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APPENDIX: LATENT WASSERSTEIN ADVERSARIAL IMITATION LEARNING

Our appendix is organized as follows. In Sec. A, we discuss ICVF and provide a more detailed
explanation of Eq. (6). In Sec. B, we provide the details of the environment in our experiments
(Sec. B.1), the dataset used in our experiments (Sec. B.2), the hyperparameters we used for our
method (Sec. B.3), and the details for our baselines (Sec. B.4). In Sec. D, we summarize the notation
used in our paper. Finally, in Sec. E, we state the computational resource used for running our
experiments.

A EXTENDED PRELIMINARIES

Intention Conditioned Value Function (ICVF). Intuitively, V (s, s, z) is designed to evaluate the
likelihood of the following question: How likely am I to see s if I act to perform z from state s?
The learning of ICVF is similar to other value-learning algorithms. ICVF satisfies the following
Bellman equation:

V(s 84, Z) = IEa~7r; []I(g =s4)+ ’YES,’\‘Pz('ISi) [V(S/a S+, Z)H ) 10
where 7F = argmaxr,(s) + vEs [V (s, 2, 2)] . (10)
a

Here, (s, s’) is a transition and P, (s;41]s) is the transition probability from s; to s;+1 when acting
according to intent z. Further, r, defines the agent’s objective for a particular intention z. Note,
r.(s) is not the ground truth reward signal. Instead, it describes whether a state s is desirable by
intent z and thus depends on data; in other words, the agent aims to maximize the reward specified
by 7, when pursuing intention z. The original reward is not needed in ICVF training.

The original paper adopts implicit Q-learning (IQL) for ICVF learning. In one update batch,
we sample transition (s, s’), potential future outcome s, and intent z. Similar to the original
IQL (Kostrikov et al., 2022), we update the critic with asymmetric critic losses to avoid out-of-
distribution overestimation. To do this, we apply different weights on critic loss with respect to the
positivity of advantage. Note, as we care about whether the transition (s, s”) corresponds to acting
with intention z, our goal s is equal to z. Thus, the advantage A is defined as:

A=1,(8) +9Vo(s',2,2) — Vi(s, 2, 2). (11)

Following that, the critic loss is defined as:

L(Vg) =E(s,57),2,5. [|a —I(A < 0)|(Va(s,s4,2) —I(s = 51+) — YWiareer (8", 84, z))2] . (12)

B EXPERIMENTAL DETAILS

B.1 ENVIRONMENTS

We use five MuJoCo (Todorov et al., 2012) and D4RL (Fu et al., 2020) environments: Maze2d,
hopper, halfcheetah, walker2d and ant. The environment specifications for maze2d are provided in
Sec. 4.1. In this section, we will briefly introduce the other MuJoCo environments. Fig. 7 provides
an illustration of those environments.

1. Hopper. The hopper environment (as well as the other three environments) is a locomotion
task. In hopper, the agent needs to control a single-legged robot leaping forward in a 2D
space with z- and z-axis. The 11-dimensional state space encompasses joint angles and
velocities of the robot, while the 3-dimensional action space corresponds to torques applied
on each joint.

2. Halfcheetah. In the Halfcheetah environment, the agent needs to control a cheetah-shaped
robot to sprint forward. It also operates in a 2D space with z- and z-axis, but has a 17-
dimensional state representing joint positions and velocities, and a 6-dimensional action
space that modulates joint torques.
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(a) Hopper (b) Halfcheetah (c) Walker2d (d) Ant

Figure 7: Illustration of the MuJoCo (Todorov et al., 2012) environments we test in Sec. 4.2.

3. Walker2d. As implied by its name, in Walker2d, the agent needs to control a 8-DoF
bipedal robot to walk in the two dimensional space. It has a 27-dimensional state space and
an 8-dimensional action space.

4. Ant. Different from the other three environments, the Ant environment is a 3D setting
where the agent navigates a four-legged robotic ant moving towards a particular direc-
tion. The state is represented by 111 dimensions, including joint coordinates and velocities,
while the action space has 8 dimensions.

B.2 DATASETS

For expert datasets of the MuJoCo environments, we use 1 trajectory from the D4RL expert dataset,
which has 1000 steps. Some baselines such as PWIL (Dadashi et al., 2021) employ a subsampling
hyperparameter, which creates a low-data training task by taking only one state/state-action pair
from every 20 steps of the expert demonstration. For fairness, we set all baselines’ subsampling
factors to be 1, i.e., no subsampling.

Dataset Size Normalized Reward (Expert is 100)
Hopper-random-v2 999996 1.19+1.16
HalfCheetah-random-v2 1000000 0.07 4+ 2.90
Walker2d-random-v2 999997 0.01 +0.09
Ant-random-v2 999930 6.36 +10.07

Table 2: The basic statistics of the random datasets from D4RL (Fu et al., 2020) applied in our
experiments. It is apparent that all these data are of very low quality compared to an expert, yet our
ICVF-learned metric still works well.

B.3 HYPERPARAMETERS

Tab. 3 summarized the hyperparameters for our method. We use the same settings for all environ-
ments, and keep hyperparameters identical to TD3 (Fujimoto et al., 2018) and ICVF (Ghosh et al.,
2023) whenever possible.

B.4 BASELINES

We use several different github repositories for our baselines. We use default settings of those repos,
except for the number of expert trajectories (which is set to 1) and the subsampling factor (see
Appendix B.2). Below are the repos we used in our experiments for each baseline:

* BC (Ross et al., 2011), GAIL (Ho & Ermon, 2016), AIRL (Fu et al., 2018): We use the
imitation (Gleave et al., 2022) library, which provides clean implementations of several
imitation learning algorithms and has a MIT license.

* OPOLO (Zhu et al., 2020), DACfO (Kostrikov et al., 2019), BCO (Torabi et al., 2018a),
GAIfO (Torabi et al., 2018b): We use OPOLQ’s official code (https://github.com/
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Type Hyperparameter Value Note
ICVFE. Network Size of ¢ [256, 256] same as original paper
Disc. Network Size [64, 64]
Activation Function ReLU
Learning Rate 0.001
Update Epoch 40 steps
Update interval 4000
Batch Size 4000
Optimizer Adam
Gradient Penalty coefficient 10
Actor Network Size [256, 256]
Activation Function ReLU
Learning Rate 0.0003
Training length 1M steps
Batch Size 256
Optimizer Adam
Critic Network Size [256, 256]
Activation Function ReLU
Learning Rate 0.001
Training Length 1M steps
Batch Size 256
Optimizer Adam
o 0.99 discount factor

Table 3: Summary of the hyperparameters of LWAIL.

Hopper HalfCheetah Walker Ant Average
1 trajectory 110.52 £ 1.06 86.71 £5.67 10530 £2.33 80.56 = 13.09 95.77
5 trajectories 107.65 £ 747 9328 4+1.97 107.32 4+ 1.36 87.23 +10.43 98.87

All expert dataset 109.34 £3.87 94.18 £3.12 10437+ 197 90.81 £9.61 99.67

Table 4: Ablation on using multiple trajectories as expert demonstrations. Our method shows con-
sistent expert-level performance regardless of the number of expert demonstrations.

illidanlab/opolo-code), where DACfO, BCO and GAIfO are integrated as base-
lines, which does not have a license.

* OLLIE (Yue et al., 2024): We tried to use the official code but it can’t be executed due to
non-trivial typos. Thus we use their reported numbers on random dataset instead.

e PWIL: We use another widely adopted imitation learning repository (Arulku-
maran &  Ogawa Lillrank, 2023) (https://github.com/Kaixhin/
imitation-learning), which has an MIT license.

* WDAIL: We use their official code (https://github.com/mingzhangPHD/
Adversarial-Imitation-Learning/tree/master), which does not have a li-
cense.

e [Qlearn: We use their official code (https://github.com/Div99/IQ-Learn/
tree/main) with a research-only license.

C MORE ABLATIONS

In this section, we provide additional ablation results of our method. We report normalized reward
(higher is better) for all results.

C.1 MULTIPLE TRAJECTORIES

To demonstrate robustness of our method even if the expert data is scarce, we test our method with
5 expert trajectories and the whole expert dataset (1M transitions). Tab. 4 summarizes the results.
We observe consistent compelling performance regardless of the number of expert trajectories.

C.2 EMBEDDINGS

In this section, we compare our method with ICVF embeddings to use of other embeddings. It
is worth noting that while there are embedding methods for RL/IL, most of them are not applica-
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Hopper HalfCheetah Walker Ant Average
LWAIL 11052 £ 1.06  86.71 +5.67 10530 £2.33 80.56 + 13.09  95.77
PW-DICE 110.60 £ 0.77 46.07 +£27.95 106.63 +1.03 85.36 + 8.12 87.16
CURL 105,70 £1.22  87.62+5.10 10297 +£4.19 52.03 +8.33 87.08
No Embedding 108.34 +3.42 8598 +342 62.39 +20.43 40.72 + 18.95 74.36

Table 5: Ablation of different embedding methods with LWAIL. The result shows that ICVF em-
beddings outperform other contrastive learning-based embeddings.

Hopper HalfCheetah Walker Ant Average
LWAIL 110.52 £ 1.06  86.71 £5.67 105.30 £2.33 80.56 £ 13.09  95.77
LWAIL _subsample  109.00 £ 0.46 86.73 £7.02 106.13 +2.47  83.21 £ 8.80 96.27
WDAIL_subsample 108.21 £4.90 35.41 +£2.07 114324+2.07 83.87 £10.92 8545
IQlearn_subsample  60.26 + 14.21  4.12 + 1.03 831 +1.48 5.32 £3.87 19.50

Table 6: Ablation on subsampled expert trajectories. The result shows that LWAIL is robust to
subsampled expert demonstrations and outperforms other baselines with subsampled expert demon-
strations.

ble to our scenario. For instance, most empirical state embedding methods are for visual environ-
ments (Meng et al., 2023; Sermanet et al., 2018) or for cross-domain dynamics matching (Duan
et al., 2017; Franzmeyer et al., 2022). Among theoretical state embedding methods, low-rank
MDPs (Modi et al., 2024) are not applicable to the MuJoCo environment, and bisimulation (Zhang
et al., 2020a) requires a reward signal which is not available in imitation learning.

Nonetheless, we identify two contrastive learning-based baselines that are most suitable for our
scenario: CURL (Laskin et al., 2020) and PW-DICE (Yan et al., 2024). Both methods use In-
foNCE (Oord et al., 2018) as their contrastive loss for better state embeddings. Their difference: 1)
CURL updates embeddings with an auxiliary loss during online training, while PW-DICE updates
embeddings before all other training; 2) CURL compares the current state with different noises
added as positive contrast examples, while PW-DICE uses the next states as positive contrast sam-
ples. Tab. 5 summarizes the results. The result shows that 1) state embeddings generally aid learning;
and 2) our proposed method works best.

C.3 SUBSAMPLE

To validate the robustness of our policy, we provide results with subsampled expert trajectories, a
widely-adopted scenario in many prior works such as PWIL and IQ-learn. Only a small portion of
the complete expert trajectories are present. Our subsample ratio is 10, i.e., we take 1 expert state
pair out of adjacent 10 pairs. Tab. 6 summarizes the results, which show that 1) our method with
subsampled trajectories outperforms Wasserstein-based baselines such as WDAIL (Zhang et al.,
2020b) and IQlearn (Garg et al., 2021), and 2) the performance of our method is not affected by
incomplete expert trajectories.

C.4 DOWNSTREAM RL ALGORITHM

We used TD3 as our downstream RL algorithm rather than PPO with entropy regularizer. Our choice
is motivated by better efficiency and stability, especially because TD3 is an off-policy algorithm
which is more robust to the shift of the reward function and our adversarial training pipeline. We
ablate this choice of the downstream RL algorithm and show that TD3 outperforms PPO in our
framework. Tab. 7 summarizes the results.

C.5 ICVF EMBEDDING WITH OTHER METHODS

We also show that our proposed solution outperforms existing methods with ICVF embedding, both
Wasserstein-based (IQlearn, WDAIL) and f-divergence based. The results are summarized in Tab. 8
(using average reward; higher is better). We find that 1) our method outperforms prior methods with
ICVF embedding, and 2) ICVF does not necessarily improve the performance of prior methods,
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Hopper HalfCheetah Walker Ant Average
LWAIL+TD3 (original) 110.52 £ 1.06 86.71 £5.67 10530+ 2.33 80.56 = 13.09  95.77
LWAIL+PPO 65.21 +4.81 1.02 + 0.21 24.13 +2.14 9.12+0.85 24.87

Table 7: Ablation on downstream RL algorithms. The result shows that TD3 works much better
than PPO.

Hopper HalfCheetah Walker Ant Average
LWAIL 110.52 £ 1.06 86.71 £5.67 105.30 £2.33 80.56 +13.09  95.77
WDAIL+ICVF  110.02 +£0.53 30.07 £2.32 68.68 +£9.16 3.42+1.01 53.04
IQlearn+ICVF  29.80 +£10.12  3.82 £ 0.98 6.54 +1.23 891 £0.45 12.27
GAIL+ICVF 8.96 + 2.09 0.12 £ 0.40 398 +£1.41 -3.09 +0.85 2.49

Table 8: ICVF with other methods. Our method far outperforms other methods with ICVF embed-
dings.

due to other components of our method (e.g., normalized input for the Wasserstein discriminator,
downstream RL algorithm).

C.6 MISMATCHED DYNAMICS

It is worth noting that the very motivation of LWAIL is to find a latent space which aligns well
with the environment’s true dynamics. Despite this, we agree that there might be cases where the
latent space employed in LWAIL does not align with the true dynamics due to inaccurate data,
e.g., mismatched dynamics between expert demonstrations and the actual environment. To test such
cases, we use the halfcheetah mismatched experts scenario analyzed in SMODICE (Ma et al., 2022):
for expert demonstration, the torso of the cheetah agent is halved in length, thus causing inaccurate
alignment. We compared our methods with the results reported in the SMODICE paper. Tab. 9
summarizes the final average normalized reward (higher is better). Results show that 1) our method
works better than several baselines including SMODICE; and 2) our method is robust to mismatched
dynamics.

C.7 SIGMOID REWARD MAPPING

We adopt the sigmoid function to regulate the output of our neural networks for better stability
(similar to WDAIL (Zhang et al., 2020b)). However, one cannot naively apply the sigmoid to the
reward function for better performance. To show this, we compare to TD3 with a sigmoid function
applied to the ground truth reward. The result is illustrated in Tab. 10. The result shows that a naive
sigmoid mapping of the reward does not improve TD3 results.

C.8 PSEUDO-REWARD METRIC CURVE

To validate the effect of using sigmoid and ICVF embedding for our pseudo-reward generated by f,
we conduct two experiments:

1) Run a standard setting of LWAIL, and compare pseudo-rewards generated by f with the sigmoid
function, and pseudo-rewards without the sigmoid function for the MuJoCo environments. This is
illustrated in Fig. 8.

2) Run standard LWAIL and LWAIL without ICVF embedding, and compare pseudo-rewards (with
the sigmoid function) for the MuJoCo environments. This is illustrated in Fig. 9.

The result clearly shows that both ICVF-embedding and sigmoid function are very important for
pseudo-reward stability and positive correlation with ground-truth reward.

D LIST OF NOTATIONS

Tab. 11 summarizes the symbols which appear in our paper.
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Normalized Reward

LWAIL 24.31 £ 4.51
SMODICE 23.2+743
SAIL 0+0

ORIL 247 +£0.32

Table 9: Performance on the Halfcheetah environment with mismatched dynamics. Our method
outperforms baselines.

Environment Hopper HalfCheetah Walker Ant Maze2D Average
TD3 105.54 76.13 89.68  89.21  120.14 96.14
TD3+Sigmoid reward ~ 84.23 30.76 4255 3479  119.03 62.27

Table 10: Results of TD3 with and without sigmoid applied on the ground truth reward. The results
show that applying the sigmoid function does not yield better performance.

E COMPUTATIONAL RESOURCES

All our experiments are performed with an Ubuntu 20.04 server, which has 128 AMD EPYC 7543
32-Core Processor and a single NVIDIA RTX A6000 GPU. With these resources, our method needs
about 65 — 75 minutes for the MuJoCo environments.
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Figure 8: The reward curves of pseudo- and ground-truth reward in a single training session, where
pseudo-reward is generated by f following Alg. 1 and serves as the reward signal for our downstream
TD3. We note that the pseudo-reward is much more stable and positively correlated with ground-
truth reward when using a sigmoid function.
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Figure 9: The pseudo-reward curves with and without ICVF embedding in a single training session.
We note that without ICVF, the pseudo-reward is generally less stable (e.g. fluctuation in halfcheetah
and sudden drop in walker2d and ant) and sometimes less correlated with ground-truth reward (e.g.

ant environment).

Name Meaning Note

S State space

S State ses

A Action space

a Action acA

t Time step te{0,1,2,...}

ol Discount factor v €10.1)

T Reward function r(s, a) for single state-action pair

P Transition P(s'|s,a) € A(S)

E Expert dataset state-only expert demonstrations

1 Random dataset state-action trajectories of very low quality
T Learner policy The policy we aim to optimize
dz State occupancy of 7 d3(s) = (1 —7) Y52 v'Pr(si = s), where s; is the i-th state

in a trajectory

dz, State-pair occupancy of 7 di(s,s') = (1 =) 32,7 Pr(si = s,8i41 = §), where s;
is the ¢-th state in a trajectory
dE State-pair occupancy of expert policy ~ The expert policy here is empirically induced from £
¢ Underlying metric for Wasserstein distance
f Dual function / Discriminator Dual function in Rubinstein dual form of 1-Wasserstein dis-
tance; also a discriminator from adversarial perspective and a
reward model from IRL perspective
I1 Wasserstein matching variable In our case, > g1l(s,s") = dF(s)), Y, csll(s,s’) =
d3 (s)
Wh 1-Wasserstein distance
S+ Outcome state
z Latent intention
1% Value function takes s, s+, z as input in ICVF; only takes s in normal RL
Viarget Target value target value function in the critic objective of RL
I indicator function I[condition] = 1 if the condition is true, and = 0 otherwise
10} State representation (embedding) the embedding function we use for f; ¢(s) € R?
T Counterfactual intention T(z) € R**4
P Outcome representation Y(s4+) € R
a ICVF constant a € (0.5,1]
o Sigmoid function

Table 11: A list of symbols used in the paper. The first part focuses on RL-specific symbols. The
second part details Wasserstein-specific notation. The third part summarizes ICVF-specific symbols

(Sec. 3.2).
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