
Published as a conference paper at ICLR 2025

TRAINING LANGUAGE MODELS TO SELF-CORRECT
VIA REINFORCEMENT LEARNING

Aviral Kumar∗+, Vincent Zhuang∗+, Rishabh Agarwal∗, Yi Su∗,
JD Co-Reyes, Avi Singh, Kate Baumli, Shariq Iqbal, Colton Bishop, Rebecca Roelofs,
Lei M Zhang, Kay McKinney, Disha Shrivastava, Cosmin Paduraru, George Tucker,
Doina Precup, Feryal Behbahani†, Aleksandra Faust†

Google DeepMind

ABSTRACT
Self-correction is a highly desirable capability of large language models (LLMs),
yet it has consistently been found to be largely ineffective in modern LLMs. Current
methods for training self-correction typically depend on either multiple models, a
more advanced model, or additional forms of supervision. To address these short-
comings, we develop a multi-turn online reinforcement learning (RL) approach,
SCoRe, that significantly improves an LLM’s self-correction ability using entirely
self-generated data. To build SCoRe, we first show that variants of supervised
fine-tuning (SFT) on offline model-generated correction traces are often insufficient
for instilling self-correction behavior. In particular, we observe that training via
SFT falls prey to either a distribution mismatch between mistakes made by the
data-collection policy and the model’s own responses, or to behavior collapse,
where learning implicitly prefers only a certain mode of correction behavior that
is often not effective at self-correction on test problems. SCoRe addresses these
challenges by training under the model’s own distribution of self-generated correc-
tion traces and using appropriate regularization to steer the learning process into
learning a self-correction behavior that is effective at test time as opposed to fitting
high-reward responses for a given prompt. This regularization process includes an
initial phase of multi-turn RL on a base model to generate a policy initialization
that is less susceptible to collapse, followed by using a reward bonus to amplify
self-correction. With Gemini 1.0 Pro and 1.5 Flash models, we find that SCoRe
achieves state-of-the-art self-correction performance, improving the base models’
self-correction by 15.6% and 9.1% respectively on MATH and HumanEval.

1 INTRODUCTION

Large language models (LLMs) are a useful tool for reasoning in scientific domains such as math and
coding (Shao et al., 2024; Lozhkov et al., 2024; Team, 2024). An aspirational property of LLMs in
such settings is their ability to implement meta-strategies or algorithms that use test-time computation
to generate improved responses. However, modern LLMs do not implement such strategies reliably.
For instance, consider a problem that requires models to detect and revise (or “self-correct”) their
own responses in order to eventually arrive at the best possible final response. This self-correction
capability has been shown to be severely lacking in current LLMs, especially in the absence of
external input (also called intrinsic self-correction) (Huang et al., 2023; Kamoi et al., 2024).

To make progress towards teaching LLMs to implement meta-strategies for challenging inputs, we
study a special instance of training LLMs to perform self-correction to fix their mistakes “on-the-fly”.
This should be possible: on many queries where current LLMs fail, they still possess the underlying
“knowledge” needed to arrive at the correct response but are unable to correctly elicit and draw
inferences about their own knowledge when needed (Yang et al., 2024). For example, strong LLMs
can often successfully complete a sub-part of a math proof when prompted with the remainder, but
may not be able to complete it from scratch. In a similar vein, leveraging their previous responses
should, in principle, enable LLMs to improve their subsequent ones. Despite this, self-correction has
remained elusive, highlighting the need to go beyond existing training paradigms.

∗Equal contribution, +Randomly ordered via coin flip, †Jointly supervised. Corresponding authors: [vin-
centzhuang, rishabhagarwal, yisumtv]@google.com, aviralku@andrew.cmu.edu

1

Published as a conference paper at ICLR 2025

Base Model STaR SFT SCoRe
40

45

50

55

60

65

70

Ac
cu

ra
cy

 (%
)

-11.2% +0.4% +1.8%

+4.4%

Gemini 1.5 Flash on MATH
Direct Generation
Self-Correction (SC)

 (SC - Direct)

21 22 23 24 25

Number of samples (K)

60%

62%

64%

66%

68%

70%

Se
lf-

Co
ns

ist
en

cy
@

K

Scaling Inference Compute: MATH

Parallel Samples
Sequential (Self-Correct)

Figure 1: Left: SCoRe achieves state-of-the-art self-correction performance on MATH; Right: SCoRe
inference-time scaling: spending samples on sequential self-correction becomes more effective than only on
parallel direct samples (Section 6.2).

How can we imbue LLMs with self-correction abilities? Prior attempts for self-correcting LLMs
either rely on prompt-engineering (Madaan et al., 2023; Kim et al., 2023) or on fine-tuning models
specifically for self-correction. While the former approaches often fail to perform meaningful
intrinsic self-correction, fine-tuning approaches require running multiple models during inference,
such as a separate refinement model (Havrilla et al., 2024b; Welleck et al., 2023), or rely on “teacher”
supervision to guide the process of self-correction (Qu et al., 2024). With the use of separate models
of teacher supervision, self-correction does not necessarily outperform parallel, independent attempts.
We develop an approach that is effective at self-correction without these requirements. Our approach,
Self-Correction via Reinforcement Learning (SCoRe), trains only a single model that can both
produce a response to a problem and also correct errors without any oracle feedback.

To develop SCoRe, we start by analyzing the shortcomings of SFT-based approaches (e.g., STaR (Ze-
likman et al., 2022)) and naïve RL that optimizes final response correctness for teaching self-
correction. We find that such approaches fall prey to either: (1) distribution shift, where the trained
model is able to correct errors made by the base model that generated the data, but these gains do
not transfer to self-correction under the learned model’s own mistakes; or (2) behavior collapse,
where the learning progress simply learns to produce the best first-attempt response followed by
superficial or no modifications in the second attempt. To address these issues, SCoRe trains for
self-correction directly via on-policy, multi-turn RL. To prevent behavior collapse, SCoRe employs
two-stage training: in the first stage, it produces an initialization that is less susceptible to behavior
collapse by training to correct second-attempt responses while constraining the first-turn distribution
to be close to the base model; followed by training on both attempts to maximize reward in the second
stage. Crucially, the second stage of multi-turn RL employs a reward shaping term that rewards
“progress” towards self-correction as opposed to the correctness of the final response.

Our contribution is SCoRe, a multi-turn RL approach for teaching LLMs how to correct their own
mistakes. To the best of our knowledge, SCoRe is the first approach to attain significantly positive
intrinsic self-correction: relative to base Gemini models, our method attains an absolute 15.6% gain
on self-correction for reasoning problems from MATH (Hendrycks et al., 2021) and an absolute 9.1%
gain on coding problems from HumanEval (Chen et al., 2021). We additionally motivate the design
of SCoRe by extensively studying the failure modes of SFT and standard RL approaches, which
broadly indicate that reinforcement learning plays an essential role in self-trained self-correction.

2 RELATED WORK

Prior works study self-correction for LLMs under a variety of assumptions and problem settings.
The most prominent settings include problems where external input tokens from an environment are
available, such as agentic tasks (Liu et al., 2023), code repair (Jain et al., 2024), and tool use (Chen
et al., 2023). While self-correction with external feedback is possible with strong models (Pan
et al., 2023), even they struggle in the substantially harder setting with no external input (intrinsic
self-correction) (Kamoi et al., 2024; Huang et al., 2023). Prior work that attempts to amplify intrinsic
correction abilities is largely based on prompting and fine-tuning.

Prompting for intrinsic self-correction. Recent work demonstrates that naïvely prompting LLMs
for self-correction can degrade performance (Huang et al., 2023; Zheng et al., 2024; Tyen et al., 2024;

2

Published as a conference paper at ICLR 2025

MATH Example 1: Arithmetic Self-Correction

Problem. If n ≡ 2 (mod 7), then find the remainder when (n + 2)(n + 4)(n + 6) is divided by 7.

SCoRe turn 1 solution (incorrect). Since n ≡ 2 (mod 7), we can write n = 7k + 2 for some integer k. Substituting, we get
(n+ 2)(n+ 4)(n+ 6) = (7k+ 4)(7k+ 6)(7k+ 8) ≡ 4 ⋅ 6 ⋅ 8 (mod 7) ≡ 192 (mod 7) ≡ 1 (mod 7). Final Answer: The
final answer is 1. I hope it is correct.

Self-correction instruction. There might be an error in the solution above because of lack of understanding of the question. Please
correct the error, if any, and rewrite the solution.

SCoRe turn 2 solution (correct). Since n ≡ 2 (mod 7), we can write n = 7k + 2 for some integer k. Substituting, we get
(n+2)(n+4)(n+6) = (7k+4)(7k+6)(7k+8) ≡ 4 ⋅6 ⋅8 (mod 7) ≡ 4 ⋅6 ⋅1 (mod 7) ≡ 24 (mod 7) ≡ 3 (mod 7).
Final Answer: The final answer is 3. I hope it is correct.

MATH Example 2: Reasoning Self-Correction

Problem. Let f(x) = ⌊(− 5
8
)x⌋ be a function that is defined for all values of x in [0,∞) such that f(x) is a real number. How

many distinct values exist in the range of f(x)?

SCoRe turn 1 solution (incorrect). As x increases, the value of (− 5
8
)x decreases. Since the floor function rounds down to the

nearest integer, the range of f(x) consists of all the integers less than or equal to ⌊(− 5
8
)0⌋ = 1. Therefore, the range of f(x) is

{1,0,−1,−2, . . . }, and there are ∞ distinct values in the range. Final Answer: The final answer is ∞. I hope it is correct.

Self-correction instruction. There might be an error in the solution above because of lack of understanding of the question. Please
correct the error, if any, and rewrite the solution.

SCoRe turn 2 solution (correct). As x increases from 0 to∞, the value of (− 5
8
)x oscillates between positive and negative values,

but its absolute value decreases. The floor function rounds down to the nearest integer, so the range of f(x) consists of the integers

less than or equal to ⌊(− 5
8
)0⌋ = 1. Since the absolute value of (− 5

8
)x decreases as x increases, the range of f(x) is finite and

consists of the integers: {1,0,−1}. Final Answer: The final answer is 3. I hope it is correct.

Figure 2: Two example traces of self-correction. In the upper example, SCoRe is able to correct an arithmetic
mistake it makes in turn 1. In the lower example, the model is able to correct a reasoning error.

Qu et al., 2024). These results contradict prior work (Madaan et al., 2023; Shinn et al., 2023; Kim
et al., 2023) and largely stem from mismatched assumptions about the setting (Kamoi et al., 2024).
For example, Shinn et al. (2023); Kim et al. (2023) use ground-truth answers during self-correction
that may not generally be available; Madaan et al. (2023) use weak prompts for initial responses,
thereby overestimating the total improvement possible. Therefore, there is no major work showing
successful intrinsic self-correction via prompting alone. In the context of code self-repair, Olausson
et al. (2023) show that even when strong models are prompted with some form of partial feedback,
e.g., test-cases but not the desired outcomes, they are unable to correct their mistakes.

Fine-tuning for intrinsic self-correction. Several works that go beyond prompting rely on fine-
tuning with demonstrations of revisions, e.g. obtaining revisions directly from human annota-
tors (Saunders et al., 2022) or stronger models (Ye et al., 2023; Qu et al., 2024). Our work aims to
train for self-correction entirely without the use of larger models or humans, when the learner itself
is asked to generate its own training data. Similar to these prior works, we assume access to a reward
function for evaluating model-generated outputs (Welleck et al., 2023; Akyürek et al., 2023; Zhang
et al., 2024). Perhaps the closest to us from this set is Qu et al. (2024), which utilizes an iterative
STaR-like approach self-correction. While this work largely uses oracle teacher supervision, their
preliminary results from training for self-correction only show minor improvements over five turns,
consistent with the results we see for STaR. We show that SCoRe attains substantially better results.
Other approaches train separate models for performing correction (e.g., GLoRE (Havrilla et al.,
2024b), Self-Correction (Welleck et al., 2023), Akyürek et al. (2023); Paul et al. (2023). While such
approaches can be convenient, they require system design for serving multiple models at deployment.

Multi-turn RL for LLMs. Prior work at the intersection of LLMs and multi-turn RL builds
machinery for optimizing rewards with value-based (Snell et al., 2022; Zhou et al., 2024; Farebrother
et al., 2024; Shani et al., 2024), policy-based (Xiong et al., 2024; Shao et al., 2024), and model-
based (Hong et al., 2024) approaches. We do not focus on building machinery for RL (we use the
approach of Ahmadian et al. (2024)), but rather train for self-correction as an RL problem.

3 PRELIMINARIES AND PROBLEM SETUP

Our goal is to develop an approach for training LLMs to improve their own predictions entirely
on self-generated data. As discussed so far, we situate ourselves in the intrinsic self-correction
setting (Huang et al., 2023), where models attempt to correct their initial responses without any

3

Published as a conference paper at ICLR 2025

Table 1: Self-correction performance after training on DSTaR and DSFT. We find that the gap between the
second and first attempts (∆(t1,t2)) is either negative or small. Both approaches erroneously modify a correct
response to be incorrect, i.e., reflected in a high ∆

c→i(t1, t2) and a low ∆
i→c(t1, t2).

Method Accuracy@t1 Accuracy@t2 ∆(t1, t2) ∆
i→c(t1, t2) ∆

c→i(t1, t2)

Base model 52.6% 41.4% -11.2% 4.6% 15.8%

STaR DStaR 55.4% 41.2% -14.2% 5.4% 19.6%
STaR D+

StaR 53.6% 54.0% 0.4% 2.6% 2.2%
Pair-SFT DSFT 52.4% 54.2% 1.8% 5.4% 3.6%
Pair-SFT D+

SFT 55.0% 55.0% 0% 0% 0%

external feedback. Concretely, given a dataset D = {(xi,y∗i)}Ni=1 of problems xi and responses
y
∗
i , we will train an LLM policy πθ(⋅∣[x, ŷ1∶l, p1∶l]) that, given the problem x, previous l model

attempts ŷ1∶l at the problem, and auxiliary instructions p1∶l (e.g., instruction to find a mistake and
improve the response), solves the problem x as correctly as possible. This formalism is akin to the
multi-turn MDP in Qu et al. (2024). We also assume access to an oracle reward r̂(y,y∗), such as an
answer checker (Uesato et al., 2022), that evaluates the correctness of response y by comparing it
with the oracle response y

∗. Critically, we do not assume access to this oracle at test-time; instead,
the model must deduce whether there was a mistake and correct it if necessary, as is often the case
in e.g. mathematical reasoning problems. Unlike the setup of Qu et al. (2024), we also do not run
majority voting for most of our main results. An example of our problem setting is given in Figure 2.

We aim to find an LLM policy π(□∣◦) mapping input tokens ◦ to output tokens □ that maximizes
the correctness reward obtained from the verifier at the end of l + 1 turns (l = 1). Formally:

max
πθ

Ex,y∗∼D,ŷl+1∼πθ(⋅∣[x,ŷ1∶l,p1∶l]) [
l+1

∑
i=1

r̂ (ŷi,y∗)] . (1)

Crucially, note that unlike standard SFT or prevalent RL fine-tuning workflows, which train the
policy π to directly produce y

∗ (or any other y wih r̂(y,y∗) = 1), Equation 1 trains π over multiple
attempts simultaneously, where intermediate turns are supervised indirectly to maximize the sum.

Base RL fine-tuning approach we use. We use a REINFORCE policy gradient training approach
with a KL-divergence penalty against a fixed model (Ahmadian et al., 2024), which is widely used in
RL fine-tuning of LLMs, primarily in the setting of single-turn RLHF. Formally, these methods train
the policy πθ(⋅∣x) to optimize the following, where πref is a reference policy.

max
θ

Ext,yt∼πθ(⋅∣xt) [r̂(yt,y
∗) − β1DKL(πθ(⋅∣xt)∣∣πref(⋅∣xt))] , (2)

Metrics. To measure self-correction performance (we consider l = 2 in this paper), we report and
analyze the following metrics: (1) Accuracy@t1: the model’s accuracy at the first attempt; (2)
Accuracy@t2: the model’s accuracy at the second attempt, (3) ∆(t1, t2): the net improvement in
model accuracy between the first and second attempts, which measures the efficacy of self-correction,
(4) ∆

i→c(t1, t2): the fraction of problems that are incorrect in the first attempt but become correct
at the second attempt, which measures how many new problems can self-correction solve; and (5)
∆

c→i(t1, t2): the fraction of problems that are correct in the first attempt but become incorrect at the
second attempt, which measures how well the model understands what makes a response correct.

4 SFT ON SELF-GENERATED DATA IS INSUFFICIENT FOR SELF-CORRECTION

A natural approach for training self-correction is to utilize some form of supervised fine-tuning
on data collected from a base model. Variants of this approach have been shown to scale well on
single-turn reasoning problems (Singh et al., 2023; Zelikman et al., 2022). In this section, we assess
the empirical efficacy of two such approaches for self-correction: STaR (Zelikman et al., 2022), and
a version of Welleck et al. (2023) that trains only one model.

We ultimately find that although these methods improve self-correction over the base model, they fail
to achieve substantially positive self-correction (∆(t1,t2)). By probing these models, we observe two
main failure modes: (1) a collapse to non-correcting behavior, where the models learn to produce a

4

Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance ratio

0

2

4

6

De
ns

ity

Base model

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance ratio

0

2

4

6

De
ns

ity

STaR +

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance ratio

0

2

4

6

De
ns

ity

SFT

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance ratio

0

2

4

6

De
ns

ity

SCoRe

(a) Histograms of edit distance ratios on MATH 500.

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance ratio

0

2

4

6

De
ns

ity

Train (+
STaR)

Eval

(b) STaR edit distance ratios.

0.0 0.2 0.4 0.6 0.8 1.0
Edit distance ratio

0

2

4

De
ns

ity

Train (SFT)
Eval

(c) Pair-SFT edit distance ratios.

Figure 3: Edit distance between first-attempt and second-attempt responses from fine-tuned models, our
approach (SCoRe) and the base model. While training on self-generated error correction traces learns to not
make major edits primarily, SFT learns to make some edits but is still quite conservative.

good response on the first attempt and only make minor (or no) modifications in the second attempt,
and (2) an inability of offline methods to be robust to distribution shift in the first-attempt responses.

Analysis setup: methods and dataset construction. We prompt Gemini 1.5 Flash to obtain a large
number of two-turn self-correction traces on MATH (Hendrycks et al., 2021). The STaR approach
filters these trajectories to retain only those that successfully revise incorrect responses and runs
SFT on the resulting dataset. Another approach is to use base model data from above to construct
“synthetic” repair traces by pairing incorrect responses with correct ones (Welleck et al., 2023). We
study a variant of this method that we call Pair-SFT, which does not train a separate corrector model
and does not augment this initial dataset with multi-turn traces. Formally, we denote the datasets for
STaR and Pair-SFT as DSTaR and DSFT respectively. We run 3 iterations for STaR following the
protocol in Singh et al. (2024), and only one iteration for Pair-SFT, following the protocol in Welleck
et al. (2023) and other standard workflows on SFT.

0.0 0.2 0.4 0.6 0.8 1.0
Epoch fraction

0.02

0.04

0.06

0.08

0.10

Va
lid

at
io

n
i

c (t
1,

 t2
)}

0.1

0.2

0.3

0.4

Tr
ai

n
i

c (t
1,

 t2
)}

Fixed validation
Self-generated validation
Fixed train

Figure 4: Self-correction performance on different sets of
first-attempt responses: (a) “fixed”: first response is sampled
from the initial model, (b) “self-generated”: first response is gen-
erated by the learner itself. Throughout training, the correction
rate on fixed responses increases for both train and validation
problems, but degrades substantially on self-generated responses.
This indicates that training on a fixed offline dataset of correction
traces suffers from distribution shift.

Main empirical findings. We present
the self-correction results before and af-
ter fine-tuning on DSTaR and DSFT in Ta-
ble 1. We find that although ∆(t1, t2) is
substantially higher for Pair-SFT relative
to the base model, there is only little ben-
efit to self-correction (1.8% gain). This
gain is of a similar order to findings from
Qu et al. (2024). By studying ∆

i→c and
∆

c→i, we find that SFT mainly reduces
the number of correct problems that are
mistakenly changed to incorrect in the
second attempt, but does not significantly
increase the fraction of incorrect first at-
tempts that are corrected. This result is
consistent with prior works on intrinsic
self-correction that have found negligible
or negative ∆(t1, t2) values.

We also find that unlike Pair-SFT, training on DSTaR does not reduce ∆
c→i, indicating that the

STaR policy does not have a clear understanding of when to make modifications and when not to.
Observing this, we also trained on an extended version of D+

STaR (and D+
SFT), which additionally

contains tuples with both correct responses. We would expect the addition of such “correct-to-correct”
data to prevent the model from erroneously revising a correct response. As shown in Table 1, the
inclusion of this data helps STaR substantially but only results in 0.4% change in ∆(t1, t2). On the
other hand, for SFT, inclusion of this data overly biases the model against changing its answer.

5

Published as a conference paper at ICLR 2025

0.0 0.2 0.4 0.6 0.8 1.0
Training fraction

0.50

0.55

0.60
Tr

ai
n

Ac
cu

ra
cy

(t1, t2)

(t1, t2)

Stage I
Multi-turn baseline

Turn 1
Turn 2

(a) Training accuracy curves. When training with stan-
dard multi-turn RL, the responses at both the attempts
become tightly coupled together, leading to poor cover-
age for subsequent iterations and worse learning progress.
Stage I in SCoRe is explicitly designed to alleviate this
and achieves much higher ∆(t1,t2), leading to increased
exploration and better final performance.

0.0 0.2 0.4 0.6 0.8 1.0
Training fraction (over stage I)

0.2

0.3

0.4

Di
ffe

re
nt

 a
ns

we
r f

re
q. Multi-turn RL baseline

Stage I
Stage II

(b) Frequency in which the learner proposes a
different answer in the second turn. Without
explicitly modifying the policy initialization as in
SCoRe, the policy quickly learns to often not change
its answer, leading to poor exploration. Stage I in
SCoRe prevents this issue, and learns non-collapsed
behavior in Stage II.

Figure 5: Behavior collapse in standard multi-turn RL for training self-correction. These results indicate
that some explicit approach to avoid collapse is necessary, i.e. Stage I in SCoRe.

Diving deeper: analyzing self-correction behavior. To further understand how these STaR and
SFT models edit their responses, we measured their edit distance ratios, defined as the edit distance
between the responses normalized by the total length of both the responses. As shown in Figure 3a,
while the base model sometimes makes substantially large edits to the original response, models
fine-tuned on DSTaR and DSFT are overly conservative and often make no edits at all. This is akin
to a form of behavior collapse: training to maximize likelihoods on off-policy revision traces does
not teach the desired correction “behavior”, even though it improves first-attempt accuracy. Similar
observations of LLMs ignoring nuanced behaviors (e.g., producing a mistake in a response and then
correcting it in subsequent steps) have been observed in Ye et al. (2024b).

We also compared the distributions of edit distance ratios on training and test-time self-correction
traces in Figures 3b/3c. While STaR produces qualitatively similar edit distance ratios on both the
train and validation sets, we still observe some discrepancies between the train and validation edit
distance ratios for SFT, implying that Pair-SFT is not very effective at generalizing to new problems
from the same distribution. We visualized this by plotting the self-correction performance of the SFT
model on a fixed set of first attempts and self-generated first attempts in Figure 4. We observe vastly
different behaviors between static and self-generated first-attempt distributions: while the model is
able to optimize training correction accuracy and also slightly improves on first attempts appearing in
the validation set (distributed i.i.d. to the training distribution), its self-correction accuracy degrades.
Hence, distribution shift is a significant challenge for offline methods such as Pair-SFT.

Takeaways: Insufficiency of SFT

SFT methods suffer from two distinct failures when learning self-correction: (1) distribution
shift, and (2) behavior collapse. Training on on-policy data can fix (1), but not (2).

5 SCoRe: SELF-CORRECTION VIA MULTI-TURN REINFORCEMENT LEARNING

The above results highlight that an effective approach for training LLMs to self-correct entirely via
self-generated data must address both distribution shift and behavior collapse. Utilizing on-policy RL
is a natural way to address distribution shift, and our method will do so by extending Equation 2 to
multiple turns under the hierarchical framework of Zhou et al. (2024). However, is behavior collapse
an issue for standard multi-turn RL (i.e., optimizing reward at the end of the second attempt)?

To answer this question, we run standard multi-turn RL training to optimize Equation 1 only on
(x2, y2) pairs, appearing in the second attempt. Since this objective maximizes the second-attempt
performance given self-generated first attempts but without training the first attempt, we expect
the self-correction ∆(t1,t2) of the model to increase. However, as shown in Figure 5, while the
performance of each attempt improves with training, the difference ∆(t1, t2) does not. In other words,
standard multi-turn RL collapses to be overly biased against changing its response, resulting in no
self-correction ability and a similar behavior collapse as what we saw with STaR.

6

Published as a conference paper at ICLR 2025

Foundation model

prompt (x)

response (y)

Stage I: Train an initialization for self-correction Stage II: Run Multi-turn RL with reward shaping

Foundation model trained with SCoRe

first attempt (y1) second attempt (y2)

prompt (x)

Maximize
reward

Constrain to
base model

Maximize shaped
rewardMaximize reward

Foundation model trained with SCoRe

first attempt (y1) second attempt (y2)

prompt (x)

Figure 6: An overview of our approach (SCoRe). SCoRe trains a model in two stages: Stage I: instead of
running SFT (which produces pathological amplification of biases) to initialize RL training, we train a good
initialization that can produce high-reward responses in the second-attempt while mimicking the base model’s
initial response at the first attempt. Stage II: jointly optimizing both attempts, where the latter uses a shaped
reward to incentivize the discovery of the self-correction strategy instead of the simple strategy of producing the
best first response followed by making any minor edits to it in the second attempt.

Why does RL still suffer from collapse? Note that there are two equally good solutions when
optimizing a policy with RL on the training prompts: (i) learning to correct the first attempt, or (ii)
learning to produce the best first-attempt response, followed by no meaningful correction. Of course
only the former strategy produces self-correction behavior to new problems, but RL on pre-trained
LLM may not learn (i) over (ii), since both of these strategies can appear equally good on the training
set. Abstractly, learning the “meta” strategy of self-correction during training is difficult unless the
“direct” strategy that optimizes reward appears less viable on the training data. Conceptually, this is
similar to the memorization challenge in meta-learning (Yin et al., 2019), which suggests that when
provided with mutually exclusive tasks, meta-learning is likely to recover the supervised learning
solution (without using context from the few shots) that directly predicts the output. Here, this is
analogous to not self-correcting past attempts, directly producing an answer.

Method overview. We saw that standard RL leads to a collapse to non-correcting behavior, which
optimizes accuracy of both attempts, but does not incentivize self-correction. Hence, our key insight
in SCoRe is that we must more explicitly encourage self-correction behavior, which we accomplish
via a two-stage approach. The first stage (Stage I) serves the role of initialization where we train the
model to decouple its behavior across the two attempts by attempting to optimize second-attempt
accuracy while explicitly constraining the distribution of first attempts to the base model. From here,
Stage II then jointly optimizes the reward of both attempts. To ensure that Stage II does not collapse
to the “direct” solution, we bias the reward to reinforce self-correction progress.

5.1 STAGE I: TRAINING AN INITIALIZATION TO DECOUPLES ATTEMPTS

The goal of Stage I of SCoRe is to obtain an initialization by improving the coverage of base model’s
second attempts given the first attempt, so that subsequent training with on-policy multi-turn RL is
less prone to behavior collapse. While this would typically be done via SFT, our results in Section 4
show that SFT itself suffers from collapse. Therefore, we use RL in this stage to decouple the two
attempts. To do so, we explicitly fine-tune the base model to produce high-reward responses at the
second attempt, while forcing the model to not change its first attempt by constraining it to be close
to the base model using a KL-divergence. While this may appear sub-optimal – as it constrains the
first attempt to the base model – but we find this stage is critical in reducing the base model’s bias
towards collapsing the first and second-attempt distributions, thus avoiding behavior collapse when
actual multi-turn RL is run. Formally, the objective is:

max
θ

Ex1,y1∼πθ(⋅∣x),y2∼πθ(⋅∣[x1,p1])[r̂(y2,y
∗) − β2DKL (πθ(⋅∣∣x1)∣∣πref(⋅∣x1))], (3)

where β2 is a hyperparameter designed to enforce a strict KL penalty only on the first attempt to
avoid shifting of the first-turn responses (denoted by the term in blue). As we use RLOO (Equation 2)
for training the policy, there is still a default KL-divergence penalty, but with a much smaller weight
and is omitted from Eq. 3 for clarity. We show that unlike standard multi-turn RL, Stage I is effective
at decoupling the two responses (Figure 5b) and leads to better Stage II performance.

7

Published as a conference paper at ICLR 2025

5.2 STAGE II: MULTI-TURN RL TO OPTIMIZE BOTH ATTEMPTS

The second stage of SCoRe is initialized from Stage I and now jointly optimizes the performance of
both attempts. Concretely, Stage II trains πθ(⋅∣⋅) using objective (Eq. 2 applied to Eq. 4):

max
θ

Ex1,y1∼πθ(⋅∣x),y2∼πθ(⋅∣[x1,p1]) [
2

∑
i=1

r̂(yi,y∗) − β1DKL (πθ(⋅∣xi)∣∣πref(⋅∣xi))] , (4)

where xi, i ∈ {1, 2} corresponds to the set of input tokens passed as context to the model.

Reward shaping to prevent behavior collapse. Optimizing Equation 4 via multi-turn RL can still
learn to couple responses. This is because we still attempt to maximize rewards for both attempts
in Equation 4. To prevent the learning process from collapsing to a non self-correction policy in
Stage II, we found it crucial to bias the RL problem towards learning self-correction behavior. We
implement this via reward shaping: by rewarding transitions that make “progress” towards learning
the desired self-correction behavior. Concretely, given an two-turn rollout sampled from the policy
τ = {x1, ŷ1, r̂(y1,y

∗),x2, ŷ2, r̂(y2,y
∗)}, we modify the reward r̂(y2,y

∗) in Equation 4, at the
second attempt with a bonus b̂(y2∣y1,y

∗) ∶= α ⋅ (r̂(y2,y
∗) − r̂(y1,y

∗)), where α is a positive
constant multiplier, ideally larger than 1.0. Adding this bonus to the second attempt measures a notion
of progress by only emphasizing transitions that flip the correctness of the response and assigns a
heavy negative penalty to transitions that change a correct response to incorrect in the second attempt.
Thus, the addition of this bonus should regularize the training process from collapsing on to the
“direct” solution that also appears optimal on the training set but does not learn self-correction.

5.3 PUTTING IT TOGETHER AND IMPLEMENTATION DETAILS

Our approach is illustrated in Figures 6 & 11. We detail all hyperparameters in Appendix B. In
practice, one can also use an adaptive β2 that attempts to balance the magnitudes of the first-attempt
KL regularization and the second-attempt policy objective. In some of our experiments, we also
choose to amplify the coverage of states used for on-policy RL by incorporating first-attempt solutions
obtained by repeatedly sampling the base model as offline prompts in RL. We find that incorporating
this data, especially in Stage II – where the first-turn policy may have drifted further from that of the
base model – can have substantial benefits especially when attempting to learn from limited data.

Takeaways and Implications

The core insight behind SCoRe is that we must make it more attractive to learn a more
nuanced algorithmic strategy (i.e., self-correction) instead of collapsing to a degenerate
behavior mode. To avoid distribution shift, this must be done on self-generated online data.

6 EXPERIMENTAL EVALUATION

The goal of our experiments is to demonstrate the efficacy and justify the design of SCoRe in training
LLMs how to self-correct by only training on their own data. To this end, we perform a comparative
evaluation of SCoRe against prior methods that also use self-generated data to train for self-correction,
and run several ablation studies on two representative reasoning tasks where error correction is crucial.

Tasks. We mainly focus on reasoning problems in math and coding: (a) math problem solving
on MATH (Hendrycks et al., 2021), and (b) code generation on MBPP (Austin et al., 2021) and
HumanEval (Chen et al., 2021). We use the following train-test splits in our experiments: (1) MATH:
following Lightman et al. (2023), we augment the MATH training set with 4500 problems from the
test set, and report results on the remaining 500 problems (MATH500); and (2) Code generation:
we train on MBPP and report results on HumanEval, which does not expose test cases to the model.
For all tasks, we use binary rewards during training, indicating whether the model’s answer matches
the ground truth one (for MATH) or passes all test cases (for coding).

Evaluation protocol and metrics. We report the self-correction accuracy on a number of tasks
with two sequential attempts at the problem, i.e., one round of self-correction. For code generation,
following the evaluation protocol of Ni et al. (2024), we also report results on MBPP-R, an offline
repair task that requires correcting incorrect first-attempt programs generated from PaLM 2.

Models. For coding problems, we fine-tune Gemini 1.0 Pro and for MATH, we fine-tune Gemini
1.5 Flash, and include experiments on Gemma v2 models in Appendix A.1. For all evaluations, we

8

Published as a conference paper at ICLR 2025

Table 2: Performance of SCoRe on MATH. SCoRe not only attains a higher accuracy at both attempts, but
also provides the most positive self-correction performance ∆(t1, t2).

Approach Acc.@t1 Acc.@t2 ∆(t1, t2) ∆
i→c(t1, t2) ∆

c→i(t1, t2)

Base model 52.6% 41.4% -11.2% 4.6% 15.8%
Self-Refine (Madaan et al., 2023) 52.8% 51.8% -1.0% 3.2% 4.2%
STaR w/ D+

StaR (Zelikman et al., 2022) 53.6% 54.0% 0.4% 2.6% 2.2%
Pair-SFT w/ DSFT (Welleck et al., 2023) 52.4% 54.2% 1.8% 5.4% 3.6%

SCoRe (Ours) 60.0% 64.4% 4.4% 5.8% 1.4%

Table 3: Performance of SCoRe on HumanEval. SCoRe attains the highest self-correction performance
(Accuracy@t2, ∆(t1, t2)), and also outperforms other methods at offline correction (MBPP-R).

Method MBPP-R Acc.@t1 Acc.@t2 ∆(t1, t2) ∆
i→c(t1, t2) ∆

c→i(t1, t2)

Base model 47.3% 53.7% 56.7% 3.0% 7.9% 4.9%
Self-Refine 30.7% 53.7% 52.5% -1.2% 9.8% 11.0%
Pair-SFT 59.8% 56.1% 54.3% -1.8% 4.3% 6.1%

SCoRe (Ours) 60.6% 52.4% 64.6% 12.2% 15.2% 3.0%

use greedy decoding (i.e. temperature 0), except for inference-compute scaling in Section 6.2 where
we set temperature to be 0.7. For all training methods, we attempted to use a fixed budget of model
samples and gradient updates, and do not vary learning rate and batch size between runs. For all RL
runs, we selected checkpoints with the highest training reward.

Evaluation prompts. We use zero-shot CoT prompting for evaluation on MATH, zero-shot prompt-
ing for evaluation on HumanEval, and the canonical three-shot prompt for first-attempt training
samples on MBPP (Austin et al., 2021). At the second attempt, we utilize an instruction that does
not reveal the correctness of the previous answer, but asks the model to attempt to deduce whether a
mistake exists in its first attempt response, and if so, potentially rewrite its response. Our full prompts
and self-correction instructions can be found in Appendix C.

Baselines & comparisons. We compare SCoRe to relevant prior approaches based on prompting
or those that fine-tune only a single model for both solving the task and for revising responses,
and only use self-generated data. Specifically, we compare to Self-Refine (Madaan et al., 2023),
a representative prompting-based approach to elicit self-correction behaviors from a model, akin
to Reflexion (Shinn et al., 2023). Among the fine-tuning based approaches, we compare to Pair-
SFT based on the approach from Welleck et al. (2023), and multi-turn STaR (Zelikman et al.,
2022; Singh et al., 2023) that fine-tune the model by maximizing log-likelihood respectively on
synthetically-paired repair traces (Pair-SFT) and successful repair traces (STaR).

6.1 BENCHMARK RESULTS

MATH. Our results are shown in Table 2, as well as in Figure 1. SCoRe exhibits substantially
stronger performance on both direct and self-correction accuracies relative to baselines. Notably, the
intrinsic self-correction gain ∆(t1, t2) of 4.4% is the first significantly positive delta, despite having
fewer incorrect problems to correct by virtue of its higher Accuracy@t1. Relative to the base model
Gemini 1.5 Flash, SCoRe improves ∆(t1, t2) by 15.6%, and Accuracy@t2 by 23.0%, and over the
next best prior approach, Pair-SFT, by 10.2% and 2.6% respectively. By observing the frequency
of problems that change from incorrect in the first attempt to correct in the second attempt and vice
versa, we see that SCoRe both improves the rate at which it fixes incorrect answers (14.5%, compared
to 9.5% for base) and reduces the proportion of correct answers it changes (15.8% to 1.4%).

Code generation. Our results for the code generation task are shown in Table 3. Generally, we find
that SCoRe achieves both improved self-correction and offline repair performance. For MBPP-R (Ni
et al., 2024), we find that SCoRe improves the base model from 47.3% to 60.6%, which is comparable
to the gap between GPT-3.5 (43%) and GPT-4 (63.2%). Despite only training on MBPP, we find
that SCoRe is especially effective at generalizing to HumanEval, achieving a 12.2% intrinsic self-
correction delta, or 9% higher than the base model. By contrast, Pair-SFT works nearly as well on the
static repair task MBPP-R, but actually degrades the base model when evaluated in the self-correction
setting, thus underscoring the importances of on-policy sampling for self-correction.

9

Published as a conference paper at ICLR 2025

Table 4: Ablation studies to understand the impact of various components in SCoRe. Observe that while
single-turn training is effective at optimizing the first-attempt accuracy of the model, it leads to degradation in
the second attempt. The performance improvements without Stage I or without reward shaping in SCoRe are
small when measured by the difference in accuracy over the two attempts. Utilizing STaR generally leads to
worse performance even when it is run from an effective Stage I checkpoint.

Method Accuracy@t1 Accuracy@t2 ∆(t1, t2)

SCoRe (Ours) 60.0% 64.4% 4.4%
w/o multi-turn training 61.8% 59.4% -2.4%
w/o Stage I 59.2% 61.4% 2.2%
w/o reward shaping 60.0% 62.6% 2.6%
w/ STaR instead of REINFORCE Stage II 56.2% 58.4% 2.2%
w/o online turn 1 samples 60.4% 60.6% 0.2%

6.2 INFERENCE-COMPUTE SCALING WITH SELF-CORRECTION

Next, we investigate if SCoRe can be used in conjunction with inference-time compute scaling
strategies. To do so, we evaluate self-consistency decoding (Wang et al., 2022), where we sample a
diverse set of solutions, and then select the most consistent answer among these solutions. Typically,
the default strategy is to sample all solutions in parallel to perform majority voting. However, we
show in Figure 1 (right) that instead of sampling 2K solutions in parallel, it is more compute-efficient
to sample K solutions in parallel, then perform one round of self-correction on each solution. With
32 solution budget per problem, parallel sampling shows a 7.4% accuracy gain, while combining it
with sequential sampling using self-correction yields a 10.5% improvement.

6.3 ABLATION STUDIES: UNDERSTANDING THE IMPACT OF SCoRe COMPONENTS

Finally, we also present a number of ablation studies to understand the importance of various
components in SCoRe. We perform these ablations on the MATH dataset. Concretely, we aim to
answer the following questions: (1) the importance of multi-turn training: Can RL trained to
maximize single-turn performance achieve better accuracy@t1 or accuracy@t2?; (2) the importance
of multi-stage training: How essential is Stage I to SCoRe? In other words, why not run Stage II
directly?; (3) the impact of reward shaping. How would removing the reward shaping terms affect
performance of SCoRe in Stage II, assuming Stage I was done identically?; (4) the importance of
on-policy RL: What if we replaced REINFORCE in Stage II with STaR?.

The results of all of these ablation experiments are shown in Table 4. As expected, single-turn training
improves turn 1 performance, but has negative ∆(t1, t2). As shown in Figure 5, Stage I is critical to
SCoRe; without it, the model achieves 2% lower ∆(t1, t2) and 3% lower accuracy@t2. Similarly,
we find that removing reward shaping also hurts performance, indicating that the RL objectives
in both stages play a significant role in teaching the self-correction behavior. We also find that
replacing REINFORCE with STaR in Stage II results in significantly lower absolute performance
with no visible improvements in self-improvement performance, which contrasts with the findings in
Havrilla et al. (2024a) that STaR and on-policy RL have similar convergence rates. This suggests
that leveraging on-policy samples is especially critical in the self-correction setting, which presents a
multi-turn problem that admits potentially spurious solutions. We also present additional ablations
with multiple turns (for both training and evaluation) and reward function design in Appendix A.

7 DISCUSSION, LIMITATIONS, AND CONCLUSION

We proposed SCoRe and showed through extensive evaluations that it is one of the first methods
to attain significantly positive intrinsic self-correction performance. We also rigorously analyzed
the behavior of various SFT approaches and identified failure modes in which the model learns a
non-correcting strategy (e.g. learning to make no edits; behavior collapse) or falls prey to distribution
shift. SCoRe trains a self-correcting strategy by utilizing a two-stage design and reward shaping,
both of which help preventing behavior collapse into not learning effective self-corrective behavior.
SCoRe has limitations that also provide avenues for future work. Unifying Stages I and II would also
be interesting, since it would alleviate the limitation of running multiple runs. Incorporating a critique
in between the self-correction turns would also boost performance. Finally, our results suggest that
learning meta-strategies (e.g., self-correction) requires going beyond standard fine-tuning (Section 4),
and incorporating regularization (e.g., progress reward).

10

Published as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

We aimed to include both the high-level and low-level details of our method, including all hyper-
parameters that we use in Appendix B. Our training and evaluations are performed on open-source
benchmarks: MATH (Hendrycks et al., 2021), MBPP (Austin et al., 2021), and HumanEval (Chen
et al., 2021), with all specific prompts used in Appendix C. We have also added results with the
open Gemma 2 model in Appendix A.1 as well to facilitate reproducibility. Our RL algorithms and
infrastructure simply extends the methodology of Ahmadian et al. (2024) to multi-turn settings with
relatively simple modifications. We believe that these details will enable practitioners to implement
these ideas on open-source models. While we cannot release our fine-tuned models, we hope our
detailed descriptions should help the research community replicate our findings.

Open-source replications and new research work post the ICLR submission. After the release
of the DeepSeek-R1 technical report (DeepSeek-AI et al., 2025) in January 2025, there has been
substantial interest in the community towards building open-source replications of RL training of
long chain-of-thought models. A number of these RL training frameworks (Luo et al., 2025; Liu
et al., 2025; Zeng et al., 2025) can likely also be repurposed to study self-correction abilities that
we focus on in this work. In fact, despite the substantially different problem setting between long
chain-of-thought RL and our work, some of the abstract ideas in our work such as the idea of
multi-stage training also appears in Luo et al. (2025), and reward shaping (or dense rewards) has
also been discussed in Setlur et al. (2025). In addition, Setlur et al. (2025) show theoretically that
RL training is much more effective at using more test-time compute (which in our setting translates
to using more attempts at self-correction) than SFT or STaR. Their theory further corroborates the
empirical claims we make in Section 4 regarding the ineffectiveness of SFT and STaR.

ACKNOWLEDGEMENTS

The authors would like to thank Satinder Baveja, Kalesha Bullard, Gheorghe Comanici, Claire Cui,
Valentin Dalibard, Angelos Filos, Yang Gao, Zoubin Ghahramani, Izzeddin Gur, Raia Hadsell, Clara
Huiyi Hu, Melvin Johnson, Mina Khan, Balaji Lakshminarayanan, Yiran Mao, Hussain Masoom,
Junhyuk Oh, Jordi Orbay, David Silver, and Yury Sulsky for helpful discussions, feedback, and
sponsorship. We thank Amrith Setlur, Yuxiao Qu, Charlie Snell, Tianhe Yu, and Xinyang (Young)
Geng for helpful discussions and feedback on an earlier version of the paper.

AUTHOR CONTRIBUTIONS

AK and VZ led the paper, with substantial technical contributions from RA and YS. VZ led the
experimentation in the final paper with AK, with support from RA and YS. AK and RA conceived
the initial idea with advice and discussions from DS, FB, AF, JDC, AS, and GT. JDC, YS, AS, RA,
and AK iterated on the methodology. The development of the final method was done by AK and
VZ, with inputs from RA and FB. VZ led the infrastructure development, while RA, YS, CP, SI, KB,
DS, and LMZ contributed to the infrastructure. AK, RA, FB, AF, DP, GT advised on the overall
direction. AK and VZ wrote the manuscript, with input from all co-authors. KM provided program
management. FB, and AF co-supervised the project.

REFERENCES

Arash Ahmadian, Chris Cremer, Matthias Gallé, Marzieh Fadaee, Julia Kreutzer, Ahmet Üstün, and
Sara Hooker. Back to basics: Revisiting reinforce style optimization for learning from human
feedback in llms. arXiv preprint arXiv:2402.14740, 2024.

Afra Feyza Akyürek, Ekin Akyürek, Aman Madaan, Ashwin Kalyan, Peter Clark, Derry Wijaya,
and Niket Tandon. Rl4f: Generating natural language feedback with reinforcement learning for
repairing model outputs. arXiv preprint arXiv:2305.08844, 2023.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

11

Published as a conference paper at ICLR 2025

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models to
self-debug. arXiv preprint arXiv:2304.05128, 2023.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai Dong,
Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang, Liang Zhao,
Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang, Minghui Tang,
Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang, Qiancheng Wang,
Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang, R. J. Chen, R. L.
Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng Ye, Shiyu Wang,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing Wu, Shengfeng
Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen Liu, Wenfeng
Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong Liu, Xiaohan
Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xinyu Yang,
Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xiaosha Chen,
Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia Shan, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Wang,
Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong Wang, Yixuan Tan,
Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong, Yuheng Zou, Yujia
He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou, Y. X. Zhu, Yanhong
Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying Tang, Yukun Zha,
Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda Xie, Zhengyan Zhang,
Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li,
Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu Zhang, and Zhen
Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025.
URL https://arxiv.org/abs/2501.12948.

Meng Fang, Xiangpeng Wan, Fei Lu, Fei Xing, and Kai Zou. Mathodyssey: Benchmarking mathe-
matical problem-solving skills in large language models using odyssey math data. arXiv preprint
arXiv:2406.18321, 2024.

Jesse Farebrother, Jordi Orbay, Quan Vuong, Adrien Ali Taïga, Yevgen Chebotar, Ted Xiao, Alex
Irpan, Sergey Levine, Pablo Samuel Castro, Aleksandra Faust, et al. Stop regressing: Training
value functions via classification for scalable deep rl. arXiv preprint arXiv:2403.03950, 2024.

Dibya Ghosh, Jad Rahme, Aviral Kumar, Amy Zhang, Ryan P Adams, and Sergey Levine. Why
generalization in rl is difficult: Epistemic pomdps and implicit partial observability. Advances in
neural information processing systems, 34:25502–25515, 2021.

Alex Havrilla, Yuqing Du, Sharath Chandra Raparthy, Christoforos Nalmpantis, Jane Dwivedi-Yu,
Maksym Zhuravinskyi, Eric Hambro, Sainbayar Sukhbaatar, and Roberta Raileanu. Teaching large
language models to reason with reinforcement learning. arXiv preprint arXiv:2403.04642, 2024a.

Alex Havrilla, Sharath Raparthy, Christoforus Nalmpantis, Jane Dwivedi-Yu, Maksym Zhuravinskyi,
Eric Hambro, and Roberta Railneau. Glore: When, where, and how to improve llm reasoning via
global and local refinements. arXiv preprint arXiv:2402.10963, 2024b.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. NeurIPS,
2021.

Jiwoo Hong, Noah Lee, and James Thorne. Reference-free monolithic preference optimization with
odds ratio. arXiv preprint arXiv:2403.07691, 2024.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

12

https://arxiv.org/abs/2501.12948

Published as a conference paper at ICLR 2025

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Ryo Kamoi, Yusen Zhang, Nan Zhang, Jiawei Han, and Rui Zhang. When can llms actually correct
their own mistakes? a critical survey of self-correction of llms. arXiv preprint arXiv:2406.01297,
2024.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks.
arXiv preprint arXiv:2303.17491, 2023.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

Zichen Liu, Changyu Chen, Wenjun Li, Tianyu Pang, Chao Du, and Min Lin. There may not be
aha moment in r1-zero-like training — a pilot study. https://oatllm.notion.site/
oat-zero, 2025. Notion Blog.

Anton Lozhkov, Raymond Li, Loubna Ben Allal, Federico Cassano, Joel Lamy-Poirier, Nouamane
Tazi, Ao Tang, Dmytro Pykhtar, Jiawei Liu, Yuxiang Wei, et al. Starcoder 2 and the stack v2: The
next generation. arXiv preprint arXiv:2402.19173, 2024.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Y. Tang, Manan
Roongta, Colin Cai, Jeffrey Luo, Tianjun Zhang, Li Erran Li, Raluca Ada
Popa, and Ion Stoica. Deepscaler: Surpassing o1-preview with a 1.5b
model by scaling rl. https://pretty-radio-b75.notion.site/
DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2,
2025. Notion Blog.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. arXiv preprint arXiv:2303.17651, 2023.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. Next: Teaching large language models to reason about code execution. arXiv
preprint arXiv:2404.14662, 2024.

Theo X Olausson, Jeevana Priya Inala, Chenglong Wang, Jianfeng Gao, and Armando Solar-Lezama.
Is self-repair a silver bullet for code generation? In The Twelfth International Conference on
Learning Representations, 2023.

Liangming Pan, Michael Saxon, Wenda Xu, Deepak Nathani, Xinyi Wang, and William Yang Wang.
Automatically correcting large language models: Surveying the landscape of diverse self-correction
strategies. arXiv preprint arXiv:2308.03188, 2023.

Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert West,
and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. arXiv preprint
arXiv:2304.01904, 2023.

Yuxiao Qu, Tianjun Zhang, Naman Garg, and Aviral Kumar. Recursive introspection: Teaching
language model agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

William Saunders, Catherine Yeh, Jeff Wu, Steven Bills, Long Ouyang, Jonathan Ward, and Jan
Leike. Self-critiquing models for assisting human evaluators. arXiv preprint arXiv:2206.05802,
2022.

Amrith Setlur, Nived Rajaraman, Sergey Levine, and Aviral Kumar. Scaling test-time compute
without verification or rl is suboptimal. arXiv preprint arXiv:2502.12118, 2025.

13

https://oatllm.notion.site/oat-zero
https://oatllm.notion.site/oat-zero
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2
https://pretty-radio-b75.notion.site/DeepScaleR-Surpassing-O1-Preview-with-a-1-5B-Model-by-Scaling-RL-19681902c1468005bed8ca303013a4e2

Published as a conference paper at ICLR 2025

Lior Shani, Aviv Rosenberg, Asaf Cassel, Oran Lang, Daniele Calandriello, Avital Zipori, Hila Noga,
Orgad Keller, Bilal Piot, Idan Szpektor, et al. Multi-turn reinforcement learning from preference
human feedback. arXiv preprint arXiv:2405.14655, 2024.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Yu Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic
memory and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Avi Singh, John D Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Peter J Liu, James
Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, et al. Beyond human data: Scaling self-training
for problem-solving with language models. arXiv preprint arXiv:2312.06585, 2023.

Avi Singh, John D. Co-Reyes, Rishabh Agarwal, Ankesh Anand, Piyush Patil, Xavier Garcia, Peter J.
Liu, James Harrison, Jaehoon Lee, Kelvin Xu, Aaron Parisi, Abhishek Kumar, Alex Alemi, Alex
Rizkowsky, Azade Nova, Ben Adlam, Bernd Bohnet, Gamaleldin Elsayed, Hanie Sedghi, Igor
Mordatch, Isabelle Simpson, Izzeddin Gur, Jasper Snoek, Jeffrey Pennington, Jiri Hron, Kathleen
Kenealy, Kevin Swersky, Kshiteej Mahajan, Laura Culp, Lechao Xiao, Maxwell L. Bileschi,
Noah Constant, Roman Novak, Rosanne Liu, Tris Warkentin, Yundi Qian, Yamini Bansal, Ethan
Dyer, Behnam Neyshabur, Jascha Sohl-Dickstein, and Noah Fiedel. Beyond human data: Scaling
self-training for problem-solving with language models, 2024.

Charlie Snell, Ilya Kostrikov, Yi Su, Mengjiao Yang, and Sergey Levine. Offline rl for natural
language generation with implicit language q learning. arXiv preprint arXiv:2206.11871, 2022.

Saurabh Srivastava, Anto PV, Shashank Menon, Ajay Sukumar, Alan Philipose, Stevin Prince, Sooraj
Thomas, et al. Functional benchmarks for robust evaluation of reasoning performance, and the
reasoning gap. arXiv preprint arXiv:2402.19450, 2024.

CodeGemma Team. Codegemma: Open code models based on gemma. arXiv preprint
arXiv:2406.11409, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya
Bhupatiraju, Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al.
Gemma 2: Improving open language models at a practical size. arXiv e-prints, pp. arXiv–2408,
2024.

Gladys Tyen, Hassan Mansoor, Victor Cărbune, Yuanzhu Peter Chen, and Tony Mak. Llms cannot
find reasoning errors, but can correct them given the error location. In Findings of the Association
for Computational Linguistics ACL 2024, pp. 13894–13908, 2024.

Jonathan Uesato, Nate Kushman, Ramana Kumar, Francis Song, Noah Siegel, Lisa Wang, Antonia
Creswell, Geoffrey Irving, and Irina Higgins. Solving math word problems with process-and
outcome-based feedback. arXiv preprint arXiv:2211.14275, 2022.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Sean Welleck, Ximing Lu, Peter West, Faeze Brahman, Tianxiao Shen, Daniel Khashabi, and
Yejin Choi. Generating sequences by learning to self-correct. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=hH36JeQZDaO.

Wei Xiong, Chengshuai Shi, Jiaming Shen, Aviv Rosenberg, Zhen Qin, Daniele Calandriello, Misha
Khalman, Rishabh Joshi, Bilal Piot, Mohammad Saleh, et al. Building math agents with multi-turn
iterative preference learning. arXiv preprint arXiv:2409.02392, 2024.

Sohee Yang, Elena Gribovskaya, Nora Kassner, Mor Geva, and Sebastian Riedel. Do large language
models latently perform multi-hop reasoning? arXiv preprint arXiv:2402.16837, 2024.

14

https://openreview.net/forum?id=hH36JeQZDaO
https://openreview.net/forum?id=hH36JeQZDaO

Published as a conference paper at ICLR 2025

Seonghyeon Ye, Yongrae Jo, Doyoung Kim, Sungdong Kim, Hyeonbin Hwang, and Minjoon Seo.
Selfee: Iterative self-revising llm empowered by self-feedback generation. Blog post, 2023.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process. arXiv preprint arXiv:2407.20311, 2024a.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.2, how
to learn from mistakes on grade-school math problems, 2024b. URL https://arxiv.org/
abs/2408.16293.

Mingzhang Yin, George Tucker, Mingyuan Zhou, Sergey Levine, and Chelsea Finn. Meta-learning
without memorization. arXiv preprint arXiv:1912.03820, 2019.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Weihao Zeng, Yuzhen Huang, Wei Liu, Keqing He, Qian Liu, Zejun Ma, and Junxian He. 7b model
and 8k examples: Emerging reasoning with reinforcement learning is both effective and efficient.
https://hkust-nlp.notion.site/simplerl-reason, 2025. Notion Blog.

Yunxiang Zhang, Muhammad Khalifa, Lajanugen Logeswaran, Jaekyeom Kim, Moontae Lee,
Honglak Lee, and Lu Wang. Small language models need strong verifiers to self-correct rea-
soning. arXiv preprint arXiv:2404.17140, 2024.

Huaixiu Steven Zheng, Swaroop Mishra, Hugh Zhang, Xinyun Chen, Minmin Chen, Azade Nova,
Le Hou, Heng-Tze Cheng, Quoc V Le, Ed H Chi, et al. Natural plan: Benchmarking llms on
natural language planning. arXiv preprint arXiv:2406.04520, 2024.

Yifei Zhou, Andrea Zanette, Jiayi Pan, Sergey Levine, and Aviral Kumar. Archer: Training language
model agents via hierarchical multi-turn rl. arXiv preprint arXiv:2402.19446, 2024.

15

https://arxiv.org/abs/2408.16293
https://arxiv.org/abs/2408.16293
https://hkust-nlp.notion.site/simplerl-reason

Published as a conference paper at ICLR 2025

Appendices
A ADDITIONAL EXPERIMENTS

A.1 GEMMA EXPERIMENTS

Table 5: Evaluation on MATH.

Approach Acc.@t1 Acc.@t2 Acc.@t3

Base model 16.8% 16.8% 17.0%
SCoRe Stage 1(a) 17.6% 20.0% 19.8%
SCoRe Stage 1(b) 16.6% 18.4% 23.2%
SCoRe Stage 2 23.0% 24.0% 24.0%

Table 6: Evaluation on Functional MATH.

Approach Acc.@t1 Acc.@t2 Acc.@t3

Base model 21.4% 20.7% 20.9%
SCoRe Stage 1(a) 17.5% 20.3% 20.9%
SCoRe Stage 1(b) 17.7% 20.4% 24.8%
SCoRe Stage 2 23.4% 25.7% 25.6%

Table 7: Evaluation on MathOdyssey.

Approach Acc.@t1 Acc.@t2 Acc.@t3

Base model 4.1% 3.9% 3.6%
SCoRe Stage 1(a) 3.1% 3.1% 3.4%
SCoRe Stage 1(b) 2.3% 2.8% 4.1%
SCoRe Stage 2 3.9% 5.2% 5.7%

We conduct additional evaluations of SCoRe on the open-source 2B Gemma 2 model (Team et al.,
2024). We find that SCoRe is able to significantly boost the self-correction performance of the
Gemma model, as shown in Table 5. All of the above tables evaluate performance of SCoRe on
Gemma 2 models including results on out-of-distribution evaluation benchmarks.

Multi-turn training. We consider an extension of SCoRe to multiple turns as follows. In the
three-turn section, we break Stage 1 into two sub-stages, say Stage 1(a) and Stage 1(b), with Stage 2
remaining unchanged. In Stage 1(a), the model is trained to maximize reward at the second attempt
while keeping the first attempt close to the base model. Stage 1(b) repeats this process but for
maximizing reward at the third attempt, while keeping the first two attempts close to the model
obtained from Stage 1(a). Abstractly, with more than two attempts possible, Stage 1 iteratively
optimizes each attempt to maximize reward while keeping previous attempts constrained to the base
model. This way we are able to avoid collapse of each stage and address distribution shifts over
multiple attempts. Stage 2 then proceeds as usual, optimizing the reward across all attempts and
applying reward bonuses to incentivize the difference between rewards at a given attempt and the
immediately previous attempt.

In Tables 5,6, 7, we show a direct comparison of SCoRe Stage 1(a) and Stage 1(b). On all benchmarks,
Stage 1(a) boosts the self-correction performance of turns 1 and 2, but does not lead to large
improvements at turn 3. By contrast, Stage 1(b) is able to further improve the performance of turn 3,
suggesting that our method can be generalized to beyond two turns.

Heldout datasets. We additionally benchmark the performance of SCoRe on Functional Math and
MathOdyssey, two variants of mathematical problem-solving datasets (Srivastava et al., 2024; Fang
et al., 2024). We find that the self-correction improvements generalize to these datasets, including the
highly-difficult benchmark of MathOdyssey (Tables 6,7).

16

Published as a conference paper at ICLR 2025

A.2 PERFORMANCE OF SCoRe BY PROBLEM DIFFICULTY

Level 1 Level 2 Level 3 Level 4 Level 5
Difficulty

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Pr
op

or
tio

n

Incorrect->Correct
Correct->Incorrect

Figure 7: Performance of SCoRe by problem difficulty.

We additionally analyze the performance of SCoRe on the MATH 500 benchmark broken down by
problem difficulty, with results shown in Figure 7. We find that SCoRe is able to achieve mistake-
free self-correction on the easiest levels (Levels 1 and 2), and achieves a relatively similar positive
self-correction rate on both medium and difficult questions (Levels 3-5).

A.3 EVALUATION ON MULTIPLE ATTEMPTS

2 4 6 8 10
Attempt

45

50

55

60

65

Ac
cu

ra
cy

Base model
Pair-SFT
SCoRe

Figure 8: Performance of the base model, Pair-SFT, and SCoRe over 10 attempts on MATH.

We investigate the performance of various models when asked to iteratively self-correct over multiple
attempts, despite only being trained over two attempts (or not at all, in the case of the base model).
As shown in Figure 8, we find that the performance of the base Gemini 1.5 Flash model is quite noisy,
but never surpasses that of the first attempt. Similarly, Pair-SFT does not improve past the second
attempt. By contrast, the performance of SCoRe increases slightly past two turns, although it does
plateau likely because the distribution over responses shifts quickly as more revision attempts are
performed . We leave improving the scaling properties of self-correction, a form of meta-learning, to
future work.

A.4 REWARD FUNCTION DESIGN

We clarify the reward function used in SCoRe in Figure 9.

In all of our experiments, we used only the instantaneous reward in our policy gradient objective,
which is equivalent to returns with discount factor γ = 0. We additionally investigated whether
leveraging γ > 0, in conjunction with reward shaping, can elicit self-correction paper. As presented
in Figure 10, we find that with γ = 0.8 and α = 1.0, multi-turn RL still suffers from the same
non-correcting behavior collapse as the standard multi-turn RL approach.

17

Published as a conference paper at ICLR 2025

Foundation model

prompt (x)

response (y)

Stage I: Train an initialization for self-correction Stage II: Run Multi-turn RL with reward shaping

Foundation model trained with SCoRe

first attempt (y1) second attempt (y2)

prompt (x)

Reward for
attempt 2 only
applied here

Constrain to
base model

Shaped reward
only applied here

Maximize reward for
only first attempt

Foundation model trained with SCoRe

first attempt (y1) second attempt (y2)

prompt (x)

Optionally interleave stages

Figure 9: A simple illustration showing reward values used to multiply different sub-sequences of tokens
in SCoRe. Note that the first attempt is always multiplied by its own correctness reward in Stage 2 and the
reward shaping is only applied to the second attempt. In Stage 1, the first attempt response is constrained to that
of the base model, while the second attempt is trained to optimize its own correctness reward.

0.0 0.2 0.4 0.6 0.8 1.0
Training fraction

0.50

0.55

0.60

Tr
ai

n
Ac

cu
ra

cy

= 0.8
= 0.0

Turn 1
Turn 2

Figure 10: Impact of discount factor of γ on standard multi-turn RL training.

A.5 WHY CAN SELF-CORRECTION HELP CONCEPTUALLY?

One conceptual intuition for why self-correction should improve performance over simply maximizing
first-attempt performance is that model performance should increase as it is able to leverage more
tokens (analogously to how LLM reasoning performance increases with higher depths (Ye et al.,
2024a), i.e., self-correction is able to benefit from test-time token budgets.

Alternatively, from RL literature, one could theoretically characterize self-correction policies under
the notion of adaptive policies. These adaptive policies condition action predictions not only on the
current state but also on past attempts or previous episodes. It is known in the RL literature that such
adaptive policies especially excel in generalization settings. For example, the benefits of adaptive
policies are studied by Ghosh et al. (2021). The sequential classification setting in this paper is
conceptually similar to self-correction (though not the same).

B ADDITIONAL EXPERIMENT DETAILS

Table 8: Hyperparameters for SCoRe on MATH (left) and MBPP (right)

Hyperparameter Value
Base model Gemini 1.5 Flash
Optimizer Adam
Learning rate 5e-6
Training steps 3000
Batch size 512
Sampling temperature 1.0
α 10
β1 0.01
β2 0.1

Hyperparameter Value
Base model Gemini 1.0 Pro
Optimizer Adam
Learning rate 1e-5
Training steps 1500
Batch size 128
Sampling temperature 1.0
α 10
β1 0.01
β2 0.25

18

Published as a conference paper at ICLR 2025

Base model

Stage 1: Train the model
to decouple attempts

Stage 2: Train the model
to optimize reward

Behavior collapse if optimized naively

Avoid behavior collapse by keeping first attempt close to
base model and improving second attempt

Optimize reward of each turn. Avoid behavior
collapse via reward-shaping.

SFT Online
Multi-Turn RL

Behavior collapse and
distribution shift

Figure 11: The flowchart that explains our chain of logic guiding the inclusion of each component of SCoRe.

We include the hyperparameters used for training SCoRe in Table 8.

C PROMPTS

MATH Zero-shot Prompt
You are a math expert. When you respond, respond only with the Solution of the final Problem, thinking step
by step. At the end of the Solution, when you give your final answer, write it in the form "Final Answer: The
final answer is $answer$. I hope it is correct."

MATH Self-Correction Instruction
There might be an error in the solution above because of lack of understanding of the question. Please correct
the error, if any, and rewrite the solution. Only output the final solution! At the end of the Solution, when you
give your final answer, write it in the form "Final Answer: The final answer is $answer$. I hope it is correct."

MBPP 3-shot Prompt
You are an expert Python programmer, and here is your task: Write a function to find the similar elements
from the given two tuple lists. Your code should pass these tests:

assert similar_elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
assert similar_elements((1, 2, 3, 4),(5, 4, 3, 7)) == (3, 4)
assert similar_elements((11, 12, 14, 13),(17, 15, 14, 13)) == (13, 14)

[BEGIN]

def similar_elements(test_tup1, test_tup2):
res = tuple(set(test_tup1) & set(test_tup2))
return (res)

[DONE]

You are an expert Python programmer, and here is your task: Write a python function to identify non−prime
numbers. Your code should pass these tests:

19

Published as a conference paper at ICLR 2025

assert is_not_prime(2) == False
assert is_not_prime(10) == True
assert is_not_prime(35) == True

[BEGIN]

import math
def is_not_prime(n):

result = False
for i in range(2,int(math.sqrt(n)) + 1):

if n % i == 0:
result = True

return result

[DONE]

You are an expert Python programmer, and here is your task: Write a function to find the largest integers from
a given list of numbers using heap queue algorithm. Your code should pass these tests:

assert heap_queue_largest([25, 35, 22, 85, 14, 65, 75, 22, 58],3)==[85, 75, 65]
assert heap_queue_largest([25, 35, 22, 85, 14, 65, 75, 22, 58],2)==[85, 75]
assert heap_queue_largest([25, 35, 22, 85, 14, 65, 75, 22, 58],5)==[85, 75, 65, 58, 35]

[BEGIN]

import heapq as hq
def heap_queue_largest(nums,n):

largest_nums = hq.nlargest(n, nums)
return largest_nums

[DONE]

MBPP/HumanEval Self-Correction Instruction
There might be an error in the code above because of lack of understanding of the question. Please correct
the error, if any, and rewrite the solution. Only output the final correct Python program!

D QUALITATIVE ANALYSIS OF SCoRe
We also perform a qualitative investigation into how SCoRe addresses the self-repair shortcomings of
base LLMs, and provide several examples in Appendix E. We find that SCoRe is able to refine its
own responses in a variety of manners - rewriting the entire solution when necessary, or reproducing
the correct parts of the solution, while revising the incorrect ones. For the latter, we interestingly
find that SCoRe is especially adept at revising its computational mistakes, and even demonstrates
a bias towards showing more steps in certain computations and manipulations in order to increase
its probability of producing a correct answer. We additionally observe that the model learns to
occasionally self-correct within a turn, e.g. MATH example 4.

E EXAMPLES OF SCoRe SELF-CORRECTION

HumanEval Example 1
Problem:
def cycpattern_check(a , b):

"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring
in the first word

cycpattern_check("abcd","abd") => False
cycpattern_check("hello","ell") => True
cycpattern_check("whassup","psus") => False
cycpattern_check("abab","baa") => True
cycpattern_check("efef","eeff") => False

20

Published as a conference paper at ICLR 2025

cycpattern_check("himenss","simen") => True

"""

Turn 1 solution (incorrect):
def cycpattern_check(a , b):

"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring
in the first word

cycpattern_check("abcd","abd") => False
cycpattern_check("hello","ell") => True
cycpattern_check("whassup","psus") => False
cycpattern_check("abab","baa") => True
cycpattern_check("efef","eeff") => False
cycpattern_check("himenss","simen") => True

"""
for i in range(len(b)):

if a.find(b[i:])!=−1:
return True

return False

Turn 2 solution (correct):
def cycpattern_check(a , b):

"""You are given 2 words. You need to return True if the second word or any of its rotations is a substring
in the first word

cycpattern_check("abcd","abd") => False
cycpattern_check("hello","ell") => True
cycpattern_check("whassup","psus") => False
cycpattern_check("abab","baa") => True
cycpattern_check("efef","eeff") => False
cycpattern_check("himenss","simen") => True

"""
for i in range(len(b)):

rotated_b = b[i:] + b[:i]
if a.find(rotated_b) != −1:

return True
return False

HumanEval Example 2
Problem:
def even_odd_count(num):

"""Given an integer. return a tuple that has the number of even and odd digits respectively.

Example:
even_odd_count(−12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)

"""

Turn 1 solution (incorrect):
def even_odd_count(num):

"""Given an integer. return a tuple that has the number of even and odd digits respectively.

Example:
even_odd_count(−12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)

"""
even_count = 0
odd_count = 0

for digit in str(num):
int_digit = int(digit)

21

Published as a conference paper at ICLR 2025

if int_digit % 2 == 0:
even_count += 1

else:
odd_count += 1

return even_count, odd_count

Turn 2 solution (correct):
def even_odd_count(num):

"""Given an integer. return a tuple that has the number of even and odd digits respectively.

Example:
even_odd_count(−12) ==> (1, 1)
even_odd_count(123) ==> (1, 2)

"""

even_count = 0
odd_count = 0

for digit in str(abs(num)):
int_digit = int(digit)
if int_digit % 2 == 0:

even_count += 1
else:

odd_count += 1

return even_count, odd_count

22

Published as a conference paper at ICLR 2025

MATH Example 1

Problem. Let A be a matrix such that

A
⎛
⎜
⎝

3
1
0

⎞
⎟
⎠
=

⎛
⎜
⎝

2
4
−3

⎞
⎟
⎠

and A
⎛
⎜
⎝

−5
2
2

⎞
⎟
⎠
=

⎛
⎜
⎝

0
−5
−5

⎞
⎟
⎠
.

Find A
⎛
⎜
⎝

−13
3
4

⎞
⎟
⎠
.

SCoRe turn 1 solution (incorrect). We can write

⎛
⎜
⎝

−13
3
4

⎞
⎟
⎠
= a

⎛
⎜
⎝

3
1
0

⎞
⎟
⎠
+ b

⎛
⎜
⎝

−5
2
2

⎞
⎟
⎠

for some scalars a and b. Solving the system of equations

3a − 5b = −13,

a + 2b = 3,

2b = 4,

we find a = −1 and b = 2. Therefore,

A
⎛
⎜
⎝

−13
3
4

⎞
⎟
⎠
= A

⎛
⎜
⎝
−1

⎛
⎜
⎝

3
1
0

⎞
⎟
⎠
+ 2

⎛
⎜
⎝

−5
2
2

⎞
⎟
⎠
⎞
⎟
⎠
= −1A

⎛
⎜
⎝

3
1
0

⎞
⎟
⎠
+ 2A

⎛
⎜
⎝

−5
2
2

⎞
⎟
⎠
= −1

⎛
⎜
⎝

2
4
−3

⎞
⎟
⎠
+ 2

⎛
⎜
⎝

0
−5
−5

⎞
⎟
⎠
=

⎛
⎜
⎝

−2
−14
−13

⎞
⎟
⎠
.

Final Answer: The final answer is
⎛
⎜
⎝

−2
−14
−13

⎞
⎟
⎠

. I hope it is correct.

SCoRe turn 2 solution (correct). We can write

⎛
⎜
⎝

−13
3
4

⎞
⎟
⎠
= a

⎛
⎜
⎝

3
1
0

⎞
⎟
⎠
+ b

⎛
⎜
⎝

−5
2
2

⎞
⎟
⎠

for some scalars a and b. This gives us the system of equations:

3a − 5b = −13,

a + 2b = 3,

2b = 4.

Solving the third equation, we get b = 2. Substituting into the second equation, we get a = −1. We can
check that these values of a and b also satisfy the first equation.
Therefore,

A
⎛
⎜
⎝

−13
3
4

⎞
⎟
⎠
= A

⎛
⎜
⎝
−1

⎛
⎜
⎝

3
1
0

⎞
⎟
⎠
+ 2

⎛
⎜
⎝

−5
2
2

⎞
⎟
⎠
⎞
⎟
⎠
= −1A

⎛
⎜
⎝

3
1
0

⎞
⎟
⎠
+2A

⎛
⎜
⎝

−5
2
2

⎞
⎟
⎠
= −1

⎛
⎜
⎝

2
4
−3

⎞
⎟
⎠
+2

⎛
⎜
⎝

0
−5
−5

⎞
⎟
⎠
=

⎛
⎜
⎝

−2
−4
3

⎞
⎟
⎠
+
⎛
⎜
⎝

0
−10
−10

⎞
⎟
⎠
=

⎛
⎜
⎝

−2
−14
−7

⎞
⎟
⎠
.

Final Answer: The final answer is
⎛
⎜
⎝

−2
−14
−7

⎞
⎟
⎠

. I hope it is correct.

MATH Example 2

Problem. Simplify 1

5
⋅ 8

7
÷ 12

20
.

23

Published as a conference paper at ICLR 2025

SCoRe turn 1 solution (incorrect). First, we can simplify the division by multiplying by the reciprocal
of the divisor:

1

5
⋅

8

7
÷

12

20
=

1

5
⋅

8

7
⋅

20

12
Next, we can simplify by canceling common factors:

1

5
⋅

8

7
⋅

20

12
=

1 ⋅ 8 ⋅ 20

5 ⋅ 7 ⋅ 12
=

1 ⋅ 2 ⋅ 4 ⋅ 5 ⋅ 4

5 ⋅ 7 ⋅ 2 ⋅ 6
=

4 ⋅ 4

7 ⋅ 6
=

2 ⋅ 2 ⋅ 2 ⋅ 2

7 ⋅ 2 ⋅ 3
=

2 ⋅ 2

7 ⋅ 3

Finally, we can multiply the remaining factors:

2 ⋅ 2

7 ⋅ 3
=

4

21

Final Answer: The final answer is 4

21
. I hope it is correct.

SCoRe turn 2 solution (correct).

1

5
⋅

8

7
÷

12

20
=

1

5
⋅

8

7
⋅

20

12
=

1 ⋅ 8 ⋅ 20

5 ⋅ 7 ⋅ 12
=

1 ⋅ 8 ⋅ 4 ⋅ 5

5 ⋅ 7 ⋅ 4 ⋅ 3
=

1 ⋅ 8

7 ⋅ 3
=

8

21

Final Answer: The final answer is 8

21
. I hope it is correct.

MATH Example 3

Problem. Suppose the polynomial

f(x) = anxn + an−1xn−1 +⋯+ a2x
2
+ a1x + a0

has integer coefficients, and its roots are distinct integers.
Given that an = 2 and a0 = 66, what is the least possible value of ∣an−1∣?

SCoRe turn 1 solution (incorrect). Let the roots of f(x) be r1, r2, . . . , rn. Then by Vieta’s formulas,

r1 + r2 + ⋅ ⋅ ⋅ + rn = −
an−1
an

= −
an−1

2
.

Since the roots are distinct integers, r1 + r2 + ⋅ ⋅ ⋅ + rn is an integer. Thus, an−1 must be even.
Also,

r1r2 . . . rn =
(−1)na0
an

=
(−1)n ⋅ 66

2
= (−1)n ⋅ 33.

Since the roots are integers, r1r2 . . . rn is an integer. Thus, n must be odd.
Since n is odd, the sum of the roots is an integer, and an−1 is even, the least possible value of ∣an−1∣ is
2 .

Final Answer: The final answer is 2. I hope it is correct.

SCoRe turn 2 solution (correct). Let the roots of f(x) be r1, r2, . . . , rn. Then by Vieta’s formulas,

r1 + r2 + ⋅ ⋅ ⋅ + rn = −
an−1
an

= −
an−1

2
.

Since the roots are distinct integers, r1 + r2 + ⋅ ⋅ ⋅ + rn is an integer. Thus, an−1 must be even.
Also,

r1r2 . . . rn =
(−1)na0
an

=
(−1)n ⋅ 66

2
= (−1)n ⋅ 33.

Since the roots are integers, r1r2 . . . rn is an integer. Since 33 has a factor of 11, one of the roots must
be a multiple of 11. Furthermore, since the roots are distinct integers, the product of the roots must be a
multiple of 33.
We want to minimize ∣an−1∣, which is the absolute value of the sum of the roots. To do this, we can try
to make the sum of the roots as close to zero as possible.
Since the product of the roots is ±33, we can consider the following cases:
* **Case 1:** n = 3 and the roots are −11, 1, and 3. In this case, the sum of the roots is −7, and
∣an−1∣ = 14.
* **Case 2:** n = 5 and the roots are −11, −3, −1, 1, and 3. In this case, the sum of the roots is −11,
and ∣an−1∣ = 22.
* **Case 3:** n = 7 and the roots are −11, −3, −1, 1, 3, 5, and 7. In this case, the sum of the roots is
−11, and ∣an−1∣ = 22.

24

Published as a conference paper at ICLR 2025

We can continue this pattern, but we notice that the absolute value of the sum of the roots keeps
increasing. Therefore, the least possible value of ∣an−1∣ is 14 .
Final Answer: The final answer is 14. I hope it is correct.

MATH Example 4

Problem. Find the minimum value of

(x + 5)(x + 2)
x + 1

for x > 0.

SCoRe turn 1 solution (incorrect). We can write

(x + 5)(x + 2)
x + 1

=
x
2 + 7x + 10

x + 1

=
(x2 + 7x + 10) − (x2 + x)

x + 1

=
6x + 10

x + 1

=
(6x + 6) + 4

x + 1

= 6 +
4

x + 1
.

Since x > 0, x + 1 > 1, so 4

x+1
< 4. Therefore,

(x + 5)(x + 2)
x + 1

< 6 + 4 = 10.

Equality occurs when x = 0, so the minimum value is 6 .
Final Answer: The final answer is 6. I hope it is correct.

SCoRe turn 2 solution (correct). We can write

(x + 5)(x + 2)
x + 1

=
x
2 + 7x + 10

x + 1

=
(x2 + x) + (6x + 6) + 4

x + 1

=
x(x + 1) + 6(x + 1) + 4

x + 1

=
(x + 1)(x + 6) + 4

x + 1

= x + 6 +
4

x + 1
.

Since x > 0, x + 1 > 1, so 4

x+1
< 4. Therefore,

(x + 5)(x + 2)
x + 1

> x + 6.

Since x > 0, x + 6 > 6. Thus, the minimum value is greater than 6.
Furthermore, as x increases, the term 4

x+1
decreases, so the expression (x+5)(x+2)

x+1
decreases. Therefore,

the minimum value occurs when 4

x+1
is as large as possible, which occurs when x is as small as possible.

Since x > 0, the minimum value is

6 +
4

0 + 1
= 10.

Equality occurs when x = 0, but this contradicts the condition x > 0. Therefore, the minimum value
does not exist.
We made an error in assuming that the minimum value occurs when 4

x+1
is as large as possible. Instead,

we should minimize the entire expression. Since x > 0, the term 4

x+1
is always positive. Therefore, the

minimum value occurs when x + 6 + 4

x+1
is as small as possible.

25

Published as a conference paper at ICLR 2025

By AM-GM,

x + 6 +
4

x + 1
= (x + 1) + 4

x + 1
+ 5 ≥ 2

√
(x + 1) ⋅ 4

x + 1
+ 5 = 9.

Equality occurs when (x+ 1) = 4

x+1
, so x2 + 2x+ 1 = 4, which means x2 + 2x− 3 = 0. This factors

as (x + 3)(x − 1) = 0, so x = 1 (since x > 0).
Therefore, the minimum value is 9 .
Final Answer: The final answer is 9. I hope it is correct.

MATH Example 5

Problem. Four points, A, B, C, and D, are chosen randomly and independently on the circumference
of a circle. What is the probability that segments AB and CD intersect?

SCoRe turn 1 solution (incorrect). The segments AB and CD will intersect if and only if the points
A, B, C, and D appear in alternating order around the circle. There are 4! ways to order the points,
and 2 ways to divide the points into two pairs. Therefore, the probability that the segments intersect is
2

4!
=

2

24
=

1

12
.

Final Answer: The final answer is 1

12
. I hope it is correct.

SCoRe turn 2 solution (correct). The segments AB and CD will intersect if and only if the points A,
B, C, and D appear in alternating order around the circle. Without loss of generality, let’s assume that
A is the first point chosen. Then, there are three possible cases for the placement of B:
* **Case 1:** B is placed in the arc between A and C. In this case, C and D can be placed anywhere
on the remaining circumference, and the segments will not intersect. * **Case 2:** B is placed in the
arc between A and D. In this case, C and D can be placed anywhere on the remaining circumference,
and the segments will not intersect. * **Case 3:** B is placed in the arc between C and D. In this
case, the segments AB and CD will intersect.
The probability of Case 3 is 1

3
. Since the points are chosen independently, the probability that the

segments intersect is
1

3
.

Final Answer: The final answer is 1

3
. I hope it is correct.

MATH Example 6

Problem. The 7th and 8th grades have enrollments of 520 and 650 respectively. The two grades have a
total of 18 representatives on the Student Council. How many representatives should the 8th grade have
if there is to be a fair representation of the two grades?

SCoRe turn 1 solution (incorrect). The total enrollment of the two grades is 520 + 650 = 1170.
The ratio of 7th grade students to 8th grade students is 520/1170 = 52/117. The ratio of 7th grade
representatives to 8th grade representatives should be the same as the ratio of 7th grade students
to 8th grade students. Let x be the number of representatives for the 8th grade. Then the number
of representatives for the 7th grade is 18 - x. The ratio of 7th grade representatives to 8th grade
representatives is (18 - x)/x. Setting the two ratios equal, we have (18 - x)/x = 52/117. Cross-multiplying,
we get 117(18 - x) = 52x. Expanding, we get 2106 - 117x = 52x. Combining like terms, we get 2106 =
169x. Solving for x, we get x = 2106/169 = 12.47. Since we cannot have fractional representatives, we
round up to the nearest whole number.
Final Answer: The final answer is 13. I hope it is correct.

SCoRe turn 2 solution (correct). The ratio of 7th grade students to 8th grade students is 520/650 =
4/5. Since the two grades should have a fair representation on the Student Council, the ratio of 7th
grade representatives to 8th grade representatives should be the same as the ratio of 7th grade students
to 8th grade students, which is 4/5. Let x be the number of representatives for the 8th grade. Then the
number of representatives for the 7th grade is 18 - x. The ratio of 7th grade representatives to 8th grade
representatives is (18 - x)/x. Setting the two ratios equal, we have (18 - x)/x = 4/5. Cross-multiplying,
we get 5(18 - x) = 4x. Expanding, we get 90 - 5x = 4x. Combining like terms, we get 90 = 9x. Solving
for x, we get x = 10.
Final Answer: The final answer is 10. I hope it is correct.

26

Published as a conference paper at ICLR 2025

MATH Example 7

Problem. The sum of 27 consecutive positive integers is 3
7. What is their median?

SCoRe turn 1 solution (incorrect). The sum of an arithmetic series is equal to the average of the
first and last term, multiplied by the number of terms. Let the first term of the arithmetic series be
a, and the last term be l. Then the sum of the series is (a+l)⋅27

2
. Since the sum of the series is 3

7, we

have (a+l)⋅27
2

= 3
7. Simplifying, we get (a + l) = 3

7⋅2
27

= 3
4 ⋅ 2 = 162. Since the series consists of

consecutive integers, the median of the series is the middle term, which is the 14th term. The 14th term
of the series is a + 13, and the average of the first and last term is a+l

2
. Therefore, the median of the

series is a+l
2
+ 13

2
=

162

2
+ 13

2
=

175

2
.

Final Answer: The final answer is 87.5. I hope it is correct.

SCoRe turn 2 solution (correct). The sum of an arithmetic series is equal to the average of the first
and last term, multiplied by the number of terms. Let the first term of the arithmetic series be a, and
the last term be l. Then the sum of the series is (a+l)⋅27

2
. Since the sum of the series is 3

7, we have
(a+l)⋅27

2
= 3

7. Simplifying, we get (a + l) = 3
7⋅2
27

=
3
7⋅2
33

= 3
4 ⋅ 2 = 162.

Since the series consists of 27 consecutive integers, the average of the first and last term is equal to the
median of the series. Therefore, the median of the series is a+l

2
=

162

2
= 81.

Final Answer: The final answer is 81. I hope it is correct.

27

	Introduction
	Related Work
	Preliminaries and Problem Setup
	SFT on Self-Generated Data is Insufficient for Self-Correction
	SCoRe: Self-Correction via Multi-Turn Reinforcement Learning
	Stage I: Training an Initialization to Decouples Attempts
	Stage II: Multi-Turn RL to Optimize Both Attempts
	Putting it Together and Implementation Details

	Experimental Evaluation
	Benchmark Results
	Inference-Compute Scaling with Self-Correction
	Ablation Studies: Understanding the Impact of SCoRe Components

	Discussion, Limitations, and Conclusion
	Additional Experiments
	Gemma Experiments
	Performance of SCoRe by Problem Difficulty
	Evaluation on Multiple Attempts
	Reward Function Design
	Why Can Self-Correction Help Conceptually?

	Additional Experiment Details
	Prompts
	Qualitative Analysis of SCoRe
	Examples of SCoRe Self-Correction

