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A SUPPLEMENTARY

A.1 DETAILS ON INTRANSIGENT TEACHER EXPERIMENT FROM SECTION 3

Our preliminary intransigent teacher experiment is conducted on ImageNet-C, a long ImageNet-C
scenario (20x loop of standard ImageNet-C testing sequence), and CCC benchmarks. We utilize
the same model as for our main experiments on ImageNet-based benchmarks - ResNet50 with pre-
trained weights from the RobustBench (Croce et al., 2021) model zoo. We use a single loss within
the teacher-student framework for the model adaptation during test time - either consistency loss
from CoTTA (Consistency) or contrastive loss from AdaContrast (Contrastive). Any other compo-
nents of the mentioned state-of-the-art methods are not included. Batch normalization statistics are
recalculated for each batch. For both of the tested approaches, we use the SGD optimizer with a
learning rate of 0.00025.

A.2 BASELINES IMPLEMENTATION DETAILS

The experiments were conducted using the code repository of the previous test-time adaptation
works (Marsden et al., 2024; Döbler et al., 2022). It provides the implementation of every tested
state-of-the-art method. In terms of hyperparameters, we followed the implementations for tests on
the typical batch size of 64.

TENT (Wang et al., 2021), EATA (Niu et al., 2022), SAR (Niu et al., 2023), and RDUMB (Press
et al., 2023) use Adam optimizer with a learning rate of 0.001 for CIFAR10-C and SGD optimizer
with a learning rate of 0.00025 for other benchmarks. AdaContrast (Chen et al., 2022) utilizes an
SGD optimizer with a learning rate set to 0.0002 for all of the benchmarks. CoTTA (Wang et al.,
2022) uses Adam optimizer with a learning rate of 0.001 for CIFAR10-C and SGD with a learning
rate of 0.01 for the rest of the benchmarks. Adam optimizer with a learning rate set to 0.001 is
used by RoTTA (Yuan et al., 2023a) for all of the tested datasets. MEMO (Zhang et al., 2022)
uses an SGD optimizer with a learning rate of 0.005 for CIFAR10-C and 0.00025 for other datasets.
PETAL (Brahma & Rai, 2023) in the original paper uses Adam optimizer with a learning rate of
0.001 for CIFAR10-C and SGD with a learning rate of 0.01 for other datasets. However, since we
often experienced poor performance using these values on long scenarios, we utilized 10 times lower
learning rates.

The learning rate used in experiments with batch size set to 10 was adjusted accordingly by scaling
it linearly.

CoTTA (Wang et al., 2022) and PETAL (Brahma & Rai, 2023) methods update the student net-
work using a consistency loss between the student and teacher. If the prediction confidence of the
source model is below a certain threshold, the teacher’s predictions are averaged over 32 different
augmentations of the image which adds 31 additional forward operations of the neural network for
each batch. It creates a significant computation overhead and causes the methods to be significantly
slower, compared to other state-of-the-art methods. It is especially problematic for long adaptation
sequence scenarios, which were the main part of our experiments. Our tests indicate that using a
single augmentation does not alter the results notably. Therefore, for the ease of experimentation,
we reduce the number of augmentations to 1.

The learning rate selection process for Figure 6 (right) was conducted using the Oracle method.

A.3 DETAILS ON MEMO RESULTS ON CCC BENCHMARK FROM TABLE 3

The result is based on the first 623,000 images of the benchmark, providing an initial estimate of
the method’s accuracy. However, due to the benchmark’s extensive size (7,500,000 images) and the
method’s requirement for a batch size of 1, we were unable to complete the full experiment in time.
We estimate that processing the entire dataset will require approximately 972 hours on a single
NVIDIA GeForce RTX 4080 GPU. This substantial time requirement underscores the method’s
significant computational inefficiency.
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A.4 COMPUTE DETAILS

All experiments were conducted on a single GPU. We utilized either NVIDIA A100 with 40GB
of memory or NVIDIA GeForce RTX 4080 with 16GB of memory. Execution time of experiment
greatly varied and was dependent on the dataset, scenario (standard or long), tested method and
batch size. The fastest experiments took about 30 minutes, whereas the longest lasted up to 36
hours.

A.5 DISCUSSION ON COTTA AND I-COTTA PERFORMANCE ON IMAGENET-C (L) AND
IMAGENET-R (L)

I-CoTTA underperforms compared to the original CoTTA on ImageNet-C (L) and ImageNet-R (L)
with a batch size of 64 and architectures with batch normalization layers, as shown in Table 3 and
Table 4. The accuracy drops by 17.4 and 10.8 percentage points, respectively. We attribute this to
CoTTA’s exceptional performance in these specific scenarios, where it outperforms all other tested
methods and achieves a stable performance improvement as presented in Figure 4 (left). The addi-
tional regularization from IT doesn’t enhance stability in this case. Instead, it over-regularizes the
student model, hindering its adaptation capability. This case, while unusual for CoTTA (consid-
ering other CoTTA results), demonstrates that IT isn’t universally effective. However, it’s crucial
to note that even in this case, IT still outperforms the source model. Our focus is on improv-
ing the overall reliability of TTA across all settings, not just in specific scenarios where certain
methods may excel. Also, note that COTTA does not perform that well on architectures without
batch normalization layers.

A.6 WALL-TIME RESULTS

Table A.1: The wall-clock time (seconds) for processing 10,000 images of CIFAR10C on a single
RTX 4080 GPU.

Method Time [s]
Source 3.4
MEMO 508.4

AdaContrast 25.3
I-AdaContrast 25.0
CoTTA 40.7
I-CoTTA 40.2
RoTTA 27.7
I-RoTTA 27.5

A.7 RESULTS WITH DIFFERENT ARCHITECTURES AND LEARNING RATES

Table A.2 presents additional results using different neural network architectures. The learning rate
was tuned by the Oracle method to provide favorable conditions for the original TTA approaches
and ensure they work correctly. All results from the learning rate selection process are in Table A.3.
The intransigent teacher is able to improve the test-time adaptation accuracy on long sequences for
all of the compared models even when the original methods have tuned learning rates specifically
for tested sequence length.
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Table A.2: Classification accuracy [%] for long scenarios on CIFAR10-C and ImageNet-C with
different neural network architectures. The value in superscript indicates the improvements over the
baseline. The learning rate parameter is adjusted using the Oracle method. The batch size is equal
to 64.

CIFAR10-C (L) ImageNet-C (L)
ResNet26GN ResNeXt-50 ViT-B16 SwinViT-T ConvNeXt tiny

Source 67.3 21.1 39.8 28.3 29.1
AdaContrast (Chen et al., 2022) 75.7 38.8 41.5 30.6 33.4
I-AdaContrast 79.6+3.9 42.7+3.9 43.5+2.0 30.9+0.3 32.5-0.9

CoTTA (Wang et al., 2022) 57.0 42.1 41.7 28.4 29.1
I-CoTTA 67.3+10.3 38.3-3.8 40.7-1.0 28.9+0.5 30.5+1.4

RoTTA (Yuan et al., 2023a) 70.2 35.6 40.6 28.8 29.0
I-RoTTA 72.5+2.3 36.2+0.6 42.9+2.3 28.9+0.1 29.7+0.7

Table A.3: Classification accuracy [%] for long scenarios on CIFAR10-C and ImageNet-C with dif-
ferent neural network architectures and learning rates with the batch size equal to 64. Intransingent
versions are much more robust to changes in hyperparameters.

LR CIFAR10-C (L) ImageNet-C (L)
ResNet26GN ResNeXt-50 ViT-B16 SwinViT-T ConvNeXt tiny

Source - 67.3 21.1 39.8 28.3 29.1

AdaContrast

0.001 75.7 20.0 29.6 13.0 17.5
0.0002 74.7 20.0 32.1 15.1 18.2
0.00025 75.1 20.3 31.8 14.4 18.2
3.125e-5 74.3 25.6 39.0 21.9 22.4
1e-6 72.0 38.8 41.5 29.6 32.0
1e-7 68.4 33.5 40.7 30.6 33.4
1e-8 68.1 32.1 40.0 28.7 31.2

I-AdaContrast

0.001 79.6 39.5 42.1 30.4 32.4
0.0002 79.4 42.7 43.5 30.8 32.5
0.00025 79.5 42.4 43.4 30.8 32.5
3.125e-5 77.7 42.3 43.1 30.9 32.3
1e-6 73.0 37.6 42.0 30.9 31.7
1e-7 69.2 33.4 41.0 30.3 30.5

CoTTA

0.01 12.3 57.1 26.2 0.1 0.1
0.001 16.6 42.1 34.5 26.3 0.2
0.00025 14.8 39.2 38.7 25.5 19.3
3.125e-5 26.6 39.3 41.7 28.4 22.2
1e-6 56.2 33.7 40.0 27.0 29.1
1e-7 57.0 33.0 39.4 28.0 29.0
1e-8 57.0 32.9 39.3 28.2 29.1

I-CoTTA

0.01 26.9 38.3 30.9 27.5 16.3
0.001 61.7 35.9 39.9 28.9 27.6
0.00025 62.1 36.0 40.1 28.7 29.3
3.125e-5 62.1 35.7 40.7 28.6 29.8
1e-6 67.3 33.6 40.4 28.3 30.5
1e-7 67.3 33.0 39.9 28.3 28.3

RoTTA

0.001 66.0 16.2 36.2 7.3 18.7
0.00025 68.5 19.7 34.8 7.9 16.8
3.125e-5 70.2 35.6 36.5 13.9 16.3
1e-6 68.5 33.6 40.6 28.8 26.8
1e-7 67.9 31.2 40.0 28.4 29.0
1e-8 67.3 30.8 39.8 28.3 29.0

I-RoTTA

0.001 72.5 35.2 42.9 27.7 29.7
0.00025 72.4 36.2 42.6 27.3 29.7
3.125e-5 71.2 34.3 42.1 27.7 29.0
1e-6 68.9 28.3 40.7 28.9 28.5
1e-7 67.9 26.1 40.0 28.4 29.0
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A.8 EFFECTS OF INTRANSIGENCE AMOUNT EXTENDED EXPERIMENT

To signify the point of Section 4.2, Figure A.1 shows results where the test sequence was extended
to 100 loops of common CIFAR10-C. It verified that CoTTA with ET and β = 0.9999 degrades
below the performance of IT, given enough samples in the test sequence. This observation high-
lights a significant issue of TTA methods, as they can face test sequences of arbitrary lengths after
deployment.
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Figure A.1: Mean accuracy [%] of CoTTA with varying β for each loop of common CIFAR10-C
testing sequence repeated 100 times. The brown dashed line indicates the accuracy of the source
model as a reference.

A.9 TUNING LEARNING RATE VALUE FOR LONG SCENARIOS.

We investigated whether tuning the learning rate, arguably the most crucial hyperparameter, could
enhance the performance of baseline methods in long adaptation scenarios. Following a realistic
approach, we employed an Oracle technique on ImageNet-C (L) as a reference benchmark (inspired
by Rusak et al. (2022), we call it Transfer IN-C) and applied the selected learning rate across all
datasets. The results, presented in Table A.4, reveal the complexity of hyperparameter optimization
in test-time adaptation.

Our findings shows the challenges of hyperparameter tuning. For instance, CoTTA achieved supe-
rior accuracy with its default learning rate compared to the tuned version. While AdaContrast and
RoTTA showed improvements with optimized learning rates, our IT approach consistently outper-
formed these methods, even when they were specifically tuned for long-sequence adaptation. These
results underscore both the difficulty of hyperparameter selection and the robust performance of our
IT method across varying conditions.

Table A.4: Classification accuracy [%] for long scenarios with the learning rate (LR) parameter
tuned. LR value Default means that the default LR value for the method was used. Transfer IN-C
indicates that the LR is tuned utilizing the ImageNet-C benchmark with ground truth labels. The
batch size is equal to 64.

Method LR value CIFAR10-C (L) ImageNet-C (L) ImageNet-R (L) DomainNet-126 (L) Avg.

AdaContrast Default 81.8 18.8 26.5 61.7 47.2
Transfer IN-C 81.2 36.1 40.8 59.7 54.5

I-AdaContrast Default 85.4 40.4 38.2 64.4 57.1+9.9

Transfer IN-C 85.4 40.4 38.2 64.4 57.1+2.6

CoTTA Default 56.0 52.8 50.5 45.6 51.2
Transfer IN-C 11.2 52.8 50.5 45.6 40.0

I-CoTTA Default 68.4 35.4 39.6 56.8 50.1-1.1

Transfer IN-C 52.0 35.4 39.6 56.8 46.0+6.0

RoTTA Default 82.3 13.2 43.4 50.3 47.3
Transfer IN-C 73.2 30.8 41.0 55.3 50.1

I-RoTTA Default 79.6 32.7 39.7 57.2 52.3+5.0

Transfer IN-C 79.3 33.3 39.9 57.2 52.4+2.3
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A.10 POTENTIAL OF ADAPTIVE β VALUE.

In Table A.5, we explore a dynamic approach to adjusting the teacher model’s momentum parameter
(β). Our experiment begins with the default value of β = 0.999, allowing initial teacher model
plasticity, then transitions to complete weight preservation of IT (β = 1.0) after one full cycle
through the data. This hybrid approach outperforms our IT technique in several cases, demonstrating
the potential of adaptive momentum strategies.

However, the results are not uniformly positive with our standard IT outperforming the hybrid
method in some cases (AdaContrast on ImageNet-C (L) and CoTTA on DomainNet-126 (L)). This
suggests that the fixed period length is not a universal value and there is a need to adjust it correctly.

Table A.5: Classification accuracy [%] for long scenarios with the weights of the teacher fixed only
after the 1st loop on the test sequence. The value in superscript indicates the improvements over the
IT technique’s performance. The batch size is equal to 64.

Method CIFAR10-C (L) ImageNet-C (L) ImageNet-R (L) DomainNet-126 (L) Avg.

AdaContrast 85.2-0.1 38.4-2.0 38.2+0.1 65.3+0.9 56.8-0.3

CoTTA 72.0+3.7 45.0+9.6 42.8+3.3 49.1-6.9 52.2+2.4

RoTTA 80.4+0.7 36.1+3.2 41.0+1.3 57.9+1.3 53.9+1.7

A.11 DISCUSSION ON MODEL RESET MECHANISM.

CoTTA’s proposed resetting mechanism aims to preserve source knowledge by stochastically restor-
ing portions of the student model’s weights to their original source state during each update iteration.
In principle, an effective source knowledge preservation technique should eliminate the need for our
IT technique.

However, CoTTA’s reset mechanism introduces a restoration probability parameter. To ensure our
findings were not biased by suboptimal parameter selection, we conducted parameter tuning experi-
ments, documented in Table A.6. These results reveal that the optimal restoration probability varies
across datasets, with model performance dependent on this parameter. When following a realistic
scenario of tuning on a single dataset, the performance improvements were marginal (Avg. Trans-
fer IN-C). Only by using an Oracle approach on all benchmarks, we observe performance gains,
highlighting the practical limitations of this approach.

Table A.6: Classification accuracy [%] for long scenarios with restoration probability parameter p of
CoTTA method tuned. The batch size is equal to 64. Avg. Def. is the average accuracy with default
p value. Avg. Transfer IN-C is the average accuracy with a single p value chosen on the ImageNet-
C dataset using the Oracle method. Average accuracy when the p value is chosen separately for each
of the datasets with Oracle is presented in Avg. Oracle column.

p value CIFAR10-C (L) ImageNet-C (L) ImageNet-R (L) DomainNet-126 (L) Avg.
Def. Transfer IN-C Oracle

0.1 73.1 29.0 41.8 26.9

51.2 51.6 58.1

0.01 53.7 24.8 35.6 13.7
0.001 (Def.) 56.0 52.8 50.5 45.6
0.0001 54.7 53.7 45.0 52.9
0.00001 54.3 53.6 49.0 55.0
0.0 52.7 53.5 48.9 54.5

A.12 DISCUSSION ON RDUMB.

RDumb has already been established as a state-of-the-art baseline method for extended adaptation
scenarios, demonstrating great performance in both prior work (Press et al., 2023) and our current
experiments. Despite its effectiveness, limitations should be considered.

The method’s mechanism of periodically resetting the model to its initial state leads to significant
accuracy drops immediately following each reset, as illustrated in Figure A.2. Such instability is
particularly concerning since reliable test-time adaptation should maintain consistent performance
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Figure A.2: Batchwise accuracy plots of RDumb and I-AdaContrast methods on ImageNet-C (L)
benchmark. The accuracy values were smoothed to make the plot clearer. RDumb resets the model
every 1000 iterations, which causes significant drops in accuracy after the reset.

throughout the adaptation process. Furthermore, the same constant reset interval is likely not opti-
mal for every case, which adds a hyperparameter to select. In contrast, our IT approach achieves
comparable performance without requiring parameter tuning.

A.13 ADAPTATION TO REPEATED SOURCE DOMAIN DATA.

We investigated whether the observed accuracy degradation during adaptation stems solely from
distribution shift by conducting experiments on the source domain’s validation splits. We evaluated
performance under two conditions: a single pass through the data (1x) and 20 repeated passes (20x),
with results shown in Table A.7. Our findings reveal that accuracy degradation occurs even on source
domain data, with dataset-specific variations. This phenomenon is visible on all tested datasets
except CIFAR10-C. We attribute this exception to CIFAR10-C’s lower complexity, particularly its
smaller number of classes compared to other datasets in our study.

The IT in most cases improves the performance on repeated streams (20x), however, the increased
stability negatively impacts the accuracy on the 1x streams (especially with CoTTA and RoTTA).

Table A.7: Classification accuracy [%] for the adaptation on the source domain’s validation splits.
1x indicates the performance on a single pass through the data, while 20x means the accuracy on the
20 repeated passes. The batch size is equal to 64. The degradation of performance also occurs when
adapting to the source domain, however, this effect depends on the dataset and the method used.

Method CIFAR10-C ImageNet-C ImageNet-R DomainNet-126 Avg.
1x 20x 1x 20x 1x 20x 1x 20x 1x 20x

AdaContrast 93.6 93.7 72.3 38.4 91.4 87.1 93.2 85.7 87.6 76.2
I-AdaContrast 93.6 93.7 72.8 66.5 91.4 88.8 94.1 92.8 88.0 85.5

CoTTA 93.5 92.9 74.2 63.2 91.7 90.2 86.1 61.2 86.4 76.9
I-CoTTA 77.4 81.6 51.0 60.5 77.5 88.1 74.1 84.7 70.0 78.7

RoTTA 94.2 94.4 75.7 63.2 91.9 81.5 89.1 58.8 87.7 74.5
I-RoTTA 94.1 93.5 73.1 72.9 90.7 85.4 68.8 88.0 81.7 85.0

A.14 ADDITIONAL RESULTS
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Figure A.3: Mean accuracy [%] for each loop of common testing sequence on ImageNet-C (L) using
CoTTA (left) and on CIFAR10-C (L) using AdaContrast (right). The Brown dashed line indicates
the Source model accuracy.
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Figure A.4: Per batch accuracy [%] on ImageNet-C (L) comparing AdaContrast (left) and RoTTA
(right) using ViT-B16 network with EMA teacher (ET, orange) and intransigent teacher (IT, blue),
both for teacher (solid) and student (dashed).
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Table A.8: Classification accuracy [%] for common length sequences.

Method CIFAR10-C ImageNet-C ImageNet-R DomainNet-126
Source 56.5 18.0 36.2 54.7
MEMO (Zhang et al., 2022) 65.6 25.0 40.9 53.2

BS = 10

TestBN 75.0 27.0 36.6 46.5
TENT (Wang et al., 2021) 75.7 31.2 38.9 52.4
EATA (Niu et al., 2022) 77.4 36.0 43.1 54.4
SAR (Niu et al., 2023) 75.8 31.3 41.9 52.8
RDUMB (Press et al., 2023) 77.2 34.8 41.3 52.0
AdaContrast (Chen et al., 2022) 81.3 33.3 39.5 56.5
I-AdaContrast 82.0 33.8 39.8 59.6
CoTTA (Wang et al., 2022) 75.1 26.4 41.1 52.0
I-CoTTA 69.8 28.3 35.6 49.5
RoTTA (Yuan et al., 2023a) 79.0 29.2 38.6 55.9
I-RoTTA 73.2 29.4 39.3 56.6
PETAL (Brahma & Rai, 2023) 68.3 23.2 36.6 49.5
I-PETAL 74.2 27.3 36.6 49.5

BS = 64

TestBN 79.2 31.4 39.7 54.5
TENT (Wang et al., 2021) 77.8 37.3 42.6 58.0
EATA (Niu et al., 2022) 79.8 42.0 45.8 59.7
SAR (Niu et al., 2023) 79.3 37.8 42.8 57.2
RDUMB (Press et al., 2023) 81.4 40.0 46.2 58.9
AdaContrast (Chen et al., 2022) 82.6 34.8 40.9 62.0
I-AdaContrast 82.4 35.1 41.0 61.7
CoTTA (Wang et al., 2022) 82.2 36.8 42.8 58.9
I-CoTTA 68.6 31.7 35.9 54.4
RoTTA (Yuan et al., 2023a) 80.9 32.4 39.2 56.8
I-RoTTA 76.7 30.6 39.3 56.3
PETAL (Brahma & Rai, 2023) 76.6 31.5 39.7 54.5
I-PETAL 78.4 31.4 39.7 54.5
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Figure A.5: Per batch accuracy [%] on CIFAR10-C (L) using AdaContrast and WideResNet-28
network with EMA teacher (ET, orange) and intransigent teacher (IT, blue), both for teacher (solid)
and student (dashed).
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Figure A.6: Per batch accuracy [%] on CIFAR10-C (L) using CoTTA and WideResNet-28 network
with EMA teacher (ET, orange) and intransigent teacher (IT, blue), both for teacher (solid) and
student (dashed).
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Figure A.7: Per batch accuracy [%] on CIFAR10-C (L) using RoTTA and WideResNet-28 network
with EMA teacher (ET, orange) and intransigent teacher (IT, blue), both for teacher (solid) and
student (dashed).
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