function.
Applying the tower property and unrolling the recurrence, we finish the proof.

D.3 MAIN RESULT FOR POLYAK-ŁOJASIEWICZ FUNCTIONS

For completeness, we also provide a convergence result under Polyak-Łojasiewicz condition (Assumption 4).
The main result is presented next.

24

Published as a conference paper at ICLR 2024

Theorem 7. Let Assumptions 1, 2, and 4 hold. Assume that Ct
i ∈ C(α) for all i ∈ [n] and t ≥ 0. Let the

stepsize in Algorithm 2 be set as

0 < γ ≤ min

{
1

L+
√
2LAMξ(α)

,
θ(α, s)

2µ

}
.

Let
Ψt := f(xt)− f(x∗) +

γ

θ(α, s)
Gt.

Then, for any T > 0 the following inequality holds:
E
[
ΨT
]
≤ (1− γµ)TΨ0. (43)

Proof. We proceed as in the previous proof, starting from the descent lemma with the same vector but using
the PL inequality and subtracting f(x⋆) from both sides:

E
[
f(xt+1)− f(x⋆)

] (20)
≤ E

[
f(xt)− f(x⋆)

]
− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2
Gt

(23)
≤ (1− γµ)E

[
f(xt)− f(x⋆)

]
−
(

1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2
Gt. (44)

Let δt := E [f(xt)− f(x⋆)], st := E [Gt] and rt := E
[∥∥xt+1 − xt

∥∥2]. Thus,

δt+1 +
γ

θ(α, s)
st+1

(44)
≤ (1− γµ)δt −

(
1

2γ
− L

2

)
rt +

γ

2
st +

γ

θ(α, s)
st+1

(39)
≤ (1− γµ)δt −

(
1

2γ
− L

2

)
rt +

γ

2
st

+
γ

θ(α, s)

(1− θ(α, s))st + β

(
1

n

n∑
i=1

Li

)2

rt


= (1− γµ)δt +

γ

θ(α, s)

(
1− θ(α, s)

2

)
st −

(
1

2γ
− L

2
− βL2

AMγ

θ(α, s)

)
rt.

Note that our extra assumption on the stepsize implies that 1− θ(α,s)
2 ≤ 1− γµ and

1

2γ
− L

2
− βL2

AMγ

θ(α, s)
≥ 0.

The last inequality follows from the bound γ2 2βL2
AM

θ(α,s) + γL ≤ 1. Thus,

δt+1 +
γ

θ(α, s)
st+1 ≤ (1− γµ)

(
δt +

γ

θ(α, s)
st
)
.

It remains to unroll the recurrence which finishes the prove.

25

Published as a conference paper at ICLR 2024

E EF21-W-SGD: WEIGHTED ERROR FEEDBACK 2021 WITH STOCHASTIC
SUBSAMPLED GRADIENTS

The EF21-W algorithm assumes that all clients can compute the exact gradient in each round. In some
scenarios, the exact gradients may be unavailable or too costly to compute, and only approximate gradient
estimators can be obtained. In this section, we present the convergence result for EF21-W in the setting where
the gradient computation on the clients, ∇fi(x

t+1), is replaced by a specific stochastic gradient estimator.
For a variation of EF21-W-SGD which is working under a more general setting please see Appendix F.

E.1 ALGORITHM

In this section, we extend EF21-W to handle stochastic gradients, and we call the resulting algorithm EF21-
W-SGD (Algorithm 3). Our analysis of this extension follows a similar approach as the one used by
Fatkhullin et al. (2021) for studying the stochastic gradient version of the vanilla EF21 algorithm, which
they called EF21-SGD. Analysis of EF21-W-SGD has two important differences with vanilla EF21-SGD:

1. Vanilla EF21-SGD provides maximum theoretically possible γ =

(
L+ LQM

√
β1

θ

)−1

, where

EF21-W-SGD has γ =

(
L+ LAM

√
β1

θ

)−1

2. Vanilla EF21-SGD and EF21-W-SGD formally differs in a way how it reports iterate xT which min-
imizes E

[∥∥∇f(xT)
∥∥2] due to a slightly different definition of Ã. The EF21-W-SGD (Algorithm 3)

requires output iterate x̂T randomly according to the probability mass function described by (49).

Algorithm 3 EF21-W-SGD: Weighted Error Feedback 2021 with Stochastic Gradients
1: Input: initial model x0 ∈ Rd; initial gradient estimates g01 , g

0
2 , . . . , g

0
n ∈ Rd stored at the server and the

clients; stepsize γ > 0; number of iterations T > 0; weights wi =
Li∑
j Lj

for i ∈ [n]

2: Initialize: g0 =
∑n

i=1 wig
0
i on the server

3: for t = 0, 1, 2, . . . , T − 1 do
4: Server computes xt+1 = xt − γgt and broadcasts xt+1 to all n clients
5: for i = 1, . . . , n on the clients in parallel do
6: Compute a stochastic estimator ĝi(xt+1) = 1

τi

∑τi
j=1 ∇fξtij (x

t+1) of the gradient ∇fi(x
t+1)

7: Compute ut
i = Ct

i

(
1

nwi
ĝi(x

t+1)− gti

)
and update gt+1

i = gti + ut
i

8: Send the compressed message ut
i to the server

9: end for
10: Server updates gt+1

i = gti + ut
i for all i ∈ [n], and computes gt+1 =

∑n
i=1 wig

t+1
i

11: end for
12: Output: Point x̂T chosen from the set {x0, . . . , xT−1} randomly according to the law (49)

Assumption 5 (General assumption for stochastic gradient estimators). We assume that for all i ∈ [n] there
exist parameters Ai, Ci ≥ 0, Bi ≥ 1 such that

E
[
∥∇fξtij (x)∥

2
]
≤ 2Ai

(
fi(x)− f inf

i

)
+Bi∥∇fi(x)∥2 + Ci, (45)

26

Published as a conference paper at ICLR 2024

holds for all x ∈ Rd, where3 f inf
i = infx∈Rd fi(x) > −∞.

We study EF21-W-SGD under the same assumption as was used for analyzing Vanilla EF21-SGD, which we
denote as Assumption 5. To the best of our knowledge, this assumption, which was originally presented
as Assumption 2 by Khaled & Richtárik (2022), is the most general assumption for a stochastic gradient
estimator in a non-convex setting.

Next, to be aligned with original Vanilla EF21-SGD (Fatkhullin et al., 2021) we have considered a specific
form of gradient estimator. This specific form of gradient estimator from Vanilla EF21-SGD presented in
Section 4.1.2. of Fatkhullin et al. (2021) where the stochastic gradient ĝi has been computed as follows:

ĝi(x
t+1) =

1

τi

τi∑
j=1

∇fξtij (x
t+1),

Here τi is a minibatch size of sampled datapoint indexed by ξtij of client i in iteration t. And ξtij are
independent random variables. For a version of EF21-W-SGD which is working under a more general setting
please see Appendix F.

E.2 A LEMMA

The contraction lemma in this case gets the following form:
Lemma 10. Let Ct

i ∈ C(α) for all i ∈ [n] and t ≥ 0. Define

Gt
i :=

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2 , Gt :=

n∑
i=1

wiG
t
i.

Let Assumptions 2 and 5 hold. Then, for any s, ν > 0 we have

E
[
Gt+1

]
≤ (1− θ̂)E

[
Gt
]
+ β̂1L

2
AME

[∥∥xt+1 − xt
∥∥2]+ Ãβ̂2E

[
f(xt+1)− f inf

]
+ C̃β̂2, (46)

where

wi :=
Li∑
j Lj

,

θ̂ := 1− (1− α) (1 + s)(1 + ν),

β̂1 := 2(1− α) (1 + s)
(
s+ ν−1

)
,

β̂2 := 2(1− α)(1 + s)(1 + ν−1) + (1 + s−1),

Ã := max
i=1,...,n

(
2(Ai + Li(Bi − 1))

τi

1

nwi

)
,

C̃ := max
i=1,...,n

(
Ci

τi

1

nwi

)
.

3When Ai = 0 one can ignore the first term in the right-hand side of (45), i.e., assumption infx∈Rd fi(x) > −∞ is
not required in this case.

27

Published as a conference paper at ICLR 2024

Proof. Define W t := {gt1, . . . , gtn, xt, xt+1}. The proof starts as follows:

E
[
Gt+1

i | W t
] (24)

= E

[∥∥∥∥gt+1
i − ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
line 7
= E

[∥∥∥∥gti + Ct
i

(
ĝi(x

t+1)

nwi
− gti

)
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]

= E

[∥∥∥∥Ct
i

(
ĝi(x

t+1)

nwi
− gti

)
−
(
ĝi(x

t+1)

nwi
− gti

)
+

ĝi(x
t+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
(21)
≤ (1 + s)E

[∥∥∥∥Ct
i

(
ĝi(x

t+1)

nwi
− gti

)
−
(
ĝi(x

t+1)

nwi
− gti

)∥∥∥∥2 | W t

]

+(1 + s−1)E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
(4)
≤ (1− α)(1 + s)E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t)

nwi
+

∇fi(x
t)

nwi
− gti

∥∥∥∥2 | W t

]

+(1 + s−1)E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
(21)
≤ (1− α)(1 + s)(1 + ν)E

[∥∥∥∥git − ∇fi(x
t)

nwi

∥∥∥∥2
]

+(1− α)(1 + s)(1 + ν−1)E

[∥∥∥∥∇fi(x
t)

nwi
− ĝi(x

t+1)

nwi

∥∥∥∥2 | W t

]

+(1 + s−1)E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
(21)
≤ (1− α)(1 + s)(1 + ν)E

[∥∥∥∥git − ∇fi(x
t)

nwi

∥∥∥∥2 | W t

]

+2(1− α)(1 + s)(1 + ν−1)E

[∥∥∥∥∇fi(x
t+1)

nwi
− ĝi(x

t+1)

nwi

∥∥∥∥2 | W t

]

+2(1− α)(1 + s)(1 + ν−1)

∥∥∥∥∇fi(x
t+1)

nwi
− ∇fi(x

t)

nwi

∥∥∥∥2
+(1 + s−1)E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
.

To further bound the last term, which contains multiple (1 + s−1) factors, we leverage the property that
ĝi(x

t+1) is a random variable serving as an unbiased estimator of ∇fi(x
t+1), taking the form

ĝi(x
t+1) =

1

τi

τi∑
j=1

∇fξtij (x
t+1),

28

Published as a conference paper at ICLR 2024

where ξtij are independent random variables. Next, we can continue as follows:

E
[
Gt+1

i | W t
]

≤ (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
β̂2

(nwi)2

E


∥∥∥∥∥∥ 1τi

τi∑
j=1

∇fξtij (x
t+1)− 1

τi

τi∑
j=1

∇fi(x
t+1)

∥∥∥∥∥∥
2

| W t




= (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
β̂2

(nwi)2τ2

E


∥∥∥∥∥∥

τi∑
j=1

(
∇fξtij (x

t+1)−∇fi(x
t+1)

)∥∥∥∥∥∥
2

| W t




= (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
β̂2

(nwi)2τi2

τi∑
j=1

(
E
[∥∥∥∇fξtij (x

t+1)
∥∥∥2 | W t

]
−
∥∥∥E [∇fξtij (x

t+1) | W t
]∥∥∥2)

≤ (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
β̂2

(nwi)2τi2

τi∑
j=1

(
2Ai

(
fi(x

t+1)− f inf
i

)
+Bi∥∇fi(x

t+1)∥2 + Ci −
∥∥∇fi(x

t+1
∥∥2))

= (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∥∇fi(x
t+1)−

∥∥∇fi(x
t)
∥∥2∥∥∥2

+
2Aiβ̂2

(nwi)2τi

(
fi(x

t+1)− f inf
i

)
+

2(Bi − 1)β̂2

(nwi)2τi

(
1

2
∥∇fi(x

t+1)∥2
)
+

Ciβ̂2

(nwi)2τi

≤ (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
2Aiβ̂2

(nwi)2τi

(
fi(x

t+1)− f inf
i

)
+

2(Bi − 1)β̂2

(nwi)2τi
Li

(
fi(x

t+1)− f inf
i

)
+

Ciβ̂2

(nwi)2τi

= (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
2(Ai + Li(Bi − 1))β̂2

(nwi)2τi

(
fi(x

t+1)− f inf
i

)
+

Ciβ̂2

(nwi)2τi
.

Furthermore, as a result of leveraging Assumption 2, we can derive the subsequent bound:

E
[
Gt+1

i | W t
]

≤ (1− θ̂)Gt
i +

β̂1L
2
i

n2w2
i

∥∥xt+1 − xt
∥∥2

+
2(Ai + Li(Bi − 1))β̂2

(nwi)2τi

(
fi(x

t+1)− f inf
i

)
+

Ciβ̂2

(nwi)2τi
.

29

Published as a conference paper at ICLR 2024

Applying the tower property and subsequently taking the expectation, we obtain:

E
[
Gt+1

i

]
≤ (1− θ̂)E

[
Gt

i

]
+ β̂1

1

n2w2
i

L2
iE
[∥∥xt+1 − xt

∥∥2]
+

2(Ai + Li(Bi − 1))β̂2

(nwi)2τi
E
[
fi(x

t+1)− f inf
i

]
+

Ciβ̂2

(nwi)2τi
.

(47)

Regarding the expectation of Gt+1, we derive the subsequent bound:

E
[
Gt+1

]
= E

[
n∑

i=1

wiG
t+1
i

]

=

n∑
i=1

wiE
[
Gt+1

i

]
(47)
≤ (1− θ̂)

n∑
i=1

wiE
[
Gt

i

]
+

n∑
i=1

wiβ̂1
1

n2w2
i

L2
i · E

[∥∥xt+1 − xt
∥∥2]

+

n∑
i=1

wi
2(Ai + Li(Bi − 1))β̂2

(nwi)2τi
· E
[
fi(x

t+1)− f inf
i

]
+

n∑
i=1

wi
Ciβ̂2

(nwi)2τi

= (1− θ̂)E
[
Gt
]
+

n∑
i=1

β̂1
1

n2wi
L2
i · E

[∥∥xt+1 − xt
∥∥2]

+

n∑
i=1

2(Ai + Li(Bi − 1))β̂2

n2wiτi
· E
[
fi(x

t+1)− f inf
i

]
+

n∑
i=1

Ciβ̂2

n2wiτi
.

Employing quantities Ã and C̃, the final bound can be reformulated as follows:

E
[
Gt+1

]
≤ (1− θ̂)E

[
Gt
]
+

n∑
i=1

β̂1
1

n2wi
L2
i · E

[∥∥xt+1 − xt
∥∥2]

+
1

n

n∑
i=1

Ãβ̂2 · E
[
fi(x

t+1)− f inf
i

]
+ C̃β̂2

≤ (1− θ̂)E
[
Gt
]
+

n∑
i=1

β̂1
1

n2wi
L2
i · E

[∥∥xt+1 − xt
∥∥2]

+
1

n

n∑
i=1

Ãβ̂2 · E
[
fi(x

t+1)− f inf
]
+ C̃β̂2

≤ (1− θ̂)E
[
Gt
]
+

n∑
i=1

β̂1
1

n2wi
L2
i · E

[∥∥xt+1 − xt
∥∥2]

+Ãβ̂2E
[
f(xt+1)− f inf

]
+ C̃β̂2.

30

Published as a conference paper at ICLR 2024

Given that wi =
Li∑
j Lj

, we have:

E
[
Gt+1

]
≤ (1− θ̂)E

[
Gt
]
+

1

n

n∑
i=1

β̂1

∑
j Lj

n
LiE

[∥∥xt+1 − xt
∥∥2]

+Ãβ̂2E
[
f(xt+1)− f inf

]
+ C̃β̂2

= (1− θ̂)E
[
Gt
]
+ β̂1

(
1

n

n∑
i=1

Li

)2

· E
[∥∥xt+1 − xt

∥∥2]
+Ãβ̂2E

[
f(xt+1)− f inf

]
+ C̃β̂2,

what completes the proof.

E.3 MAIN RESULT

Now we are ready to prove the main convergence theorem.
Theorem 8. Let Ct

i ∈ C(α) for all ∈ [n] and t ≥ 0 in Algorithm 3. Set the following quantities:

θ̂ := 1− (1− α) (1 + s)(1 + ν),

β̂1 := 2(1− α) (1 + s)
(
s+ ν−1

)
,

β̂2 := 2(1− α)(1 + s)(1 + ν−1) + (1 + s−1),

wi :=
Li∑
j Lj

,

Ã := max
i=1,...,n

(
2(Ai + Li(Bi − 1))

τi

1

nwi

)
,

C̃ := max
i=1,...,n

(
Ci

τi

1

nwi

)
.

Under Assumptions 1, 2, and 5, and selection of s > 0, µ > 0 such that (1 + s)(1 + µ) < 1
1−α set the

stepsize in the following way:

γ ≤ 1

L+ LAM

√
β̂1

θ̂

. (48)

Choose an iterate x̂T from {x0, x1, . . . , xT−1} with probability

Prob(x̂T = xt) =
vt
VT

, (49)

where

vt :=

(
1− γÃβ̃2

2θ

)t

; VT :=

T−1∑
t=0

vt.

Then,

E
[∥∥∇f(x̂T)

∥∥2] ≤ 2(f(x0)− f inf)

γT
(
1− γÃβ̂2

2θ

)T +
G0

θ̂T
(
1− γÃβ̂2

2θ

)T +
C̃β2

θ̂
, (50)

where G0 :=
∑n

i=1 wi∥g0i − 1
nwi

∇fi(x
0)∥2.

31

Published as a conference paper at ICLR 2024

Proof. In the derivation below, we use Lemma 3 for

gt =

n∑
i=1

wig
t
i . (51)

We start as follows:

f(xt+1)
(20)
≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥∥∥∥gt −
n∑

i=1

∇fi(x
t)

∥∥∥∥∥
2

(51)
= f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥∥∥∥
n∑

i=1

wi

(
gti −

∇fi(x
t)

nwi

)∥∥∥∥∥
2

≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

n∑
i=1

wi

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2
= f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2
Gt. (52)

Subtracting f∗ from both sides and taking expectation, we get

E
[
f(xt+1)− f∗] ≤ E

[
f(xt)− f∗]− γ

2
E
[∥∥∇f(xt)

∥∥2]
−
(

1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ γ

2
E
[
Gt
]
. (53)

Let δt := E [f(xt)− f∗], st := E [Gt] and rt := E
[∥∥xt+1 − xt

∥∥2] . Then by adding γ
2θ s

t+1 and employing
(46), we obtain:

δt+1 +
γ

2θ̂
st+1 ≤ δt − γ

2
E
[∥∥∇f(xt)

∥∥2]− (1

2γ
− L

2

)
rt +

γ

2
st

+
γ

2θ̂

(
β̂1L

2
AMrt + (1− θ̂)st + Ãβ̂2δ

t+1 + C̃β̂2

)
= δt +

γ

2θ̂
st − γ

2
E
[∥∥∇f(xt)

∥∥2]− (1

2γ
− L

2
− γ

2θ̂
β̂1L

2
AM

)
rt +

γÃβ2

2θ̂
δt+1 +

γC̃

2θ̂
β2

≤ δt +
γ

2θ̂
st − γ

2
E
[∥∥∇f(xt)

∥∥2]+ γÃβ2

2θ̂
δt+1 +

γC̃

2θ̂
β2.

The last inequality follows from the bound γ2 β̂1L
2
AM

θ̂
+ Lγ ≤ 1, which holds due to Lemma 5 for γ ≤

1

L+LAM

√
β̂1
θ̂

. Subsequently, we will reconfigure the final inequality and perform algebraic manipulations,

taking into account that 2
γ > 0. In the final step of these algebraic transformations, we will leverage the fact

that st ≥ 0:

δt+1 +
γ

2θ̂
st+1 ≤ δt +

γ

2θ̂
st − γ

2
E
[∥∥∇f(xt)

∥∥2]+ γÃβ2

2θ̂
δt+1 +

γC̃

2θ̂
β2.

Therefore,
2

γ
δt+1 +

2

γ

γ

2θ̂
st+1 ≤ 2

γ
δt +

2

γ

γ

2θ̂
st − E

[∥∥∇f(xt)
∥∥2]+ 2

γ

γÃβ2

2θ̂
δt+1 +

2

γ

γC̃

2θ̂
β2.

32

Published as a conference paper at ICLR 2024

Further,

E
[∥∥∇f(xt)

∥∥2] ≤ − 2

γ
δt+1 − 2

γ

γ

2θ̂
st+1 +

2

γ
δt +

2

γ

γ

2θ̂
st +

2

γ

γÃβ2

2θ̂
δt+1 +

2

γ

γC̃

2θ̂
β2

≤ − 2

γ
δt+1 − 2

γ

γ

2θ̂
st+1 +

2

γ

(
δt +

γ

2θ̂
st
)
+

2

γ

γÃβ2

2θ̂
δt+1 +

C̃β2

θ̂

≤ 2

γ

((
δt +

γ

2θ̂
st
)
− 1

(
1− γÃβ2

2θ̂

)
δt+1 −

(
γ

2θ̂
st+1

))
+

C̃β2

θ̂

≤ 2

γ

((
δt +

γ

2θ̂
st
)
−

(
1− γÃβ2

2θ̂

)(
δt+1 +

γ

2θ̂
st+1

))
+

C̃β2

θ̂
.

We sum up inequalities above with weights vt/VT , where vt := (1− γÃβ̂2

2θ)t and VT :=
∑T

i=1 vi:

E
[∥∥∇f(x̂T)

∥∥2] =

T∑
t=0

vt
VT

E
[∥∥∇f(xt)

∥∥2]
=

1

VT

T∑
t=0

vtE
[∥∥∇f(xt)

∥∥2]
≤ 1

VT

T∑
t=0

vt

(
2

γ

((
δt +

γ

2θ̂
st
)
−

(
1− γÃβ2

2θ̂

)(
δt+1 +

γ

2θ̂
st+1

))
+

C̃β2

θ̂

)

=
2

γVT

T∑
t=0

wt

((
δt +

γ

2θ̂
st
)
−

(
1− γÃβ2

2θ̂

)(
δt+1 +

γ

2θ̂
st+1

))
+

T∑
t=0

wt

WT
· C̃β2

θ̂

=
2

γVT

T∑
t=0

wt

((
δt +

γ

2θ̂
st
)
−

(
1− γÃβ2

2θ̂

)(
δt+1 +

γ

2θ̂
st+1

))
+

C̃β2

θ̂

=
2

γVT

T∑
t=0

(
wt

(
δt +

γ

2θ̂
st
)
− wt+1

(
δt+1 +

γ

2θ̂
st+1

))
+

C̃β2

θ̂

≤ 2δ0

γVT
+

s0

θ̂VT

+
C̃β2

θ̂
.

Finally, we notice that VT =
T∑

t=1
(1− γÃβ̂2

2θ)t ≥ T · (1− γÃβ̂2

2θ)T , what concludes the proof.

33

Published as a conference paper at ICLR 2024

F EF21-W-SGD: WEIGHTED ERROR FEEDBACK 2021 WITH STOCHASTIC
GRADIENTS UNDER THE ABC ASSUMPTION

In this section, we present the convergence result for Weighted EF21 in the setting where the gradient com-
putation on the clients is replaced with a pretty general unbiased stochastic gradient estimator.

F.1 ALGORITHM

The EF21-W algorithm assumes that all clients can compute the exact gradient in each round. In some
scenarios, the exact gradients may be unavailable or too costly to compute, and only approximate gradient
estimators can be obtained. To have the ability for EF21-W to work in such circumstances we extended
EF21-W to handle stochastic gradients. We called the resulting algorithm EF21-W-SGD (Algorithm 4).

Algorithm 4 EF21-W-SGD: Weighted EF-21 with Stochastic Gradients under ABC assumption
1: Input: initial model x0 ∈ Rd; initial gradient estimates g01 , g

0
2 , . . . , g

0
n ∈ Rd stored at the server and the

clients; stepsize γ > 0; number of iterations T > 0; weights wi =
Li∑
j Lj

for i ∈ [n]

2: Initialize: g0 =
∑n

i=1 wig
0
i on the server

3: for t = 0, 1, 2, . . . , T − 1 do
4: Server computes xt+1 = xt − γgt and broadcasts xt+1 to all n clients
5: for i = 1, . . . , n on the clients in parallel do
6: Compute a stochastic gradient ĝi(xt+1) estimator of the gradient ∇fi(x

t+1)

7: Compute ut
i = Ct

i

(
1

nwi
ĝi(x

t+1)− gti

)
and update gt+1

i = gti + ut
i

8: Send the compressed message ut
i to the server

9: end for
10: Server updates gt+1

i = gti + ut
i for all i ∈ [n], and computes gt+1 =

∑n
i=1 wig

t+1
i

11: end for
12: Output: Point x̂T chosen from the set {x0, . . . , xT−1} randomly according to the law (59)

Our analysis of this extension follows a similar approach as the one used by Fatkhullin et al. (2021) for study-
ing the stochastic gradient version under the name EF21-SGD. However, EF21-W-SGD has four important
differences with vanilla EF21-SGD:

1. Vanilla EF21-SGD algorithm analyzed by Fatkhullin et al. (2021) worked under a specific sam-
pling schema for a stochastic gradient estimator. Our analysis works under a more general ABC
Assumption 6.

2. Vanilla EF21-SGD provides maximum theoretically possible γ =

(
L+ LQM

√
β1

θ

)−1

, where

EF21-W-SGD has γ =

(
L+ LAM

√
β1

θ

)−1

.

3. In contrast to the original analysis Vanilla EF21-SGD our analysis provides a more aggressive β1

parameter which is smaller by a factor of 2.
4. Vanilla EF21-SGD and EF21-W-SGD formally differs in a way how it reports iterate xT which

minimizes E
[∥∥∇f(xT)

∥∥2] due to a slightly different definition of Ã. The EF21-W-SGD (Algo-

rithm 4) requires output iterate x̂T randomly according to the probability mass function described
by Equation (59).

34

Published as a conference paper at ICLR 2024

Assumption 6 (General assumption for stochastic gradient estimators). We assume that for all i ∈ [n] there
exist parameters Ai, Ci ≥ 0, Bi ≥ 1 such that

E
[
∥∇ĝi(x)∥2

]
≤ 2Ai

(
fi(x)− f inf

i

)
+Bi∥∇fi(x)∥2 + Ci, (54)

holds for all x ∈ Rd, where4 f inf
i = infx∈Rd fi(x) > −∞.

Assumption 7 (Unbiased assumption for stochastic gradient estimators). We assume that for all i ∈ [n]
there following holds for all x ∈ Rd:

E [ĝi(x)] = ∇fi(x).

We study EF21-W-SGD under Assumption 6 and Assumption 7.To the best of our knowledge, this Assump-
tion 6, which was originally presented as Assumption 2 by Khaled & Richtárik (2022), is the most general
assumption for a stochastic gradient estimator in a non-convex setting. For a detailed explanation of the
generality of this assumption see Figure 1 of Khaled & Richtárik (2022).

F.2 A LEMMA

The contraction lemma in this case gets the following form:
Lemma 11. Let Ct

i ∈ C(α) for all i ∈ [n] and t ≥ 0. Define

Gt
i :=

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2 , Gt :=

n∑
i=1

wiG
t
i.

Let Assumptions 2, 6, 7 hold. Then, for any s > 0, ν > 0 during execution of the Algorithm 4 the following
holds:

E
[
Gt+1

]
≤ (1− θ̂)E

[
Gt
]
+ β̂1L

2
AME

[∥∥xt+1 − xt
∥∥2]+ Ãβ̂2E

[
f(xt+1)− f inf

]
+ C̃β̂2, (55)

where

wi :=
Li∑
j Lj

,

θ̂ := 1− (1− α) (1 + s)(1 + ν)

β̂1 := (1− α) (1 + s)
(
s+ ν−1

)
,

β̂2 := (1− α)(1 + s) + (1 + s−1),

Ã := max
i=1,...,n

(
2(Ai + Li(Bi − 1))

1

nwi

)
,

C̃ := max
i=1,...,n

(
Ci

1

nwi

)
.

4When Ai = 0 one can ignore the first term in the right-hand side of (54), i.e., assumption infx∈Rd fi(x) > −∞ is
not required in this case.

35

Published as a conference paper at ICLR 2024

Proof. Define W t := {gt1, . . . , gtn, xt, xt+1}. The proof starts as follows:

E
[
Gt+1

i | W t
] (24)

= E

[∥∥∥∥gt+1
i − ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
line 7
= E

[∥∥∥∥gti + Ct
i

(
ĝi(x

t+1)

nwi
− gti

)
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]

= E

[∥∥∥∥Ct
i

(
ĝi(x

t+1)

nwi
− gti

)
−
(
ĝi(x

t+1)

nwi
− gti

)
+

ĝi(x
t+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
(21)
≤ (1 + s)E

[∥∥∥∥Ct
i

(
ĝi(x

t+1)

nwi
− gti

)
−
(
ĝi(x

t+1)

nwi
− gti

)∥∥∥∥2 | W t

]

+(1 + s−1)E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
(4)
≤ (1− α)(1 + s)E

[∥∥∥∥(ĝi(x
t+1)

nwi
− ∇fi(x

t+1)

nwi

)
+

(
∇fi(x

t+1)

nwi
− gti

)∥∥∥∥2 | W t

]

+(1 + s−1)E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]

= (1− α)(1 + s)E

[∥∥∥∥git − ∇fi(x
t+1)

nwi

∥∥∥∥2 | W t

]

+(1− α)(1 + s)E

[∥∥∥∥∇fi(x
t+1)

nwi
− ĝi(x

t+1)

nwi

∥∥∥∥2 | W t

]

+(1 + s−1)E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]

= (1− α)(1 + s)E

[∥∥∥∥git − ∇fi(x
t)

nwi
+

∇fi(x
t)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]

+(1− α)(1 + s)E

[∥∥∥∥∇fi(x
t+1)

nwi
− ĝi(x

t+1)

nwi

∥∥∥∥2 | W t

]

+(1 + s−1)E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
.

36

Published as a conference paper at ICLR 2024

Further, we continue as follows

E
[
Gt+1

i | W t
] (21)

≤ (1− α)(1 + s)(1 + ν)E

[∥∥∥∥git − ∇fi(x
t)

nwi

∥∥∥∥2 | W t

]

+(1− α)(1 + s)(1 + ν−1)

∥∥∥∥∇fi(x
t+1)

nwi
− ∇fi(x

t)

nwi

∥∥∥∥2
+
(
(1 + s−1) + (1− α)(1 + s)

)
E

[∥∥∥∥ ĝi(xt+1)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t

]
.

To further bound the last term, which contains multiple (1 + s−1) factors, we leverage the property that
ĝi(x

t+1) is a random variable serving as an unbiased estimator of ∇fi(x
t+1). Our approach is as follows:

E
[
Gt+1

i | W t
]

≤ (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
β̂2

(nwi)2
E
[∥∥ĝi(xt+1)−∇fi(x

t+1)
∥∥2 | W t

]
.

Now due to the requirement of unbiasedness of gradient estimators expressed in the form of Assumption 7
we have the following:

E
[∥∥ĝi(xt+1)−∇fi(x

t+1)
∥∥2 | W t

]
= E

[∥∥ĝi(xt+1)
∥∥2 | W t

]
−
∥∥∇fi(x

t+1)
∥∥2 (56)

Using this variance decomposition, we can proceed as follows.

37

Published as a conference paper at ICLR 2024

E
[
Gt+1

i | W t
] (56)

≤ (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
β̂2

(nwi)2

(
E
[∥∥ĝi(xt+1)

∥∥2 | W t
]
−
∥∥∇fi(x

t+1)
∥∥2)

(54)
≤ (1− θ̂)E

[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
β̂2

(nwi)2

(
2Ai

(
fi(x

t+1)− f inf
i

)
+Bi∥∇fi(x

t+1)∥2 + Ci −
∥∥∇fi(x

t+1
∥∥2))

= (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
2Aiβ̂2

(nwi)2
(
fi(x

t+1)− f inf
i

)
+

2(Bi − 1)β̂2

(nwi)2

(
1

2
∥∇fi(x

t+1)∥2
)
+

Ciβ̂2

(nwi)2

≤ (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
2Aiβ̂2

(nwi)2
(
fi(x

t+1)− f inf
i

)
+

2(Bi − 1)β̂2

(nwi)2
Li

(
fi(x

t+1)− f inf
i

)
+

Ciβ̂2

(nwi)2

= (1− θ̂)E
[
Gt

i | W t
]
+ β̂1

1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

+
2(Ai + Li(Bi − 1))β̂2

(nwi)2
(
fi(x

t+1)− f inf
i

)
+

Ciβ̂2

(nwi)2
.

Next leveraging Assumption 2 we replace the second term in the last expression, and we can derive the
subsequent bound:

E
[
Gt+1

i | W t
] (7)

≤ (1− θ̂)Gt
i +

β̂1L
2
i

n2w2
i

∥∥xt+1 − xt
∥∥2

+
2(Ai + Li(Bi − 1))β̂2

(nwi)2
(
fi(x

t+1)− f inf
i

)
+

Ciβ̂2

(nwi)2
.

Applying the tower property and subsequently taking the expectation, we obtain:

E
[
Gt+1

i

]
≤ (1− θ̂)E

[
Gt

i

]
+ β̂1

1

n2w2
i

L2
iE
[∥∥xt+1 − xt

∥∥2]
+

2(Ai + Li(Bi − 1))β̂2

(nwi)2
E
[
fi(x

t+1)− f inf
i

]
+

Ciβ̂2

(nwi)2
.

(57)

38

Published as a conference paper at ICLR 2024

Next for the expectation of the main quantity of our interest Gt+1, we derive the subsequent bound:

E
[
Gt+1

]
= E

[
n∑

i=1

wiG
t+1
i

]

=

n∑
i=1

wiE
[
Gt+1

i

]
(57)
≤ (1− θ̂)

n∑
i=1

wiE
[
Gt

i

]
+

n∑
i=1

wiβ̂1
1

n2w2
i

L2
i · E

[∥∥xt+1 − xt
∥∥2]

+

n∑
i=1

wi
2(Ai + Li(Bi − 1))β̂2

(nwi)2
· E
[
fi(x

t+1)− f inf
i

]
+

n∑
i=1

wi
Ciβ̂2

(nwi)2

= (1− θ̂)E
[
Gt
]
+

n∑
i=1

β̂1
1

n2wi
L2
i · E

[∥∥xt+1 − xt
∥∥2]

+

n∑
i=1

2(Ai + Li(Bi − 1))β̂2

(n)2wi
· E
[
fi(x

t+1)− f inf
i

]
+

n∑
i=1

Ciβ̂2

n2wi

Employing quantities Ã and C̃, the final bound can be reformulated as follows:

E
[
Gt+1

]
≤ (1− θ̂)E

[
Gt
]
+

n∑
i=1

β̂1
1

n2wi
L2
i · E

[∥∥xt+1 − xt
∥∥2]

+
1

n

n∑
i=1

Ãβ̂2 · E
[
fi(x

t+1)− f inf
i

]
+ C̃β̂2

≤ (1− θ̂)E
[
Gt
]
+

n∑
i=1

β̂1
1

n2wi
L2
i · E

[∥∥xt+1 − xt
∥∥2]

+
1

n

n∑
i=1

Ãβ̂2 · E
[
fi(x

t+1)− f inf
]
+ C̃β̂2

≤ (1− θ̂)E
[
Gt
]
+

n∑
i=1

β̂1
1

n2wi
L2
i · E

[∥∥xt+1 − xt
∥∥2]

+Ãβ̂2E
[
f(xt+1)− f inf

]
+ C̃β̂2.

Given that wi =
Li∑
j Lj

, we have:

E
[
Gt+1

]
≤ (1− θ̂)E

[
Gt
]
+

1

n

n∑
i=1

β̂1

∑
j Lj

n
LiE

[∥∥xt+1 − xt
∥∥2]

+ Ãβ̂2E
[
f(xt+1)− f inf

]
+ C̃β̂2

= (1− θ̂)E
[
Gt
]
+ β̂1

(
1

n

n∑
i=1

Li

)2

· E
[∥∥xt+1 − xt

∥∥2]
+ Ãβ̂2E

[
f(xt+1)− f inf

]
+ C̃β̂2,

what completes the proof.

39

Published as a conference paper at ICLR 2024

F.3 MAIN RESULT

Now we are ready to prove the main convergence theorem.
Theorem 9. Let Ct

i ∈ C(α) for all ∈ [n] and t ≥ 0 in Algorithm 4. set the following quantities:

θ̂ := 1− (1− α) (1 + s)(1 + ν),

β̂1 := (1− α) (1 + s)
(
s+ ν−1

)
,

β̂2 := (1− α)(1 + s) + (1 + s−1),

wi :=
Li∑n
j=1 Lj

,

Ã := max
i=1,...,n

2(Ai + Li(Bi − 1))

nwi
,

C̃ := max
i=1,...,n

Ci

nwi
.

Under Assumptions 1, 2, 6, 7, and selection of s > 0, ν > 0 small enough such that (1 + s)(1 + ν) < 1
1−α

holds, set the stepsize in the following way:

γ ≤ 1

L+ LAM

√
β̂1

θ̂

. (58)

Choose an iterate x̂T from {x0, x1, . . . , xT−1} with probability

Prob(x̂T = xt) =
vt
VT

, (59)

where

vt :=

(
1− γÃβ̃2

2θ

)t

; VT :=

T−1∑
t=0

vt.

Then,

E
[∥∥∇f(x̂T)

∥∥2] ≤ 2(f(x0)− f inf)

γT
(
1− γÃβ̂2

2θ

)T +
G0

θ̂T
(
1− γÃβ̂2

2θ

)T +
C̃β2

θ̂
, (60)

where G0 :=
∑n

i=1 wi

∥∥∥g0i − 1
nwi

∇fi(x
0)
∥∥∥2.

Proof. In the derivation below, we use Lemma 3 for

gt =

n∑
i=1

wig
t
i . (61)

40

Published as a conference paper at ICLR 2024

We start as follows:

f(xt+1)
(20)
≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥∥∥∥gt − 1

n

n∑
i=1

∇fi(x
t)

∥∥∥∥∥
2

(51)
= f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

∥∥∥∥∥
n∑

i=1

wi

(
gti −

∇fi(x
t)

nwi

)∥∥∥∥∥
2

≤ f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2

n∑
i=1

wi

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2
= f(xt)− γ

2

∥∥∇f(xt)
∥∥2 − (1

2γ
− L

2

)∥∥xt+1 − xt
∥∥2 + γ

2
Gt.

Subtracting f∗ from both sides and taking expectation, we get

E
[
f(xt+1)− f∗] ≤ E

[
f(xt)− f∗]− γ

2
E
[∥∥∇f(xt)

∥∥2]− (1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ γ

2
E
[
Gt
]
.

Let δt := E [f(xt)− f∗], st := E [Gt] and rt := E
[∥∥xt+1 − xt

∥∥2] . Then by adding γ
2θ s

t+1 and employing
inequality (46), we obtain:

δt+1 +
γ

2θ̂
st+1 ≤ δt − γ

2
E
[∥∥∇f(xt)

∥∥2]− (1

2γ
− L

2

)
rt +

γ

2
st

+
γ

2θ̂

(
β̂1L

2
AMrt + (1− θ̂)st + Ãβ̂2δ

t+1 + C̃β̂2

)
= δt +

γ

2θ̂
st − γ

2
E
[∥∥∇f(xt)

∥∥2]− (1

2γ
− L

2
− γ

2θ̂
β̂1L

2
AM

)
rt +

γÃβ2

2θ̂
δt+1 +

γC̃

2θ̂
β2

≤ δt +
γ

2θ̂
st − γ

2
E
[∥∥∇f(xt)

∥∥2]+ γÃβ2

2θ̂
δt+1 +

γC̃

2θ̂
β2.

The last inequality follows from the bound γ2 β̂1L
2
AM

θ̂
+ Lγ ≤ 1, which holds due to Lemma 5 for

γ ≤ 1

L+ LAM

√
β̂1

θ̂

.

Subsequently, we will reconfigure the final inequality and perform algebraic manipulations, taking into
account that 2

γ > 0. In the final step of these algebraic transformations, we will leverage the fact that st ≥ 0:

δt+1 +
γ

2θ̂
st+1 ≤ δt +

γ

2θ̂
st − γ

2
E
[∥∥∇f(xt)

∥∥2]+ γÃβ2

2θ̂
δt+1 +

γC̃

2θ̂
β2.

Therefore,
2

γ
δt+1 +

2

γ

γ

2θ̂
st+1 ≤ 2

γ
δt +

2

γ

γ

2θ̂
st − E

[∥∥∇f(xt)
∥∥2]+ 2

γ

γÃβ2

2θ̂
δt+1 +

2

γ

γC̃

2θ̂
β2.

41

Published as a conference paper at ICLR 2024

Further,

E
[∥∥∇f(xt)

∥∥2] ≤ − 2

γ
δt+1 − 2

γ

γ

2θ̂
st+1 +

2

γ
δt +

2

γ

γ

2θ̂
st +

2

γ

γÃβ2

2θ̂
δt+1 +

2

γ

γC̃

2θ̂
β2

≤ − 2

γ
δt+1 − 2

γ

γ

2θ̂
st+1 +

2

γ

(
δt +

γ

2θ̂
st
)
+

2

γ

γÃβ2

2θ̂
δt+1 +

C̃β2

θ̂

≤ 2

γ

((
δt +

γ

2θ̂
st
)
− 1

(
1− γÃβ2

2θ̂

)
δt+1 −

(
γ

2θ̂
st+1

))
+

C̃β2

θ̂

≤ 2

γ

((
δt +

γ

2θ̂
st
)
−

(
1− γÃβ2

2θ̂

)(
δt+1 +

γ

2θ̂
st+1

))
+

C̃β2

θ̂
.

We sum up inequalities above with weights vt/VT , where vt := (1− γÃβ̂2

2θ)t and VT :=
∑T

i=1 vi:

E
[∥∥∇f(x̂T)

∥∥2] =

T∑
t=0

vt
VT

E
[∥∥∇f(xt)

∥∥2]
=

1

VT

T∑
t=0

vtE
[∥∥∇f(xt)

∥∥2]
≤ 1

VT

T∑
t=0

vt

(
2

γ

((
δt +

γ

2θ̂
st
)
−

(
1− γÃβ2

2θ̂

)(
δt+1 +

γ

2θ̂
st+1

))
+

C̃β2

θ̂

)

=
2

γVT

T∑
t=0

wt

((
δt +

γ

2θ̂
st
)
−

(
1− γÃβ2

2θ̂

)(
δt+1 +

γ

2θ̂
st+1

))
+

T∑
t=0

wt

WT
· C̃β2

θ̂

=
2

γVT

T∑
t=0

wt

((
δt +

γ

2θ̂
st
)
−

(
1− γÃβ2

2θ̂

)(
δt+1 +

γ

2θ̂
st+1

))
+

C̃β2

θ̂

=
2

γVT

T∑
t=0

(
wt

(
δt +

γ

2θ̂
st
)
− wt+1

(
δt+1 +

γ

2θ̂
st+1

))
+

C̃β2

θ̂

≤ 2δ0

γVT
+

s0

θ̂VT

+
C̃β2

θ̂
.

Finally, we notice that VT =
T∑

t=1
(1− γÃβ̂2

2θ)t ≥ T · (1− γÃβ̂2

2θ)T , what concludes the proof.

42

Published as a conference paper at ICLR 2024

G EF21-W-PP: WEIGHTED ERROR FEEDBACK 2021 WITH PARTIAL
PARTICIPATION

In this section, we present another extension of error feedback. Again, to maintain brevity, we show our
results for EF21-W, however, we believe getting an enhanced rate for standard EF21 should be straightfor-
ward.

G.1 ALGORITHM

Building upon the delineation of EF21-W in Algorithm 2, we turn our attention to its partial participation
variant, EF21-W-PP, and seek to highlight the primary distinctions between them. One salient difference is
the introduction of a distribution, denoted as D, across the clients. For clarity, consider the power set P of
the set [n] := {1, 2, . . . , n}, representing all possible subsets of [n]. Then, the distribution D serves as a
discrete distribution over P .

While EF21-W-PP runs, at the start of each communication round t, the master, having computed a descent
step as xt+1 = xt − γgt, samples a client subset St from the distribution D. Contrasting with Algorithm 2
where the new iteration xt+1 is sent to all clients, in this variant, it is sent exclusively to those in St.

Any client i ∈ St adheres to procedures akin to EF21-W: it compresses the quantity 1
nwi

∇fi(x
t)− gti and

transmits this to the master. Conversely, client j omitted in St, i.e., j /∈ St, is excluded from the training
for that iteration. Concluding the round, the master updates gt+1 by integrating the averaged compressed
variances received from clients in the set St.

Algorithm 5 EF21-W-PP: Weighted Error Feedback 2021 with Partial Participation
1: Input: initial model parameters x0 ∈ Rd; initial gradient estimates g01 , g

0
2 , . . . , g

0
n ∈ Rd stored at the

clients; weights wi = Li/
∑

j Lj; stepsize γ > 0; number of iterations T > 0; distribution D over clients
2: Initialize: g0 =

∑n
i=1 wig

0
i on the server

3: for t = 0, 1, 2, . . . , T − 1 do
4: Server computes xt+1 = xt − γgt

5: Server samples a subset St ∼ D of clients
6: Server broadcasts xt+1 to clients in St

7: for i = 1, . . . , n on the clients in parallel do
8: if i ∈ St then
9: Compute ut

i = Ct
i (

1
nwi

∇fi(x
t+1)− gti) and update gt+1

i = gti + ut
i

10: Send the compressed message ut
i to the server

11: end if
12: if i /∈ St then
13: Set ut

i = 0 for the client and the server
14: Do not change local state gt+1

i = gti
15: end if
16: end for
17: Server updates gt+1

i = gti + ut
i for all i ∈ [n], and computes gt+1 =

∑n
i=1 wig

t+1
i

18: end for
19: Output: Point x̂T chosen from the set {x0, . . . , xT−1} uniformly at random

Assume S is drawn from the distribution D. Let us denote
pi := Prob(i ∈ St). (62)

43

Published as a conference paper at ICLR 2024

In other words, pi represents the probability of client i being selected in any iteration. For given parameters
pi such that pi ∈ (0, 1] for i ∈ [n], we introduce the notations pmin := mini pi and pmax := maxi pi,
respectively.

G.2 A LEMMA

Having established the necessary definitions, we can now proceed to formulate the lemma.
Lemma 12. Let Ct

i ∈ C(α) for all i ∈ [n] and t ≥ 0. Let Assumption 2 hold. Define

Gt
i :=

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2 , Gt :=

n∑
i=1

wiG
t
i. (63)

For any s > 0 and ρ > 0, let us define the following quantities:
θ(α, s) := 1− (1− α)(1 + s)

β(α, s) := β(α, s) = (1− α)(1 + s−1)

θp := pminρ+ θ(α, s)pmax − ρ− (pmax − pmin)

B̃ :=
(
β(α, s)pmax + (1− pmin)(1 + ρ−1)

)
L2
AM.

Additionally, assume that
1 + ρ(1− pmin) + (pmax − pmin)

pmax
≥ θ(α, s) >

ρ(1− pmin) + (pmax − pmin)

pmax
.

Then, we have

E
[
Gt+1

]
≤ (1− θp)E

[
Gt
]
+ B̃E

[∥∥xt+1 − xt
∥∥2] . (64)

Proof. Let us define W t := {gt1, . . . , gtn, xt, xt+1}. If client i participates in the training at iteration t, then

E
[
Gt+1

i | W t, i ∈ St
] (63)

= E

[∥∥∥∥gt+1
i − ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t, i ∈ St

]
line 9 of Algorithm 5

= E

[∥∥∥∥gti + Ct
i

(
∇fi(x

t+1)

nwi
− gti

)
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t, i ∈ St

]
(4)
≤ (1− α)

∥∥∥∥∇fi(x
t+1)

nwi
− gti

∥∥∥∥2
= (1− α)

∥∥∥∥∇fi(x
t+1)

nwi
− ∇fi(x

t)

nwi
+

∇fi(x
t)

nwi
− gti

∥∥∥∥2
(21)
≤ (1− α)(1 + s)

∥∥∥∥∇fi(x
t)

nwi
− gti

∥∥∥∥2
+(1− α)

(
1 + s−1

) 1

n2w2
i

∥∥∇fi(x
t+1)−∇fi(x

t)
∥∥2

(7)
≤ (1− α)(1 + s)

∥∥∥∥∇fi(x
t)

nwi
− gti

∥∥∥∥2
+(1− α)

(
1 + s−1

) L2
i

n2w2
i

∥∥xt+1 − xt
∥∥2 .

44

Published as a conference paper at ICLR 2024

Utilizing the tower property and taking the expectation with respect to W t, we derive:

E
[
Gt+1

i | i ∈ St
]
≤ (1− θ(α, s))E

[
Gt

i

]
+ β(α, s)

L2
i

n2w2
i

E
[∥∥xt+1 − xt

∥∥2] , (65)

where θ(α, s) = 1− (1− α)(1 + s), and β(α, s) = (1− α)(1 + s−1). We now aim to bound the quantity
E
[
Gt+1

i | i /∈ St
]
, starting with an application of the tower property:

E
[
Gt+1

i | i /∈ St
]

= E
[
E
[
Gt+1

i | W t, i /∈ St
]]

(63)
= E

[
E

[∥∥∥∥gt+1
i − ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t, i /∈ St

]]

= E

[
E

[∥∥∥∥gti − ∇fi(x
t+1)

nwi
+

∇fi(x
t)

nwi
− ∇fi(x

t)

nwi

∥∥∥∥2 | W t, i /∈ St

]]
(21)
≤ E

[
E

[
(1 + ρ)

∥∥∥∥gti − ∇fi(x
t)

nwi

∥∥∥∥2 + (1 + ρ−1)

∥∥∥∥∇fi(x
t)

nwi
− ∇fi(x

t+1)

nwi

∥∥∥∥2 | W t, i /∈ St

]]

= (1 + ρ)E
[
Gt

i

]
+

(1 + ρ−1)

n2w2
i

E
[∥∥∇fi(x

t+1)−∇fi(x
t)
∥∥2] .

Given that Assumption 2 is satisfied, by applying (7) to the second term, we obtain:

E
[
Gt+1

i | i /∈ St
]
≤ (1 + ρ)E

[
Gt

i

]
+

L2
i (1 + ρ−1)

n2w2
i

E
[∥∥xt+1 − xt

∥∥2] . (66)

We combine the two preceding bounds:
E
[
Gt+1

i

]
= Prob(i ∈ St)E

[
Gt+1

i | i ∈ St
]
+Prob(i /∈ St)E

[
Gt+1

i | i /∈ St
]

(62)
= piE

[
Gt+1

i | i ∈ St
]
+ (1− pi)E

[
Gt+1

i | i /∈ St
]

(65)+(66)
≤ pi

[
(1− θ(α, s))E

[
Gt

i

]
+ β(α, s)

L2
i

n2w2
i

E
[∥∥xt+1 − xt

∥∥2]]
+(1− pi)

[
(1 + ρ)E

[
Gt

i

]
+

L2
i (1 + ρ−1)

n2w2
i

E
[∥∥xt+1 − xt

∥∥2]]
= ((1− θ(α, s))pi + (1− pi)(1 + ρ))E

[
Gt

i

]
+
(
β(α, s)pi + (1− pi)(1 + ρ−1)

) L2
i

n2w2
i

E
[∥∥xt+1 − xt

∥∥2] .

45

Published as a conference paper at ICLR 2024

Consequently, for E
[
Gt+1

]
, we derive the subsequent bound:

E
[
Gt+1

] (63)
= E

[
n∑

i=1

wiG
t+1
i

]

=

n∑
i=1

wiE
[
Gt+1

i

]
≤

n∑
i=1

wi ((1− θ(α, s))pi + (1− pi)(1 + ρ))E
[
Gt

i

]
+

n∑
i=1

wi

(
β(α, s)pi + (1− pi)(1 + ρ−1)

) L2
i

n2w2
i

E
[∥∥xt+1 − xt

∥∥2] ,
where we applied the preceding inequality. Remembering the definitions pmin := mini pi and pmax :=
maxi pi, we subsequently obtain:

E
[
Gt+1

]
≤

n∑
i=1

wi ((1− θ(α, s))pmax + (1− pmin)(1 + ρ))E
[
Gt

i

]
+

n∑
i=1

(
β(α, s)pmax + (1− pmin)(1 + ρ−1)

) L2
i

n2wi
E
[∥∥xt+1 − xt

∥∥2]
= ((1− θ(α, s))pmax + (1− pmin)(1 + ρ))

n∑
i=1

wiE
[
Gt

i

]
+
(
β(α, s)pmax + (1− pmin)(1 + ρ−1)

) n∑
i=1

L2
i

n2wi
E
[∥∥xt+1 − xt

∥∥2] .
Applying (63) and (25), we obtain:

E
[
Gt+1

]
= ((1− θ(α, s))pmax + (1− pmin)(1 + ρ))E

[
Gt
]

+
(
β(α, s)pmax + (1− pmin)(1 + ρ−1)

) n∑
i=1

L2
i

n2 Li∑n
j=1 Lj

E
[∥∥xt+1 − xt

∥∥2]
= ((1− θ(α, s))pmax + (1− pmin)(1 + ρ))E

[
Gt
]

+
(
β(α, s)pmax + (1− pmin)(1 + ρ−1)

) n∑
j=1

Lj

n

n∑
i=1

Li

n
E
[∥∥xt+1 − xt

∥∥2]
= ((1− θ(α, s))pmax + (1− pmin)(1 + ρ))E

[
Gt
]

+
(
β(α, s)pmax + (1− pmin)(1 + ρ−1)

)
L2
AME

[∥∥xt+1 − xt
∥∥2] .

Subsequently, in order to simplify the last inequality, we introduce the variables 1− θp and B̃:
1− θp := (1− θ(α, s))pmax + (1− pmin)(1 + ρ)

= pmax − pmaxθ(α, s) + 1− pmin + ρ− pminρ

= 1− (−pmax + pmaxθ(α, s) + pmin − ρ+ pminρ)

= 1− (pminρ+ pmaxθ(α, s)− ρ− (pmax − pmin)) .

46

Published as a conference paper at ICLR 2024

Therefore,
θp = (pmaxθ(α, s)− ρ(1− pmin)− (pmax − pmin))

B̃ :=
(
β(α, s)pmax + (1− pmin)(1 + ρ−1)

)
L2
AM.

Expressed in terms of these variables, the final inequality can be reformulated as:

E
[
Gt+1

]
≤ (1− θp)E

[
Gt
]
+ B̃E

[∥∥xt+1 − xt
∥∥2] .

Since we need the contraction property over the gradient distortion E
[
Gt+1

]
, we require 0 < θp ≤ 1. We

rewrite these conditions as follows:
1 + ρ(1− pmin) + (pmax − pmin)

pmax
≥ θ(α, s) >

ρ(1− pmin) + (pmax − pmin)

pmax
.

G.3 MAIN RESULT

We are ready to prove the main convergence theorem.
Theorem 10. Consider Algorithm 5 (EF21-W-PP) applied to the distributed optimization problem (1). Let
Assumptions 1, 2, 3 hold, assume that Ct

i ∈ C(α) for all i ∈ [n] and t > 0, set

Gt :=

n∑
i=1

wi

∥∥∥∥gti − 1

nwi
∇fi(x

t)

∥∥∥∥2 ,
where wi =

Li∑
j Lj

for all i ∈ [n], and let the stepsize satisfy

0 < γ ≤

L+

√
B̃

θp

−1

, (67)

where s > 0, ρ > 0, and
θ(α, s) := 1− (1− α)(1 + s)

β(α, s) := (1− α)(1 + s−1)

θp := pminρ+ θ(α, s)pmax − ρ− (pmax − pmin)

B̃ :=
(
β(α, s)pmax + (1− pmin)(1 + ρ−1)

)
L2
AM.

Additionally, assume that
1 + ρ(1− pmin) + (pmax − pmin)

pmax
≥ θ(α, s) >

ρ(1− pmin) + (pmax − pmin)

pmax
.

If for T > 1 we define x̂T as an element of the set {x0, x1, . . . , xT−1} chosen uniformly at random, then

E
[
∥∇f(x̂T)∥2

]
≤ 2(f(x0)− f∗)

γT
+

G0

θpT
. (68)

Proof. Following the same approach employed in the proof for the SGD case, we obtain

E
[
f(xt+1)− f∗] ≤ E

[
f(xt)− f∗]− γ

2
E
[∥∥∇f(xt)

∥∥2]
−
(

1

2γ
− L

2

)
E
[∥∥xt+1 − xt

∥∥2]+ γ

2
E
[
Gt
]
.

47

Published as a conference paper at ICLR 2024

Let δt := E [f(xt)− f∗], st := E [Gt] and rt := E
[∥∥xt+1 − xt

∥∥2] . Applying the previous lemma, we
obtain:

δt+1 +
γ

2θp
st+1 ≤ δt − γ

2
E
[∥∥∇f(xt)

∥∥2]− (1

2γ
− L

2

)
rt +

γ

2
st +

γ

2θp

(
B̃rt + (1− θp)s

t
)

= δt +
γ

2θ
st − γ

2
E
[∥∥∇f(xt)

∥∥2]− (1

2γ
− L

2
− γ

2θp
B̃

)
︸ ︷︷ ︸

≥0

rt

≤ δt +
γ

2θp
st − γ

2
E
[∥∥∇f(xt)

∥∥2] .
By summing up inequalities for t = 0, . . . , T − 1, we get

0 ≤ δT +
γ

2θp
sT ≤ δ0 +

γ

2θp
s0 − γ

2

T−1∑
t=0

E
[∥∥∇f(xt)

∥∥2] .
Finally, via multiplying both sides by 2

γT , after rearranging we get:
T−1∑
t=0

1

T
E
[∥∥∇f(xt)

∥∥2] ≤ 2δ0

γT
+

s0

θpT
.

It remains to notice that the left-hand side can be interpreted as E
[∥∥∇f(x̂T)

∥∥2], where x̂T is chosen from

the set {x0, x1, . . . , xT−1} uniformly at random.

Our analysis of this extension follows a similar approach as the one used by Fatkhullin et al. (2021), for
algorithm they called EF21-PP. Presented analysis of EF21-W-PP has a better provides a better multiplicative
factor in definition of B̃ ∝ L2

AM, where in vanilla EF21-PP had B̃ ∝ L2
QM. This fact improves upper bound

on allowable step size in (67).

48

Published as a conference paper at ICLR 2024

H IMPROVED THEORY FOR EF21 IN THE RARE FEATURES REGIME

In this section, we adapt our new results to the rare features regime proposed and studied by Richtárik et al.
(2023).

H.1 ALGORITHM

In this section, we focus on Algorithm 6, which is an adaptation of EF21 (as delineated in Algorithm 1) that
specifically employs TopK operators. This variant is tailored for the rare features scenario, enhancing the
convergence rate by shifting from the average of squared Lipschitz constants to the square of their average.
The modifications introduced in Algorithm 6, compared to the standard EF21, are twofold and significant.

Primarily, the algorithm exclusively engages TopK compressors, leveraging the inherent sparsity present
in the data. Additionally, the initial gradient estimates g0i are confined to the respective subspaces Rd

i ,
as characterized by equation (71). With the exception of these distinct aspects, the algorithm’s execution
parallels that of the original EF21.

Algorithm 6 EF21: Error Feedback 2021 with TopK compressors
1: Input: initial model x0 ∈ Rd; initial gradient estimates g01 ∈ Rd

1, . . . , g
0
n ∈ Rd

n (as defined in equa-
tion (71)) stored at the server and the clients; stepsize γ > 0; sparsification levels K1, . . . ,Kn ∈ [d];
number of iterations T > 0

2: Initialize: g0 = 1
n

∑n
i=1 g

0
i on the server

3: for t = 0, 1, 2, . . . , T − 1 do
4: Server computes xt+1 = xt − γgt and broadcasts xt+1 to all n clients
5: for i = 1, . . . , n on the clients in parallel do
6: Compute ut

i = TopKi(∇fi(x
t+1)− gti) and update gt+1

i = gti + ut
i

7: Send the compressed message ut
i to the server

8: end for
9: Server updates gt+1

i = gti + ut
i for all i ∈ [n], and computes gt+1 = 1

n

∑n
i=1 g

t+1
i

10: end for
11: Output: Point x̂T chosen from the set {x0, . . . , xT−1} uniformly at random

H.2 NEW SPARSITY MEASURE

To extend our results to the rare features regime, we need to slightly change the definition of the parameter
c in the original paper. The way we do it is unrolled as follows. First, we recall the following definitions
from (Richtárik et al., 2023):

Z := {(i, j) ∈ [n]× [d] | [∇fi(x)]j = 0 ∀x ∈ Rd}, (69)
and

Ij := {i ∈ [n] | (i, j) /∈ Z}, Ji := {j ∈ [d] | (i, j) /∈ Z}. (70)

We also need the following definition of Rd
i :

Rd
i := {u = (u1, . . . , ud) ∈ Rd : uj = 0 whenever (i, j) ∈ Z}. (71)

Now we are ready for a new definition of the sparsity parameter c:

c := n ·max
j∈[d]

∑
i∈Ij

wi, (72)

49

Published as a conference paper at ICLR 2024

where wi is defined as in (25). We note that c recovers the standard definition from (Richtárik et al., 2023)
when wi =

1
n for all i ∈ [n].

H.3 LEMMAS

We will proceed through several lemmas.
Lemma 13. Let ui ∈ Rd

i for all i ∈ [n]. Then, the following inequality holds:∥∥∥∥∥
n∑

i=1

wiui

∥∥∥∥∥
2

≤ c

n

n∑
i=1

wi∥ui∥2. (73)

Proof. Initially, we observe that ∥∥∥∥∥
n∑

i=1

wiui

∥∥∥∥∥
2

=

d∑
j=1

(
n∑

i=1

wiuij

)2

. (74)

We note that for any j ∈ [d] it holds that(
n∑

i=1

wiuij

)2

=

∑
i∈Ij

wiuij

2

=

∑
i∈Ij

wi

2
∑

i∈Ij

wi∑
i′∈Ij

wi′
uij


2

≤

∑
i∈Ij

wi

2 ∑
i∈Ij

wi∑
i′∈Ij

wi′
u2
ij ,

(75)

where on the last line we used the Jensen’s inequality. Subsequent arithmetic manipulations and the incor-
poration of definition (72) yield:(

n∑
i=1

wiuij

)2
(75)
≤

∑
i∈Ij

wi

 ·
∑
i∈Ij

wiu
2
ij

=

∑
i∈Ij

wi

 ·
n∑

i=1

wiu
2
ij

≤

max
j∈[d]

∑
i∈Ij

wi

 ·
n∑

i=1

wiu
2
ij

(72)
=

c

n

n∑
i=1

wiu
2
ij . (76)

Substituting Equation (76) into Equation (74) completes the proof.

Lemma 14. Assume that g0i ∈ Rd
i for all i ∈ [n]. Then, it holds for all t > 0 that

∥gt −∇f(xt)∥2 ≤ c

n
Gt. (77)

50

Published as a conference paper at ICLR 2024

Proof. By Lemma 8 in Richtárik et al. (2023), for EF21 the update gti stays in Rd
i if g0i ∈ Rd

i . We then
proceed as follows:

∥gt −∇f(xt)∥2 (9)
=

∥∥∥∥∥ 1n
n∑

i=1

gti −∇fi(x
t)

∥∥∥∥∥
2

=

∥∥∥∥∥
n∑

i=1

wi

[
1

nwi
(gti −∇fi(x

t))

]∥∥∥∥∥
2

. (78)

Since gti ∈ Rd
i , as was noted, and ∇fi(x

t) ∈ Rd
i , by the definition of Rd

i , then 1
nwi

(gti − ∇fi(x
t)) also

belongs to Rd
i . By Lemma 13, we further proceed:

∥gt −∇f(xt)∥2 (78)
=

∥∥∥∥∥
n∑

i=1

wi

[
1

nwi
(gti −∇fi(x

t))

]∥∥∥∥∥
2

(73)
≤ c

n

n∑
i=1

wi

∥∥∥∥ 1

nwi
(gti −∇fi(x

t))

∥∥∥∥2
=

c

n

n∑
i=1

1

n2wi
∥gti −∇fi(x

t)∥2 =
c

n
Gt,

which completes the proof.

For the convenience of the reader, we briefly revisit Lemma 6 from (Richtárik et al., 2023).
Lemma 15 (Lemma 6 from Richtárik et al. (2023)). If Assumption 2 holds, then for i ∈ [n], we have∑

j:(i,j)/∈Z

((∇fi(x))j − (∇fi(y))j)
2 ≤ L2

i

∑
j:(i,j)/∈Z

(xj − yj)
2 ∀x, y ∈ Rd. (79)

Now, we proceed to the following lemma, which aims to provide a tighter bound for the quantity∑n
i=1

1
Li
∥∇fi(x)−∇fi(y)∥2.

Lemma 16. If Assumption 2 holds, then
n∑

i=1

1

Li
∥∇fi(x)−∇fi(y)∥2 ≤ cLAM∥x− y∥2. (80)

Proof. The proof commences as follows:
n∑

i=1

1

Li
∥∇fi(x)−∇fi(y)∥2 =

n∑
i=1

1

Li

∑
j:(i,j)/∈Z

((∇fi(x))j − (∇fi(y))j)
2

(79)
≤

n∑
i=1

1

Li
L2
i

∑
j:(i,j)/∈Z

(xj − yj)
2

=

n∑
i=1

∑
j:(i,j)/∈Z

Li(xj − yj)
2

=

d∑
j=1

∑
i:(i,j)/∈Z

Li(xj − yj)
2 =

d∑
j=1

(xj − yj)
2
∑

i:(i,j)/∈Z

Li

 .(81)

51

Published as a conference paper at ICLR 2024

To advance our derivations, we consider the maximum value over
∑

i:(i,j)/∈Z
Li:

n∑
i=1

1

Li
∥∇fi(x)−∇fi(y)∥2

(81)
≤

d∑
j=1

(xj − yj)
2
∑

i:(i,j)/∈Z

Li


≤

d∑
j=1

(xj − yj)
2 max
j∈[d]

∑
i:(i,j)/∈Z

Li


=

max
j∈[d]

∑
i:(i,j)/∈Z

Li

 d∑
j=1

(xj − yj)
2

=

max
j∈[d]

∑
i:(i,j)/∈Z

Li

 ∥x− y∥2

=

max
j∈[d]

∑
i∈Ij

Li

 ∥x− y∥2 (72)
= cLAM∥x− y∥2,

what completes the proof.

For clarity and easy reference, we recapitulate Lemma 10 from Richtárik et al. (2023).
Lemma 17 (Lemma 10 from Richtárik et al. (2023)). The iterates of Algorithm 6 method satisfy∥∥gt+1

i −∇fi(x
t+1)

∥∥2 ≤ (1− θ(α))
∥∥gti −∇fi(x

t)
∥∥2 + β(α)∥∇fi(x

t+1)−∇fi(x
t)∥2, (82)

where α = min

{
min
i∈[n]

Ki

|Ji| , 1

}
.

Lemma 18. Under Assumption 2, iterates of Algorithm 6 satisfies

Gt+1 ≤ (1− θ(α))Gt + β(α)
c

n
L2
AM∥x− y∥2. (83)

52

Published as a conference paper at ICLR 2024

Proof. The proof is a combination of Lemmas 16 and 17:

Gt+1 (36)
=

1

n2

n∑
i=1

1

wi

∥∥gt+1
i −∇fi(x

t+1)
∥∥2

(82)
≤ 1

n2

n∑
i=1

1

wi

[
(1− θ(α))∥gti −∇fi(x

t)∥2 + β(α)∥∇fi(x
t+1)−∇fi(x

t)∥2
]

= (1− θ(α))Gt +
β(α)

n2

n∑
i=1

1

wi
∥∇fi(x

t+1)−∇fi(x
t)∥2

(25)
= (1− θ(α))Gt +

β(α)

n2

 n∑
j=1

Lj

 n∑
i=1

1

Li
∥∇fi(x

t+1)−∇fi(x
t)∥2

(80)
≤ (1− θ(α))Gt +

β(α)

n2

c

n

 n∑
j=1

Lj

2

∥x− y∥2

= (1− θ(α))Gt + β(α)
c

n
L2
AM∥x− y∥2.

H.4 MAIN RESULT

And now we are ready to formulate the main result.
Theorem 11. Let Assumptions 1, 2 and 3 hold. Let g0i ∈ Rd

i for all i ∈ [n],

α = min

{
min
i∈[n]

Ki

|Ji|
, 1

}
, 0 < γ ≤ 1

L+ c
nLAMξ(α)

.

Under these conditions, the iterates of Algorithm 6 satisfy

1

T

T−1∑
t=0

∥∇f(xt)∥2 ≤ 2(f(x0)− f∗)

γT
+

c

n

G0

θ(α)T
. (84)

Proof. Let us define the Lyapunov function:

Ψt := f(xt)− f∗ +
γc

2θn
Gt. (85)

53

Published as a conference paper at ICLR 2024

We start the proof as follows:

Ψt+1 (85)
= f(xt+1)− f∗ +

γc

2θn
Gt+1

(20)
≤ f(xt)− f∗ − γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2 + γ

2
∥gt −∇f(xt)∥2 + γc

2θn
Gt+1

(77)
≤ f(xt)− f∗ − γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2 + γ

2

c

n
Gt +

γc

2θn
Gt+1

(82)
≤ f(xt)− f∗ − γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2

)
∥xt+1 − xt∥2

+
γ

2

c

n
Gt +

γc

2θn

(
(1− θ)Gt + β

c

n
L2
AM∥xt+1 − xt∥2

)
= f(xt)− f∗ +

γc

2θn
Gt − γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2
− γ

2

β

θ

c2

n2
· L2

AM

)
∥xt+1 − xt∥2

= Ψt − γ

2
∥∇f(xt)∥2 −

(
1

2γ
− L

2
− γ

2

β

θ

c2

n2
· L2

AM

)
︸ ︷︷ ︸

≥0

∥xt+1 − xt∥2

≤ Ψt − γ

2
∥∇f(xt)∥2.

Unrolling the inequality above, we get

0 ≤ ΨT ≤ ΨT−1 − γ

2
∥∇f(xT−1)∥2 ≤ Ψ0 − γ

2

T−1∑
t=0

∥∇f(xt)∥2,

from what the main result follows.

54

Published as a conference paper at ICLR 2024

I EXPERIMENTS: FURTHER DETAILS

0 200 400 600 800 1000
Dimension d

0

2.5e+02

5e+02

7.5e+02

1e+03

1.2e+03

1.5e+03

1.8e+03

2e+03

√ β θ

Top1
Top5
Top10
Top50
Top100

Figure 4: The factor ξ =
√

β/θ as a function of optimization variable dimension d for several TopK compressors. The
behavior is independent of properties of {f1(x), . . . , fn(x)} and f(x).

I.1 COMPUTING AND SOFTWARE ENVIRONMENT

We used the Python software suite FL PyTorch (Burlachenko et al., 2021) to simulate the distributed en-
vironment for training. We carried out experiments on a compute node with Ubuntu 18.04 LTS, 256
GBytes of DRAM DDR4 memory at 2.9GHz, and 48 cores (2 sockets with 24 cores per socket) of In-
tel(R) Xeon(R) Gold 6246 CPU at 3.3GHz. We used double-precision arithmetic during computing gradient
oracles. All our computations were carried on CPU.

I.2 COMMENTS ON THE IMPROVEMENT

The standard EF21 analysis (Richtárik et al., 2021) allows to utilize EF21 with maximum allowable step size
γ equal to:

γ =

(
L+ LQM

√
β(α)

θ(α)

)−1

, θ(α) = 1−
√
1− α, β(α) =

1− α

1−
√
1− α

.

Our analysis allows us to replace the quantity LQM with LAM. This improvement has an important con-

sequence. The replaced quantity affects the step size by a factor of ξ(α) =
√

β(α)
θ(α) . This factor can be

arbitrarily large as d increases, as shown in Figure 4. If d is increasing and the parameter k of TopK com-
pressor is fixed, then even a small improvement in the constant term can have a significant impact in an
absolute sense to the computed step size if ξ(α) ≫ L.

I.3 WHEN IMPROVED ANALYSIS LEADS TO MORE AGGRESSIVE STEPS

The quantity LQM :=
√

1
n

∑n
i=1 L

2
i plays essential role in EF21 analysis. As we saw with special consider-

ation this quantity for EF21 and its extensions is improvable. The improved analysis allows us to replace it
with LAM := 1

n

∑n
i=1 Li. Clearly, by the arithmetic-quadratic mean inequality,

Lvar := L2
QM − L2

AM ≥ 0.

55

Published as a conference paper at ICLR 2024

The difference LQM − LAM can be expressed as follows:

LQM − LAM = (LQM − LAM)

(
LQM + LAM

LQM + LAM

)

=
L2
QM − L2

AM

LQM + LAM
=

1

LQM + LAM
· 1
n

n∑
i=1

(
Li −

1

n

n∑
i=1

Li

)2

.

The coefficient 1
LQM+LAM

in the last equation can be bounded from below and above as follows:
1

2LQM
=

1

2 ·max(LQM, LAM)
≤ 1

LQM + LAM
≤ 1

2 ·min(LQM, LAM)
≤ 1

2LAM
.

As a consequence, difference LQM − LAM is bound above by the estimated variance of Li divided by
the mean of Li, also known as Index of Dispersion in statistics. From this consideration, we can more
easily observe that EF21-W can have an arbitrarily better stepsize than vanilla EF21 if the variance of Li is
increasing faster than the mean of Li.

I.4 DATASET GENERATION FOR SYNTHETIC EXPERIMENT

First, we assume that the user provides two parameters: µ ∈ R+ and L ∈ R+. These parameters define
the construction of strongly convex function fi(x), which are modified by meta-parameters q ∈ [−1, 1] and
z > 0, described next.

1. Each client initially has

fi(x) :=
1

ni
∥Aix− bi∥2 ,

where Ai is initialized in such way that fi is Li smooth and µfi strongly convex. Parameters are
defined in the following way:

Li =
i

n
· (L− µ) + µ, µfi = µ.

2. The scalar value q ∈ [−1,+1] informally plays the role of meta parameter to change the distribution
of Li and make values of Li close to one of the following: (i) µ; (ii) L; (iii) (L+ µ)/2. The exact
modification of Li depends on the sign of meta parameter q.

• Case q ∈ [0, 1]. In this case for first n/2 (i.e., i ∈ [0, n/2]) compute the value Li,q =
lerp(Li, µ, q), where lerp(a, b, t) : Rd × Rd × [0, 1] → Rd is standard linear interpolation

lerp(a, b, t) = a(1− t) + bt.

The last n/2 (i ∈ [n/2+1, n]) compute the value Li,q = lerp(Li, L, q). For example, if q = 0
then Li,q = Li,∀i ∈ [n], and if q = 1 then Li,q = µ for first n/2 clients and Li,q = L for last
n/2 clients.

• Case q ∈ [−1, 0]. In this for all n clients the new value Li,q = lerp(Li, (L+ µ)/2,−q). In
this case for example if q = 0 then Li,q = Li and if q = −1 then Li,q = (L+ µ)/2.

The process firstly fills the Ai in such form that Li forms a uniform spectrum in [µ,L] with the
center of this spectrum equal to a = L+µ

2 . And then as q → 1, the variance of Li,q is increasing.
3. We use these new values Li,q for all i ∈ [n] clients as a final target Lnew

i values. Due to numerical
issues, we found that it’s worthwhile for the first and last client to add extra scaling. First client
scales L1,q by factor 1/z, and last n-th client scales Ln,q by factor z. Here z ≥ 0 is an additional
meta-parameter.

56

Published as a conference paper at ICLR 2024

4. Next obtained values are used to generate Ai in such way that ∇2fi(x) has uniform spectrum in
[µfi,q,z, Li,q,z].

5. As a last step the objective function f(x) is scaled in such a way that it is L smooth with constant
value L. The bi for each client is initialized as bi := Ai ·xsolution, where xsolution is fixed solution.

I.5 DATASET SHUFFLING STRATEGY FOR LIBSVM DATASET

Our dataset shuffling strategy heuristically splits data points so that Lvar is maximized. It consists of the
following steps:

1. Sort data points from the whole dataset according to L constants. Sort all data points according
to the smoothness constants of the loss function for each single data point.

2. Assign a single data point to each client Assume that there are total m data points in the datasets,
and the total number of clients is n. At the beginning each client i holds a single data point ⌊(i −
1 + 1/2) · m

n ⌋.
3. Pass through all points. Initialize set F = {}. Next, we pass through all points except those

assigned from the previous step. For each point we find the best client i′ ∈ [n]\F to assign the
point in a way that assignment of point to client i′ maximize Lvar := L2

QM −L2
AM. Once the client

already has ⌈m
n ⌉ data points assigned to it, the client is added to the set F .

The set F in the last step guarantees each client will have m
n data points. In general, this is a heuristic greedy

strategy that approximately maximizes Lvar under the constraint that each client has the same amount of
data points equal to ⌊m

n ⌋. Due to its heuristic nature, the Algorithm does not provide deep guarantees, but it
was good enough for our experiments.

57

Published as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Rounds

101

103

105

||
f(x

)||
2

EF21
EF21-W

(a) Lvar ≈ 4.45× 106

0 2000 4000 6000 8000 10000
Rounds

10 9

10 6

10 3

100

103

||
f(x

)||
2

EF21
EF21-W

(b) Lvar ≈ 1.97× 106

0 2000 4000 6000 8000 10000
Rounds

10 16

10 11

10 6

10 1

104
||

f(x
)||

2

EF21
EF21-W

(c) Lvar ≈ 1.08× 105

0 2000 4000 6000 8000 10000
Rounds

10 18

10 13

10 8

10 3

102

||
f(x

)||
2

EF21
EF21-W

(d) Lvar ≈ 5.42× 103

Figure 5: Convex smooth optimization. EF21 and EF21-W with Top1 client compressor, n = 2000, d = 10. The
objective function is constitute of fi(x) defined in Eq.(86). Regularization term λ ∥x∥2

2
, where λ = 0.01. Theoretical

step size. Full participation. Extra details are in Table 1.

J ADDITIONAL EXPERIMENTS

In this section, we present additional experiments for comparison EF21-W, EF21-W-PP, EF21-W-SGD with
their vanilla versions. We applied these algorithms in a series of synthetically generated convex and non-
convex optimization problems and for training logistic regression with non-convex regularized with using
several LIBSVM datasets (Chang & Lin, 2011). While carrying out additional experiments we will use three
quantities. These quantities have already been mentioned in the main part, but we will repeat them here:

LQM :=

√√√√ 1

n

n∑
i=1

L2
i , LAM :=

1

n

n∑
i=1

Li, Lvar := L2
QM − L2

AM =
1

n

n∑
i=1

(
Li −

1

n

n∑
i=1

Li

)2

.

The relationship between these quantities was discussed in Appendix I.3. In our experiments we used TopK
compressor. The TopK compressor returns sparse vectors filled with zeros, except K positions, which cor-
respond to K maximum values in absolute value and which are unchanged by the compressor. Even if this
compressor breaks ties arbitrarily, it is possible to show that α = K

d . The compressor parameter α is defined
without considering properties of fi. The quantities β, θ, β

θ are derived from α, and they do not depend on
Li.

J.1 ADDITIONAL EXPERIMENTS FOR EF21

Convex case with synthetic datasets. We aim to solve optimization problem (1) in the case when the
functions f1, . . . , fn are strongly convex. In particular, we work with

fi(x) :=
1

ni
∥Aix− bi∥2 +

λ

2
∥x∥2, (86)

where λ = 0.01. It can be shown that Li =
2
ni
λmax(Ai

⊤Ai) + λ. The result of experiments for training
linear regression model with a convex regularized is presented in Figure 5. The total number of rounds for

58

Published as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000
Rounds

10 20

10 14

10 8

10 2

104

||
f(x

)||
2

EF21
EF21-W

(a) Lvar ≈ 4.45× 106

0 2000 4000 6000 8000 10000
Rounds

10 22

10 16

10 10

10 4

102

||
f(x

)||
2

EF21
EF21-W

(b) Lvar ≈ 1.97× 106

0 2000 4000 6000 8000
Rounds

10 21

10 15

10 9

10 3

103
||

f(x
)||

2

EF21
EF21-W

(c) Lvar ≈ 1.08× 105

0 2000 4000 6000 8000 10000
Rounds

10 21

10 15

10 9

10 3

103

||
f(x

)||
2

EF21
EF21-W

(d) Lvar ≈ 5.42× 103

Figure 6: Non-Convex smooth optimization. EF21 and EF21-W with Top1 client compressor, n = 2, 000, d = 10.

The objective function is constitute of fi(x) defined in Eq. (87). Regularization term λ
∑d

j=1

x2
j

x2
j+1

, with λ = 100.

Theoretical step size. Full client participation. Extra details are in Table 2.

simulation is r = 10, 000. Instances of optimization problems were generated for values L = 50, µ = 1 with
several values of q, z with using the dataset generation schema described in Appendix I.4. The summary
of derived quantities is presented in Table 1. We present several optimization problems to demonstrate
the possible different relationships between LQM and LAM. As we see from experiments, the EF21-W is
superior as the variance of Li tends to increase. The plots in Figure 5 (a)–(d) correspond to decreasing
variance of Li. As we see, as the variance of Li decreases, the difference between EF21-W and EF21 also
tends to decrease. Finally, EF21-W is always at least as best as EF21.

Table 1: Convex Optimization experiment in Figure 5. Quantities which define theoretical step size.

Tag L q z Lvar ξ =
√

β
θ LQM LAM γEF21 γEF21−W

(a) 50 1 104 4.45× 106 18.486 2111.90 52.04 2.55× 10−5 9.87× 10−4

(b) 50 1 103 1.97× 106 18.486 1408.49 63.56 3.83× 10−5 8.16× 10−4

(c) 50 1 102 1.08× 105 18.486 339.34 80.97 1.58× 10−4 6.46× 10−4

(d) 50 0.8 1 5.42× 103 18.486 112.51 85.03 4.69× 10−4 6.16× 10−4

Non-convex case with synthetic datasets. We aim to solve optimization problem (1) in the case when the
functions f1, . . . , fn are non-convex. In particular, we work with

fi(x) :=
1

ni
∥Aix− bi∥2 + λ ·

d∑
j=1

x2
j

x2
j + 1

. (87)

The result of experiments for training linear regression model with a non-convex regularization is presented
in Figure 6. The regularization coefficient λ = 100. Instances of optimization problems were generated for
values L = 50, µ = 1 and several values of q, z for employed dataset generation schema from Appendix I.4.

59

Published as a conference paper at ICLR 2024

The summary of derived quantities is presented in Table 2. We present various instances of optimization
problems to demonstrate the different relationships between LQM and LAM. As we see in the case of small
variance of Li algorithm EF21-W is at least as best as standard EF21.

Table 2: Non-convex optimization experiment in Figure 6. Quantities which define theoretical step size.

Tag L q z Lvar ξ =
√

β
θ LQM LAM γEF21 γEF21−W

(a) 50 1 104 4.45× 106 18.486 2126.25 252.035 2.52× 10−5 2.03× 10−4

(b) 50 1 103 1.97× 106 18.486 1431.53 263.55 3.74× 10−5 1.95× 10−4

(c) 50 1 102 1.08× 105 18.486 433.05 280.958 1.21× 10−4 1.83× 10−4

(d) 50 0.8 1 5.42× 103 18.486 294.39 285.022 1.17× 10−4 1.81× 10−4

Non-convex logistic regression on benchmark datasets. We aim to solve optimization problem (1) in
the case when the functions f1, . . . , fn are non-convex. In particular, we work with logistic regression with
a non-convex robustifying regularization term:

fi(x) :=
1

ni

ni∑
j=1

log
(
1 + exp(−yij · a⊤ijx)

)
+ λ ·

d∑
j=1

x2
j

x2
j + 1

, (88)

where (aij , yij) ∈ Rd × {−1, 1}.

We used several LIBSVM datasets (Chang & Lin, 2011) for our benchmarking purposes. The results are
presented in Figure 7 and Figure 8. The important quantities for these instances of optimization problems
are summarized in Table 3. From Figures 7 (a), (b), (c), we can observe that for these datasets, the EF21-W is
better, and this effect is observable in practice. For example, from these examples, we can observe that 12.5K
rounds of EF21-W corresponds to only 10K rounds of EF21. This improvement is essential for Federated
Learning, in which both communication rounds and communicate information during a round represent the
main bottlenecks and are the subject of optimization. Figures 7 (d), (e), (f) demonstrate that sometimes the
EF21-W can have practical behavior close to EF21, even if there is an improvement in step-size (For exact
values of step size see Table 3). The experiment on AUSTRALIAN datasets are presented in Figure 8. This
example demonstrates that in this LIBSVM benchmark datasets, the relative improvement in the number of
rounds for EF21-W compared to EF21 is considerable. For example 40K rounds of EF21 corresponds to 5K
rounds of EF21-W in terms of attainable ∥∇f(xt)∥2.

Table 3: Non-convex optimization experiments in Figures 7, 8. Derived quantities which define theoretical step size.

Tag L Lvar ξ =
√

β
θ

LQM LAM γEF21 γEF21−W

(a) W1A 0.781 3.283 602.49 2.921 2.291 5.678 × 10−4 7.237 × 10−4

(b) W2A 0.784 2.041 602.49 2.402 1.931 6.905 × 10−4 8.589 × 10−4

(c) W3A 0.801 1.579 602.49 2.147 1.741 7.772 × 10−4 9.523 × 10−4

(d) MUSHROOMS 2.913 5.05 × 10−1 226.498 3.771 3.704 1.166 × 10−3 1.187 × 10−3

(e) SPLICE 96.082 2.23 × 102 122.497 114.43 113.45 7.084 × 10−5 7.14 × 10−5

(f) PHISHING 0.412 9.2 × 10−4 138.498 0.429 0.428 1.670 × 10−2 1.674 × 10−2

(g) AUSTRALIAN 3.96 × 106 1.1 × 1016 18.486 3.35 × 107 3.96 × 106 9.733 × 10−10 8.007 × 10−9

Non-convex logistic regression with non-homogeneous compressor. In this supplementary experiment,
we leveraged the AUSTRALIAN LIBSVM datasets (Chang & Lin, 2011) to train logistic regression, incorpo-

60

Published as a conference paper at ICLR 2024

0 5000 10000 15000 20000
Rounds

10 2

10 1
||

f(x
)||

2

EF21-W
EF21

(a) W1A

0 5000 10000 15000 20000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W
EF21

(b) W2A

0 5000 10000 15000 20000
Rounds

10 3

10 2

10 1

||
f(x

)||
2

EF21-W
EF21

(c) W3A

0 5000 10000 15000 20000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W
EF21

(d) MUSHROOMS

0 5000 10000 15000 20000
Rounds

10 1

100

||
f(x

)||
2

EF21-W
EF21

(e) SPLICE

0 5000 10000 15000 20000
Rounds

10 3

10 2

||
f(x

)||
2

EF21-W
EF21

(f) PHISHING

Figure 7: Non-Convex Logistic Regression: comparison of EF21 and EF21-W. The used compressor is Top1. The

number of clients n = 1, 000. Regularization term λ
∑d

j=1

x2
j

x2
j+1

, with λ = 0.001. Theoretical step size. Full client

participation. The objective function is constitute of fi(x) defined in Eq. (88). Extra details are in Table 3.

0 10000 20000 30000 40000
Rounds

106

4 × 105

6 × 105

||
f(x

)||
2

EF21-W
EF21

(g) AUSTRALIAN

Figure 8: Non-Convex Logistic Regression: comparison of the performance of standard EF21 and EF21-W. The used

compressor is Top1. The number of clients n = 200. Regularization term λ
∑d

j=1

x2
j

x2
j+1

, with λ = 1, 000. Theoretical

step size. The objective function is constitute of fi(x) defined in Eq. (88). Extra details are in Table 3.

rating a non-convex sparsity-enhanced regularization term defined in Eq. (88). The experiment featured the
utilization of a non-homogeneous compressor known as Natural by Horváth et al. (2022), belonging to the
family of unbiased compressors and adhering to Definition 3 with w = 1/8. This compressor, in a random-
ized manner, rounds the exponential part and zeros out the transferred mantissa part when employing the
standard IEEE 754 Standard for Floating-Point Arithmetic IEEE Computer Society (2008) representation
for floating-point numbers. Consequently, when using a single float-point format (FP32) during communi-
cation, only 9 bits of payload per scalar need to be sent to the master, and the remaining 23 bits of mantissa
can be entirely dropped.

The experiment results are depicted in Figure 9. In this experiment, we fine-tuned the theoretical step size
by multiplying it with a specific constant. As we can see the EF21-W consistently outperforms EF21 across
all corresponding step-size multipliers. As we see EF21-W operates effectively by utilizing unbiased non-

61

Published as a conference paper at ICLR 2024

0 10000 20000 30000
Rounds

10 20

10 15

10 10

10 5

100

105

||
f(x

)||
2

EF21-W Nat: x1
EF21-W Nat: x6
EF21-W Nat: x20
EF21-W Nat: x40
EF21 Nat: x1
EF21 Nat: x6
EF21 Nat: x20
EF21 Nat: x40

(a)

0 1 2 3 4 5
#bits/n 1e6

10 19

10 14

10 9

10 4

101

106

||
f(x

)||
2

EF21-W Nat: x1
EF21-W Nat: x6
EF21-W Nat: x20
EF21-W Nat: x40
EF21 Nat: x1
EF21 Nat: x6
EF21 Nat: x20
EF21 Nat: x40

(b)

Figure 9: Non-Convex Logistic Regression: comparison of the performance of standard EF21 and EF21-W. The used
compressor for EF21 and EF21-W is Natural compressor Horváth et al. (2022). The number of clients n = 200. The objec-

tive function is constitute of fi(x) defined in Eq. (88). Regularization term λ
∑d

j=1

x2
j

x2
j+1

, with λ = 1, 000. Multipliers

of theoretical step size. Full participation. Computation format single precision (FP32). Dataset: AUSTRALIAN.

homogeneous compressors, and the advantages over EF21 extend beyond the scope of applying EF21-W
solely to homogeneous compressors. Finally, it is worth noting that the increased theoretical step size in
EF21-W does not entirely capture the practical scenario of potentially enhancing the step size by a signifi-
cantly large multiplicative factor (e.g., ×40), which remains a subject for future research.

62

Published as a conference paper at ICLR 2024

0 5000 10000 15000 20000
Rounds

101

102

103

104

105

106

||
f(x

)||
2

EF21-W-PP
EF21-PP

(a) Lvar = 4.45× 106

0 5000 10000 15000 20000
Rounds

100

102

104

106

||
f(x

)||
2

EF21-W-PP
EF21-PP

(b) Lvar = 1.97× 106

0 5000 10000 15000 20000
Rounds

10 1

101

103

||
f(x

)||
2

EF21-W-PP
EF21-PP

(c) Lvar = 1.08× 105

Figure 10: Convex smooth optimization. EF21-PP and EF21-W-PP with Top1 client compressor, n = 2000, d = 10.
The objective function is constitute of fi(x) defined in Eq. (89). Regularization term λ ∥x∥2

2
, λ = 0.01. Theoretical

step size. The objective function is constitute of fi(x) defined in Eq.(89). Each client participates in each round with
probability pi = 0.5. Extra details are in Table 4.

J.2 ADDITIONAL EXPERIMENTS FOR EF21-W-PP

Convex case with synthetic datasets.

Table 4: Convex optimization experiment in Figure 10. Derived quantities which define theoretical step size.

Tag L q z Lvar

√
β
θ LQM LAM γEF21−PP γEF21−W−PP

(a) 50 1 104 4.45× 106 18.486 2111.90 52.04 2.55× 10−5 9.87× 10−4

(b) 50 1 103 1.97× 106 18.486 1408.49 63.56 3.83× 10−5 8.16× 10−4

(c) 50 1 102 1.08× 105 18.486 339.34 80.97 1.58× 10−4 6.46× 10−4

We aim to solve optimization problem (1) in the case when the functions f1, . . . , fn are strongly convex. In
particular, we choose:

fi(x) :=
1

ni
∥Aix− bi∥2 +

λ

2
∥x∥2. (89)

In this synthetic experiment, we have used the maximum allowable step size suggested by the theory of
EF21-PP and for the proposed EF21-W-PP algorithm. The initial gradient estimators have been initialized
as g0i = ∇fi(x

0) for all i. The number of clients in simulation n = 2000, dimension of optimization problem
d = 10, number of samples per client ni = 10, and number of communication rounds is r = 10, 000. For
both EF21-PP and EF21-W-PP clients we used Top1 biased contractile compressor. In our experiment, each
client’s participation in each communication round is governed by an independent Bernoulli trial which
takes pi = 0.5. The result of experiments for training linear regression model with a convex regularizer is
presented in Figure 10. The regularization constant was chosen to be λ = 0.01. Instances of optimization
problems were generated for values L = 50,µ = 1 with several values of q and z. The summary of derived
quantities is presented in Table 4. We present several optimization problems to demonstrate the possible
different relationships between LQM and LAM. As we see from experiments, the EF21-W-PP is superior as
the variance of Li tends to increase. As we can observe EF21-W-PP is always at least as best as EF21-PP.

Non-convex logistic regression on benchmark datasets. We provide additional numerical experiments
in which we compare EF21-PP and EF21-W-PP for solving (1). We address the problem of training a
binary classifier via a logistic model on several LIBSVM datasets (Chang & Lin, 2011) with non-convex

63

Published as a conference paper at ICLR 2024

0 10000 20000 30000 40000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W-PP
EF21-PP

(a) W1A

0 10000 20000 30000 40000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W-PP
EF21-PP

(b) W2A

0 10000 20000 30000 40000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W-PP
EF21-PP

(c) W3A

0 10000 20000 30000 40000
Rounds

10 3

10 2

||
f(x

)||
2

EF21-W-PP
EF21-PP

(d) PHISHING

Figure 11: Non-Convex Logistic Regression: comparison of EF21-PP and EF21-W-PP. The used compressor is Top1.

The number of clients n = 1, 000. Regularization term λ
∑d

j=1

x2
j

x2
j+1

, λ = 0.001. Theoretical step size. Each client

participates in each round with probability pi = 0.5. The objective function is constitute of fi(x) defined in Eq.(90).
Extra details are in Table 5.

regularization. We consider the case when the functions f1, . . . , fn are non-convex; in particular, we set
fi(x) as follows:

fi(x) :=
1

ni

ni∑
j=1

log
(
1 + exp(−yij · a⊤ijx)

)
+ λ ·

d∑
j=1

x2
j

x2
j + 1

, (90)

where (aij , yij) ∈ Rd × {−1, 1}.

We conducted distributed training of a logistic regression model on W1A, W2A, W3A, PHISHING, and
AUSTRALIAN datasets with non-convex regularization. The initial gradient estimators are set g0i = ∇fi(x

0)
for all i ∈ [n]. For comparison of EF21-PP and EF21-W-PP, we used the largest step size allowed by theory.
We used the dataset shuffling strategy described in Appendix I.5. The results are presented in Figure 11 and
Figure 12. The important quantities for these instances of optimization problems are summarized in Table 5.

Table 5: Non-Convex optimization experiments in Figures 11, 12. Quantities which define theoretical step size.

Tag L Lvar LQM LAM γEF21−PP γEF21−W−PP

(a) W1A 0.781 3.283 2.921 2.291 2.315× 10−4 2.95× 10−4

(b) W2A 0.784 2.041 2.402 1.931 2.816× 10−4 3.503× 10−4

(c) W3A 0.801 1.579 2.147 1.741 3.149× 10−4 3.884× 10−4

(d) PHISHING 0.412 9.2× 10−4 0.429 0.428 6.806× 10−3 6.823× 10−3

(e) AUSTRALIAN 3.96× 106 1.1× 1016 3.35× 107 3.96× 106 3.876× 10−10 3.243× 10−9

64

Published as a conference paper at ICLR 2024

0 20000 40000 60000 80000
Rounds

105

106

||
f(x

)||
2

EF21-W-PP
EF21-PP

(e) AUSTRALIAN

Figure 12: Non-Convex Logistic Regression: comparison of EF21-PP and EF21-W-PP. The used compressor is Top1. The

number of clients n = 200. Regularization term λ
∑d

j=1

x2
j

x2
j+1

, with λ = 1, 000. Theoretical step size. Each client

participates in each round with probability pi = 0.5. The objective function is constitute of fi(x) defined in Eq.(90).
Extra details are in Table 5.

From Figure 11 (a), (b), (c), we can observe that for these datasets, the EF21-W-PP is better, and this effect is
observable in practice and is not negligible. Figures 11 (d), demonstrate that sometimes EF21-W-PP in terms
of the full gradient at last iterate can have slightly worse behavior compared to EF21-PP, even though theory
allow more aggressive step-size (For exact values of step size see Table 5. The experiment on AUSTRALIAN
dataset is presented in Figure 12. This example demonstrates that in this LIBSVM benchmark datasets, the
relative improvement in the number of rounds for EF21-W-PP compared to EF21-PP is considerable. The
EF21-W-PP exhibits more oscillation behavior in terms of ∥∇f(xt)∥2 for AUSTRALIAN dataset, however
as we can see observe in expectation ∥∇f(xt)∥2 tends to decrease faster compare to EF21-PP.

J.3 ADDITIONAL EXPERIMENTS FOR EF21-W-SGD

The standard EF21-SGD with the analysis described in Corollary 4 (Fatkhullin et al., 2021) allows perform-
ing the optimization procedure with maximum allowable step size up to the factor of 2 equal to:

γEF21-SGD =

L+

√
β̂1

θ̂
LQM

−1

.

In last expression quantities θ̂ = 1−(1−α)(1+s)(1+ν), and β̂1 = 2(1−α) (1 + s)
(
s+ ν−1

)
. Improved

analysis for EF21-W-SGD allows to apply step size:

γEF21-W-SGD =

L+

√
β̂1

θ̂
LAM

−1

.

Therefore in terms of step size
γEF21-W-SGD ≥ γEF21-SGD

65

Published as a conference paper at ICLR 2024

and EF21-W-SGD exhibits a more aggressive step-size.

We conducted distributed training of a logistic regression model on W1A, W2A, W3A, PHISHING,
AUSTRALIAN datasets with non-convex regularization. For all datasets, we consider the optimization prob-
lem (1), where

fi(x) :=
1

ni

ni∑
j=1

log
(
1 + exp(−yij · a⊤ijx)

)
+ λ

d∑
j=1

x2
j

x2
j + 1

, (91)

and (aij , yij) ∈ Rd × {−1, 1}.

The initial gradient estimators are set to g0i = ∇fi(x
0) for all i ∈ [n]. For comparison of EF21-SGD and

EF21-W-SGD, we used the largest step size allowed by theory. The dataset shuffling strategy repeats the
strategy that we have used for EF21-W-PP and EF21-W and it is described in Appendix I.5. The algorithms
EF21-SGD and /EF21-W-SGD employed an unbiased gradient estimator, which was estimated by sampling
a single training point uniformly at random and independently at each client.

Table 6: Non-Convex optimization experiments in Figures 13, 14. Quantities which define theoretical step size.

Tag L Lvar LQM LAM γEF21-SGD γEF21-W-SGD

(a) W1A 0.781 3.283 2.921 2.291 4.014× 10−4 5.118× 10−4

(b) W2A 0.784 2.041 2.402 1.931 4.882× 10−4 6.072× 10−4

(c) W3A 0.801 1.579 2.147 1.741 5.460× 10−4 6.733× 10−4

(f) PHISHING 0.412 9.2× 10−4 0.429 0.428 1.183× 10−2 1.186× 10−2

(g) AUSTRALIAN 3.96× 106 1.1× 1016 3.35× 107 3.96× 106 3.876× 10−10 3.243× 10−9

The results are presented in Figure 13 and Figure 14. The important quantities for these instances of op-
timization problems are summarized in Table 6. In all Figures 13 (a), (b), (c), (d) we can observe that
for these datasets, the EF21-W-SGD is better, and this effect is observable in practice. The experiment on
AUSTRALIAN datasets are presented in Figure 14. This example demonstrates that in this LIBSVM bench-
mark datasets, the relative improvement in the number of rounds for EF21-W-SGD compared to EF21-SGD
is considerable. Finally, we address oscillation behavior to the fact that employed step size for EF21-SGD is
too pessimistic, and its employed step size removes oscillation of ∥∇f(xt)∥2.

K REPRODUCIBILITY STATEMENT

To ensure reproducibility, we use the following FL PyTorch simulator features: (i) random seeds were
fixed for data synthesis; (ii) random seeds were fixed for the runtime pseudo-random generators involved in
EF21-PP and EF21-SGD across clients and the server; (iii) the thread pool size was turned off to avoid the
non-deterministic order of client updates in the server.

If you are interested in the source code for all experiments, please contact the authors.

66

Published as a conference paper at ICLR 2024

0 5000 10000 15000 20000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W-SGD
EF21-SGD

(a) W1A

0 5000 10000 15000 20000
Rounds

10 2

10 1

||
f(x

)||
2

EF21-W-SGD
EF21-SGD

(b) W2A

0 5000 10000 15000 20000
Rounds

10 3

10 2

10 1

||
f(x

)||
2

EF21-W-SGD
EF21-SGD

(c) W3A

0 5000 10000 15000 20000
Rounds

10 3

10 2

||
f(x

)||
2

EF21-W-SGD
EF21-SGD

(f) PHISHING

Figure 13: Non-Convex logistic regression: comparison of EF21-SGD and EF21-W-SGD. The used compressor is Top1.
The SGD gradient estimator is SGD-US, τ = 1. The number of clients n = 1, 000. The objective function is constitute of

fi(x) defined in Eq.(91). Regularization term λ
∑d

j=1

x2
j

x2
j+1

, λ = 0.001. Theoretical step size. See also Table 6.

0 20000 40000 60000 80000
Rounds

105

106

||
f(x

)||
2

EF21-W-SGD
EF21-SGD

AUSTRALIAN

Figure 14: Non-Convex logistic regression: comparison of EF21-SGD and EF21-W-SGD. The used compressor is Top1.
The SGD gradient estimator is SGD-US, τ = 1. The number of clients n = 200. The objective function is constitute of

fi(x) defined in Eq.(91). Regularization term λ
∑d

j=1

x2
j

x2
j+1

, with λ = 1, 000. Theoretical step size. Full participation.

Extra details are in Table 6.

67

	Introduction
	Communication compression
	Assumptions
	Summary of contributions

	EF21 Reloaded: Our Discovery Story
	Step 1: Cloning the client with the worse smoothness constant
	Step 2: Generalizing the cloning idea
	Step 3: From client cloning to update weighting
	Step 4: From weights in the algorithm to weights in the analysis

	Experiments
	Non-convex logistic regression on benchmark datasets
	Non-convex linear model on synthetic datasets

	Basic Results and Lemmas
	Optimal client cloning frequencies
	Descent lemma
	Young's inequality
	2-Suboptimal but simple stepsize rule
	Optimal coefficient in Young's inequality

	Cloning reformulation for Polyak-Łojaschewitz functions
	Proof of thm:EF21-W (Theory for EF21-W)
	A lemma
	Main result
	Main result for Polyak-Łojasiewicz functions

	Proof of thm:ef21newresult (Improved Theory for EF21)
	Two lemmas
	Main result
	Main result for Polyak-Łojasiewicz functions

	EF21-W-SGD: Weighted Error Feedback 2021 with Stochastic Subsampled Gradients
	Algorithm
	A lemma
	Main result

	EF21-W-SGD: Weighted Error Feedback 2021 with Stochastic Gradients under the ABC Assumption
	Algorithm
	A lemma
	Main result

	EF21-W-PP: Weighted Error Feedback 2021 with Partial Participation
	Algorithm
	A lemma
	Main result

	Improved Theory for EF21 in the Rare Features Regime
	Algorithm
	New sparsity measure
	Lemmas
	Main result

	Experiments: Further Details
	Computing and software environment
	Comments on the improvement
	When improved analysis leads to more aggressive steps
	Dataset generation for synthetic experiment
	Dataset shuffling strategy for LIBSVM dataset

	Additional Experiments
	Additional experiments for ForestGreenEF21
	Additional experiments for ForestGreenEF21-W-PP
	Additional experiments for ForestGreenEF21-W-SGD

	Reproducibility Statement

