
5 Supplementary Material

5.1 Evaluation details

5.1.1 Validity, Uniqueness, Novelty

All the presented metrics are proportions of the generated samples.

Validity A generated complex has to pass a series of checks to be deemed valid:

1. (one TM check) It has to have exactly one transition metal atom;
2. (distance check) All pairwise distances should be at least 0.9Å, and no atom can be

disconnected from the rest of the complex (i.e. its closest neighbour is located at distance
larger than the cutoff of 3.0Å);

3. (RDKit check) The ligands, i.e. complex where the TM has been removed, have to be valid
according to RDKit [25].

As the algorithm implemented in RDKit to determine bonds can not handle transition metals,
we proceed as follows: we remove the metal centre, and we then try to find a feasible bond
allocation using rdDetermineBonds.DetermineBonds. If the allocation succeeds, the sample
is deemed valid. As the removal of the metal centre can introduce local charges, we apply
rdDetermineBonds.DetermineBonds for different charges until one matches. If none matches,
the configuration is deemed invalid.

The validation method is not perfect, as only around 88% of the training database is deemed valid by
our algorithm (Table 1).

Uniqueness and Novelty As bonding is not properly defined for transition metal complexes, we
study uniqueness and novelty in terms of chemical formulas. This does not provide the full picture
as two identical formulas can correspond to different complexes. However, when encountering new
formulas, we are ensured that the corresponding complexes are novel. Uniqueness and Novelty are
defined as follows,

UF =
# (valid and unique formulas)

# samples
, (7)

NF =
# (valid, unique and novel formulas)

# samples
. (8)

5.1.2 Geometry and Binding Energy

Given the importance of the direct neighbourhood of the centre, we assess the geometry of centre
and the two proximal atoms by comparing the empirical distribution of the L1,2 � M distances and
the L1 � M � L2 angle. Similarly, we compare the training distribution of binding energy with the
distribution induced by the generated samples.

We measure the discrepancy between training distributions and distributions induced by the generated
samples using the 1-Wassertein distance. If Pz denotes the empirical measure for centre z 2 Z across
the dataset, and Qz denotes the empirical measure the same centre across the samples generated by
the diffusion model, the distance between the two empirical distributions is given by

W (Pz, Qz) =
� 1
n

nX

i=1

||X(i) � Y(i)||
�
, (9)

where X(i) and Y(i) denote samples from Pz and Qz respectively.

To obtain an aggregated distance value, we compute a weighted sum over the different metal-centres,

W (P,Q) =
X

z2Z
p(z)W (Pz, Qz), (10)

where p(z) denotes the empirical categorical distribution over the metal centre obtained from the
training data.
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5.1.3 Baselines

Our method, coined OM-EDM-PAINN implements Eqs. (1) and (3), and the more expressive
denoising neural network inspired from the PAINN architecture [17]. We compare it with 3 different
baselines:

• EDM: that reimplements the vanilla equivariant denoising diffusion [9];
• EDM-PAINN: that reimplements the vanilla equivariant denoising diffusion with a more

expressive denoising neural network identical to that of OM-EDM-PAINN;
• OM-EDM: that implements Eqs. (1) and (3), but uses EGNN [18] as denosing neural

network.

We additionally include a baseline based on geometry-free representations, where RDKit, or any
cheap force-field, is used to generate geometries. We denote that method by FF. We compute the
geometry statistics from the additional 18064 force-field-level data points released along with the
DFT-level data [22].
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