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ABSTRACT

The infinite width limit of random neural networks is known to result in Neural
Networks as Gaussian Process (NNGP) (Lee et al. (2018)), characterized by task-
independent kernels. It is widely accepted that larger network widths contribute to
improved generalization (Park et al. (2019)). However, this work challenges this
notion by investigating the narrow width limit of the Bayesian Parallel Branching
Neural Network (BPB-NN), an architecture that resembles neural networks with
residual blocks. We demonstrate that when the width of a BPB-NN is significantly
smaller compared to the number of training examples, each branch exhibits more
robust learning due to a symmetry breaking of branches in kernel renormalization.
Surprisingly, the performance of a BPB-NN in the narrow width limit is generally
superior to or comparable to that achieved in the wide width limit in bias-limited
scenarios. Furthermore, the readout norms of each branch in the narrow width
limit are mostly independent of the architectural hyperparameters but generally
reflective of the nature of the data. We demonstrate such phenomenon primarily
for branching graph neural networks, where each branch represents a different
order of convolutions of the graph; we also extend the results to other more general
architectures such as the residual-MLP and show that the narrow width effect is
a general feature of the branching networks. Our results characterize a newly
defined narrow-width regime for parallel branching networks in general.

1 INTRODUCTION

The study of neural network architectures has seen substantial growth, particularly in understanding
how network width impacts learning and generalization. In general, wider networks are believed
to perform better (Allen-Zhu et al. (2019); Jacot et al. (2018); Gao et al. (2024)). However, this
work challenges the prevailing assumption by exploring the narrow width limit of Bayesian Paral-
lel Branching Neural Network (BPB-NN), an architecture inspired by neural networks with resid-
ual blocks (He et al. (2016); Chen et al. (2020a; 2022)). We show theoretically and empirically
that narrow-width BPB-NNs can perform better than their wider counterparts due to the symmetry-
breaking effect in kernel renormalization, in bias-limited scenarios. We present a detailed analysis
of BPB-NNs primarily by exploring the Bayesian Parallel Branching Graph Convolution Networks
(BPB-GCN), while extending the results to other more general architectures such as the residual-
MLP in the appendix.

Contributions :

1. We introduce a novel yet simple graph neural architecture with parallel independent
branches, and derive the exact generalization error for node regression in the statistical
limit as the sample size P → ∞ and network width N → ∞, with their ratio a finite
number α = P/N , in the over-parameterized regime.
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2. We show that in the Bayesian setting the bias will decrease and saturate at a narrow hidden
layer width, a surprising phenomenon due to kernel renormalization. We demonstrate that
this can be understood as a robust learning effect of each branch in the student-teacher task,
where each student’s branch is learning the teacher’s branch.

3. We demonstrate this narrow-width limit in the real-world dataset Cora and understand each
branch’s importance as a nature of the dataset.

4. We further show that this narrow-width effect is a general feature of Bayesian parallel
branching neural networks (BPB-NNs), with the residual-MLP architecture as an example.

2 RELATED WORKS

Infinitely wide neural networks: Our work follows a long tradition of mathematical analysis
of infinitely-wide neural networks (Neal (2012); Jacot et al. (2018); Lee et al. (2018); Bahri et al.
(2024)), resulting in NTK or NNGP kernels. Recently, such analysis has been extended to structured
neural networks, including GCNs (Du et al. (2019); Walker & Glocker (2019); Huang et al. (2021)).
However, they do not provide an analysis of feature learning in which the kernel depends on the
tasks.

Kernel renormalization and feature learning: There has been progress in understanding simple
MLPs in the feature-learning regime as the shape of the kernel changes with task or time (Li &
Sompolinsky (2021); Atanasov et al. (2021); Avidan et al. (2023); Wang & Jacot (2023)). We
develop such understanding in graph-based networks.

Theoretical analysis of GCN: There is a long line of works that theoretically analyze the ex-
pressiveness (Xu et al. (2018); Geerts & Reutter (2022)) and generalization performance (Tang &
Liu (2023); Garg et al. (2020); Aminian et al. (2024)) of GCN. However, it is challenging to calcu-
late the dependence of generalization errors on tasks. In particular, the PAC-Bayes approach Liao
et al. (2020); Ju et al. (2023) results in generalization bounds that are too large and that can be only
computed with norms of learned weights. To our knowledge, our work is first to decompose the
generalization error into bias and variance a priori (not dependent on learned weights) for linear
GCNs with residual-like structures. The architecture closest to our linear BPB-GCN is the linearly
decoupled GCN proposed by Cong et al. (2021); however, the overall readout vector is shared for
all branches, which will not result in kernel renormalization for different branches.

3 BPB-GCN

3.1 PARALLEL BRANCHING GCN ARCHITECTURE

We are motivated to study the parallel branching networks as they resemble residual blocks in com-
monly used architectures (Kipf & Welling (2016); He et al. (2016); Chen et al. (2020b)) and are
easy to study analytically with our Bayesian framework. We primarily focus on the graph setting
(BPB-GCN) in the main sections, and discuss the more general case in appendix B.

Given graph G = (A,X), where A is the adjacency matrix and X the node feature matrix, the
final readout for node µ is a scalar fµ(G; Θ) that depends on the graph and network parameters
Θ. The parallel branching GCN is an ensemble of GCN branches, where each branch operates
independently with no weight sharing. In this work, we focus on the simple setup of branches made
of linear GCN with one hidden layer, but with different number of convolutions A1 on the input
node features (Figure 1(a)). In this way, parallel branching GCN is analogous to GCN with residual
connections, for which the final node readout can also be thought of as an ensemble of convolution
layers (Veit et al. (2016)). Concretely, the overall readout fµ(G; Θ) for node µ is a sum of L branch

1In this paper, the convolution operation is normalized as A = D−1/2(Â + I)D−1/2, where Â is the
original Adjacency matrix and D is the degree matrix. We also use feature standardization after convolution
for each branch to normalize the input
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(a) (b)

Figure 1: Overview of the main takeaway: BPB-GCN learns robust representations for each branch
at narrow width. (a) The parallel branching GCN architecture, with 2 branches. The independent
branches have non-sharing weights and produce the final output f as a sum of branch-level readouts
fl. (b) Student and teacher readout norms squared for wide and narrow student BPB-GCN networks.
The student network with width N is trained with the teacher network’s output. Histograms corre-
spond to the samples from Hamiltonian Monte Carlo simulations and solid lines correspond to the
order parameters calculated theoretically. σt = σw = 1. At N = 4, the HMC samples of branch
readout norms squared (orange and red histograms) for the student network ∥al∥2

N σ2
w concentrate

at their respective theoretical values ulσ
2
w and overlap with the teacher’s readout norms squared

∥Al∥2

N σ2
t (orange and red dashed lines) for corresponding branches. At N = 1024 the samples for

the student network (blue and green histograms) concentrate at their respective theoretical values
but remain far from the teacher’s values, instead approaching the GP limit σ4

w (blue dashed line).

readouts fµ
l :

fµ(G; Θ) =

L−1∑
l=0

fµ
l (G; Θl = {W (l), a(l)}), (1)

where

fµ
l (G,Θl) =

1√
L

N∑
i=1

1√
N

a
(l)
i

N0∑
j=1

1√
N0

W
(l)
ij

n∑
ν=1

(Al)µνx
ν
j (2)

In matrix notation,

F =
∑
l

1√
LNN0

AlXW (l)a(l) (3)

Note that when L = 2, the network reduces exactly to a 2-layer residual GCN (Chen et al. (2020c)).
Here N0 is the input dimension, N the width of the hidden layer, W (l) the weight of the hidden
layer for branch l, Al the lth power of the adjacency matrix and a(l) the final readout weight for
branch l. We will consider only the linear activation function for this paper and provide a summary
of notations in Appendix A.1.

3.2 BAYESIAN NODE REGRESSION

We consider a Bayesian semi-supervised node regression problem, for which the posterior probabil-
ity distribution for the weight parameters is given by

P (Θ) =
1

Z
e−E(Θ;G,Y )/T =

1

Z
exp(− 1

2T

P∑
µ=1

(fµ(G,Θ)− yµ)2 − 1

2σ2
w

ΘTΘ), (4)

where the first term in the exponent corresponds to the likelihood term induced by learning P node
labels yµ with squared loss and the second term corresponds to the Gaussian prior with variance
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σ2
w. Z =

∫
e−E(Θ)/T dΘ is the normalization constant. This Bayesian setup is well motivated,

as the Langevin dynamics trained with energy potential E and temperature T that results in this
equilibrium posterior distribution shares a lot in common with the Gradient Descent (Avidan et al.
(2023); Naveh et al. (2021)) and Stochastic GD optimizers (Mignacco & Urbani (2022); Wu et al.
(2020)). In fact, Li & Sompolinsky (2021) shows empirically that the Bayesian equilibrium is a sta-
tistical distribution of the usual gradient descent with early stopping optimization and with random
initializations at 0 temperature in DNNs, where the L2 regularization strength σ2

w corresponds to the
Gaussian initialization variance.

We are interested in understanding the weight and predictor statistics of each branch and how they
contribute to the overall generalization performance of the network. In the following theoretical
derivations, our working regime is in the overparameterizing high-dimensional limit (Li & Som-
polinsky (2021); Montanari & Subag (2023); Bordelon & Pehlevan (2022); Howard et al. (2024)):
P,N,N0 → ∞, P

N = α finite and the capacity α0 = P
LN0

< 1. As we will show later, this
limit is practically true even with P,N not so large (our smallest N is 4). We will also use near-0
temperature, in which case the training error will be near 0.

3.3 KERNEL RENORMALIZATION AND ORDER PARAMETERS

The normalization factor, or the partition function, Z =
∫
e−E(Θ)/T dΘ carries all the information

to calculate the predictor statistics and the generalization dependence on network hyperparameters
N,L, σ2

w. Using Eq. 2,4, we can integrate out the readout weights al’s first, resulting in

Z =

∫
dWe−H(W ), (5)

with effective Hamiltonian H(W ) in terms of the hidden layer weights for all branches

H(W ) =
1

2σ2
w

L−1∑
l=0

TrWT
l Wl +

1

2
Y T (K(W ) + TI)−1Y +

1

2
log det(K(W ) + TI), (6)

where

K(W ) =
1

L

∑
l

σ2
w

N
(Hl(Wl)Hl(Wl)

T )|P (7)

is the P × P kernel matrix dependent on the observed P nodes with node features Hl = AlXWl

and we denote |P as the matrix restricting to the elements generated by the training nodes.

As shown in Appendix A.2, we can further integrate out the Wl’s and get the partition function
Z =

∫
Due−H(u) described by a final effective Hamiltonian independent of weights

H(u) = S(u) + E(u), (8)
where we call S(u) the entropic term

S(u) = −
∑
l

N

2
log ul +

∑
l

N

2σ2
w

ul (9)

and E(u) the energetic term

E(u) =
Nα

2P
Y T (

∑
l

1

L
ulKl + TI)−1Y +

Nα

2P
log det(

∑
l

1

L
ulKl + TI), (10)

where Kl =
σ2

N0
[AlXXTAl]|P is the (P × P ) input node feature kernel for branch l.

Therefore, the final effective Hamiltonian has the overall kernel

K =
∑
l

1

L
ulKl, (11)

where ul’s are order parameters which are the minimum of the effective Hamiltonian Eq. 8 that
satisfy the saddle point equations:

N(1− ul

σ2
w

) = −rl +Trl, (12)

where rl = Y T (K + TI)−1 ulKl

L (K + TI)−1Y and Trl = Tr[K−1 ulKl

L ].
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GP kernel vs. renormalized kernel: Observe that as α = P/N → 0, the entropic term domi-
nates, and thus ul = σ2

w for all branches from Eq. 12. This is the usual Gaussian Process (GP) limit,
or the infinite-width limit. In this case, the kernel Kl for each branch is not changed by the training
data, and each branch has the same contribution in terms of its strength.

However, when α = P/N is large, there is a correction to the GP prediction, and ul’s in general
depend on the training data; therefore, we have feature learning in each branch with kernel renor-
malization. It turns out that ul is exactly the statistical average of readout norm squared over the
posterior distribution (Appendix A.4), ie.

ul = ⟨∥al∥2⟩/N (13)

for each branch l, where we use the bracket notation to represent the expectation value over the
posterior distribution. Therefore, branches in general become more and more different as the width
of the hidden layer N decreases. We call this phenomenon symmetry breaking, which is discussed
in Section 4.2.

3.4 PREDICTOR STATISTICS AND GENERALIZATION

Under the theoretical framework, we obtain analytically (Appendix A.3) the mean predictor ⟨fν(G)⟩
and variance ⟨δfν(G)2⟩ for a single test node ν as Eq.54 and Eq.55, respectively. We use this to
calculate the generalization performance, defined by the MSE on t test nodes

ϵg = ⟨1
t

t∑
ν=1

(fν(G)− yν)2⟩Θ = Bias + Variance, (14)

where

Bias =
1

t

t∑
ν=1

(⟨fν(G)⟩Θ − yν)2,Variance =
1

t

t∑
ν=1

⟨δf2
ν ⟩. (15)

Note that our definition of bias and variance is a statistical average over the posterior weight distri-
bution, which is slightly different from the usual definition from GD.

4 THE NARROW WIDTH LIMIT

As we discussed briefly in Section 3.3, the kernel becomes highly renormalized at narrow width.
In fact, in the extreme scenario as α = P/N → ∞, the energetic term in the Hamiltonian com-
pletely dominates, and we would expect that the generalization performance saturates as the order
parameters in the energetic terms become independent of width N . Therefore, just as infinitely wide
networks correspond to the GP limit, we propose that there exists a narrow width limit when the
network width is extremely small compared to the number of training samples.

4.1 ROBUST LEARNING OF BRANCHES: THE EQUIPARTITION CONJECTURE

What happens in the narrow width limit? In the following, we demonstrate that each branch will
learn robustly at narrow width.

The equipartition theorem Consider a student-teacher network setup, where the teacher network
is given by

f∗(G; Θ∗) =
∑
l

f∗
l (G;W ∗

l ) =
∑
l

1√
NtL

∑
i

a∗i,lh
l
i(G;W ∗

l ). (16)

W ∗
ij,l ∼ N (0, σ2

t ) and a∗i,l ∼ N (0, β2
l ), where β2

l is the variance assigned to the readout weight
for the teacher branch l and Nt is the width of the hidden layer. Similarly, the student network is
given by the same architecture, with layer width N and learns from P node labels from the teacher
Yµ = f∗

µ(G,Θ∗) in the Bayesian regression setup of Eq. 4 with prior variance σ2
w. We state that at

T = 0 temperature, in the limit Nt → ∞ and α = P/N → ∞, there exists a solution to the saddle
point equations 12

ul = σ2
t β

2
l /σ

2
w. (17)
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Proof :

At the narrow width limit α → ∞, the saddle equation 12 becomes rl = Trl. Now we calculate

Y ∗
µ Y

∗T
µ =

Nt∑
i,j=1

∑
l1,l2

1

NtL
a∗i,l1a

∗
j,l2h

l1,µ
i (G;Wl)h

l2,ν
j (G;Wl) (18)

by law of large numbers, this quantity concentrates at its expectation value

Y ∗Y ∗T = lim
Nt→∞

Ea∗,W∗(Y Y T ) =
∑
l

β2
l σ

2
t

N0L
(AlXXTAl)|P =

β2
l

L
Kl(σ

2
t ), (19)

where Kl(σ
2)represents the GP input kernel with prior variance σ2. Therefore, rl becomes

rl = Y ∗TK−1ulKl

L
K−1Y ∗ = Tr(K−1ulKl

L
Y ∗Y ∗T ) = Trl((

∑
l

ulKl(σ
2
w)/L)

−1
∑
l

β2
l

Kl

L
)

(20)
Thus there exists a solution that satisfies the saddle point euations

ulσ
2
w = β2

l σ
2
t . (21)

Furthermore, by Eq.13, we show that the student branch norms learn exactly the teacher branch
norms, ie. ⟨a2l ⟩σ2

w = a∗2l β2
l . We call this equipartition theorem, as the mean-squared readout

and the variance (A.4) have to exactly balance each other, which contribute to the energy term in
the Hamiltonian. Although the theorem is proven for the BPB-GCN architecture, we show that the
result is general in Appendix B.1.

4.2 STUDENT-TEACHER EXPERIMENT ON ROBUST BRANCH LEARNING

We demonstrate this robust learning phenomenon and provide a first evidence of the equipartition
conjecture with the student-teacher experiment setup introduced in the previous section. We use the
contextual stochastic block model (CSBM) (Deshpande et al. (2018)) to generate the graph, where
the adjacency matrix is given by a stochastic block model with two blocks, and the node feature is
generated with latent vectors corresponding to the two blocks (Appendix C.1). Both student and
teacher network has L = 2 branches. We calculate the order parameters ul’s for the student network
with the saddle point equations, as well as perform Hamiltonian Monte Carlo (HMC) sampling (Ap-
pendix C.5) from the posterior distribution of the student’s network weights to generate a distribution
of student readout norms squared a2l . We compare the values of the student branch readout norms
to their corresponding teacher branches for the student network with either narrow or wide width.
As shown in Figure 1(b), an extremely narrow student network (N = 4) learns the teacher’s branch
readout norms very robustly, while a much wider network (N = 1024) fails to learn the teachers’
norms and approaches the GP (N → ∞) limit where the two branches are indistinguishable.

Symmetry breaking and convergence of branches: We perform theoretical calculations and
HMC sampling for the student branch squared readout norms as we vary the student network width
N and the prior regularization strength σw. Figure 2(a) shows the statistical average of the student
branch squared readout norms, ie. ⟨∥al∥2⟩σ2

w/N as a function of the network width N , where the
branch norms split as the network width gets smaller, which we call symmetry breaking. The sym-
metry breaking of branch norms from the GP limit to the narrow width limit accompanies the con-
vergence to learning teacher’s norms at narrow width for different σw’s as shown in Figure 2(b)(c),
supporting Eq. 62.

Narrow-to-wide width transition: We can also determine the generalization properties of the
student readout lables at both the branch level fl (Appendix A.3) and overall level f using Eq. 1415.
We perform theoretical calculations and HMC sampling of generalization errors as a function of the
network width N and regularization strength σw, with results shown in Figure 3 and 4. At narrow
width, we expect individual branch fl to learn the corresponding teacher’s branch output f∗

l inde-
pendently, causing the bias to increase with network width. This is observed for both branches, with
a transition from the narrow-width regime to the GP regime. The regularization strength σw controls
the transition window, with larger σw’s leading to sharper transitions. This aligns with our analysis
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Figure 2: Statistical average of student readout norms squared as a function of network width from
theory and HMC sampling, for student-teacher tasks described in Section 4.2. (a): ⟨∥al∥2⟩σ2

w/N as
a function of network width N for a fixed σw. The branch norms break the GP symmetry as it goes
to the narrow width limit. (b)(c): Branch 0 and branch 1 readout norm squared respectively for a
range of σw regularization values. The student branch norms with different regularization strengths
all converge to the same teacher readout norm values at narrow width.

Figure 3: Student network squared bias and variance for individual branches as a function of network
width N and regularization strength σw. The mean and variance of branch l readout fµ

l for node
µ is calculated in A.3 and the bias and variance for branch l can be infered similarly as Eq. 15.
Generalization values are normalized over the average true readout labels.

of the entropic and energetic contributions, where the larger σw amplifies the distinction between
the two terms. In contrast, the variance decreases with network width for small σw’s, resulting in
a trade-off between the contributions of bias and variance to overall generalization performance, as
shown clearly with the graph of network generalization vs. N with σw = 0.5 in Figure 4.

5 BPB-GCN ON CORA

We also perform experiments on the Cora benchmark dataset (McCallum et al. (2000)) by training
the BPB-GCN with binary node regression, for a range of L,N, σw values (Appendix C.2 for de-
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Figure 4: Student network generalization performance as a function of network width N and regu-
larization strength σw. Generalization is normalized over the average true readout labels.

Figure 5: Cora generalization performance vs. network width N and branch number L, for various
regularization strength σw’s. The accuracy is computed by turning the mean predictor from HMC
samples into a class label using its sign.

tails). We observe a similar narrow-to-wide width transition for the bias term. As shown in Figure 5,
the bias increases with network width, transitioning to the GP regime, and we observe the trend ex-
tending to a potential narrow width limit.2 Additionally, it is demonstrated that using more branches
that involve higher-order convolutions improves performance.

Convergence of branch readout norms at narrow width An interesting aspect of the BPB-GCN
network is that the branch readout norms converge at the narrow width for different hyperparameters
σw and L, reflecting the natural branch importance for the task.

2In this case, the narrow width limit is hard to demonstrate as the transition window is below realistic
minimum of network width.
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Figure 6: Cora experiment: statistical average of squared readout norms ⟨∥al∥2⟩σ2
w/N for each

branch l as a function of the network width N , and regularization strength σw. The BPB-GCN has
L = 6 branches.

Figure 7: Kernel Kl =
σ2
w

N0
AlX0X

T
0 A

l for each branch l shown for the first 8 branches on Cora
dataset, sorted by node labels. A is the normalized adjacency matrix of the Cora graph, X0 the node
feature matrix and N0 the node feature dimension. Initialization variance σ2

w = 1 and total node
number n = 2708.

As shown in Figure 6, the BPB-GCN with branches L = 6 robustly learns the readout norms at
narrow width independently of σw’ s, consistent with the student-teacher results. This suggests
that we can recast the data as generated from a ground-truth teacher network even for real-world
datasets. The last branch of the BPB-GCN network has a larger contribution, reflecting the presence
of higher-order convolutions in the Cora dataset. From a kernel perspective, increasing branches
better distinguish the nodes, as shown in Figure 7. This could explain the selective turn-off of
intermediate branches and the increased contribution of the last branch. Our results also indicate
that there is no oversmoothing problem at narrow width: as L increases, individual branches can
still learn robustly.

Furthermore, the first two branches are learned most robustly at narrow width, as shown in Figure
8, where the branch norms converge for the first two branches even for BPB-GCNs with different
L. This suggests that the branch importance, as reflected by the norms learned at narrow width,
indicates the contribution of the bare data and the first convolution layer.

6 DISCUSSION

The findings presented in this paper reveal that BPB-GCNs exhibit unique characteristics in the nar-
row width limit. Unlike the infinite-width limit, where neural networks behave as Gaussian Process
(GP) with task-independent kernels, narrow-width BPB-GCNs undergo significant kernel renormal-
ization. This renormalization leads to breaking of the symmetry between the branches, resulting
in more robust and differentiated learning. Our experiments demonstrate that narrow-width BPB-
GCNs can retain and, in some cases, improve generalization performance compared to their wider
counterparts, particularly in bias-limited scenarios where the regularization effects dominate. There-
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Figure 8: Branch Importance vs. branch number l on Cora. Legends represent different total number
of branches L. The branch importance is defined as the statistical average of branch squared readout
norms ⟨∥al∥2⟩σ2

w/N at the narrow width limit; here we take the empirical branch norm values at
N = 4 and fixed σw = 1.4.

fore, there is a trade-off between the expressive power of GCN Xu et al. (2018); Loukas (2019) and
stability Stogin et al. (2020). Additionally, the observed independence of readout norms from archi-
tectural hyperparameters suggests that narrow-width BPB-GCNs can capture the intrinsic properties
of the data more effectively. These insights suggest potential new strategies for optimizing neural
network architectures in practical applications, challenging the traditional emphasis on increasing
network width for better performance. Although our work is focused on GCN architectures, our
findings are more general for a family of branching networks as shown in Appendix B, and in par-
ticular the Bayesian theory with kernel renormalization is shown to be successful for CNN Aiudi
et al. (2023) as well as transformers Tiberi et al. (2024). Intriguingly, Vyas et al. (2024) finds that
an ensemble of ResNets averaged over random initializations accidentally shows this narrow width
effect, for which our findings provide an explanation.

Limitations: We demonstrate that the bias robustly decreases at narrow width for the branching
networks due to kernel renormalization, which defies the common belief that wider networks are
better (Allen-Zhu et al. (2019); Lee et al. (2018)). However, we do find that for real-world scenar-
ios such as BPB-GCN on Cora, and residual-MLP on Cifar10, the generalization error is usually
variance-limited. In principle, training an ensemble of branching networks averaged over random
initialization helps to reduce the variance significantly such that the narrow-width effect is more
pronounced as in Vyas et al. (2024). Furthermore, since our Bayesian setup corresponds to an en-
semble of fully trained over-parametrized networks in an offline fashion, the learning is still in the
so-called lazy regime with minimal feature learning (Atanasov et al. (2022); Karkada (2024)). We
hypothesize that narrower width serves as a regularizer in this regime which might break down as
the network is trained with online learning and approaches the rich regime (Yang et al. (2022)) with
more feature learning. In that case, it might be possible that even the bias does not decrease at the
narrow width.

7 CONCLUSION

In conclusion, this paper introduces and investigates the concept of narrow width limits in Bayesian
branching networks. Our results indicate that branching networks with significantly narrower widths
can achieve better or competitive performance, contrary to common beliefs. This is attributed to ef-
fective symmetry breaking and kernel renormalization in the narrow-width limit, which leads to
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robust learning. Our theoretical analysis, supported by empirical evidence, establishes a new un-
derstanding of how network architecture influences learning outcomes. This work provides a novel
perspective on the infinite width limit of neural networks and suggests further research directions in
understanding narrow width as a regularization effect.
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A DETAILS ON THEORY OF BPB-GCN

A.1 SUMMARY OF NOTATIONS

Hyperparameters and Dimensions

P Number of training nodes

n Total number of nodes for a graph

N0 Input node feature dimension

N BPB-GCN hidden layer width

L Total number of branches

σw L2 prior regularization strength

T Temperature

α0 =
P

LN0
Network capacity

α =
P

N
Width ratio

Network Architecture and Input/Output

Â ∈ Rn×n Adjacency matrix

A ∈ Rn×n Normalized adjacency matrix by its degree matrix D

X ∈ Rn×N0 Input node feature matrix

G = (X,A) Graph

W (l) ∈ RN0×N Hidden layer weight for branch l

a(l), al ∈ RN Readout vector for branch l

Θl = (Wl, al) Collection of parameters for branch l

hµ
l ∈ RN Activation vector for branch l and node µ

fµ
l ∈ R Readout prediction for branch l and node µ

fµ ∈ R Overall readout prediction for node µ

yµ ∈ R Overall node label for node µ

Hl(Wl) ∈ RP×N Activation feature matrix for branch l

Y ∈ RP Training node labels

F ∈ RP Readout predictions

Statistical Theory
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E(Θ;G, Y ) Energy loss function

Z Partition function

I ∈ RP×P Identity matrix

H(W ) Hamiltonian after integrating out readout al’s

u ∈ RL Order parameters as saddle point solution

ul ∈ R Order parameter for branch l

H(u) Hamiltonian as a function of order parameters

S(u) Entropy as a function of order parameters

E(u) Energy as a function of order parameters

rl Mean squared readout

Trl Variance-related of readout

⟨x⟩ Statistical average of any quantity x over the posterior dis-
tribution

Kernels

K(W ) ∈ RP×P Hidden layer weight dependent overall kernel

Kl Branch l kernel

K ∈ RP×P Overall kernel averaged over W ’s, K =
∑

l
ulKl

L

kνl ∈ RP×1 Branch l kernel column for the P training nodes against test node ν

kν ∈ RP×1 Overall kernel column for the P training nodes against test node ν

|P Kernel restricted to the P training nodes against P training nodes

|(P,ν) Kernel restricted to P training nodes against the test node ν

|(ν,ν) Kernel restricted to the test node ν against test node ν

Student-teacher Setup

Y ∗
l ∈ RP Teacher network readout prediction for branch l for P

nodes

Y ∗ ∈ RP Teacher network overall readout for P nodes

W ∗
l ∈ RN0×N Teacher hidden layer weight for branch l

a∗l ∈ RN Teacher readout vector for branch l

β2
l Teacher readout variance

σ2
t Teacher hidden layer weight variance

A.2 KERNEL RENORMALIZATION

Following similar derivations as the first kernel renormalization work Li & Sompolinsky (2021), we
will integrate out the weights in the partition function Z =

∫
dθ exp(−E(Θ)/T ), from the readout

layer weights al’s to the hidden layer weights Wl’s and arrive at an effective Hamiltonian shown in
the main text.
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First, we linearize the energy in terms of al’s and transform the integral by introducing the auxiliary
variables tµ, µ = 1, . . . , P .

Z =

∫
dΘ

∫ P∏
µ=1

dtµ exp

[
− 1

2σ2
w

Θ⊤Θ−
P∑

µ=1

itµ

(
1√
LN

N∑
i=1

L−1∑
l=0

a
(l)
i hµ

i (G)− Y µ

)
− T

2
t⊤t

]
(22)

Now we can integrate out al’s as they are linearized and the partition function becomes

Z =

∫
DWe−H(W ), (23)

with effective Hamiltonian

H(W ) =
1

2σ2
w

L−1∑
l=0

TrWT
l Wl +

1

2
Y T (K(W ) + TI)−1Y +

1

2
log det(K(W ) + TI), (24)

where

K(W ) =
1

L

∑
l

σ2
w

N0
(Hl(Wl)Hl(Wl)

T )|P (25)

is the P × P kernel matrix dependent on the observed P nodes with node features Hl = AlXWl

and denote |P as the matrix restricting to the elements generated by the training nodes.

Now we perform the integration on Wl’s and introduce the auxiliary variables tµ’s again using the
Gaussian trick and get

Z =

∫ L−1∏
l=0

dWl

∫
dt exp

[
−1

2
tT (K(W ) + TI)t− 1

2σ2
w

∑
l

Tr(WT
l Wl) + itTY

]
(26)

=

∫
dt exp

[
itTY +G(t)− T

2
tT t

]
, (27)

where G(t) is in terms of the kernel averaged over the Gaussian measure

G(t) = log

〈
exp

(
− 1

2N
tTK(W )t

)〉
W

(28)

Writing out the integral explicitly, we have

G(t) = log

∫ L−1∏
l=0

DWl exp

− 1

2N

∑
µ,ν

tµtν
∑
j,l

σ2
w

N0L
(
∑
µ′,i

Al
µ,µ′W l

ijx
µ′

i )(
∑
ν′,i′

Al
ν,ν′W l

i′jx
ν′

i′ ))


(29)

where DWl is the Gaussian measure

DWl =
∏
i,j

e−W 2
l,i,j/2σ

2
wdWl,i,j (30)

By recognizing that this is just a product of the same N integrals on N0 dimensional weight vector
W⃗ j

l for a fixed j neuron, we get

G(t) = N log

∫ L−1∏
l=0

dW⃗ j
l exp

∑
l,i,i′

(− 1

2N

∑
µ,ν

tµtν
σ2
w

N0L
ξµl,iξ

ν
l,i′ +

1

2σ2
w

δi,i′)W
j
i,lW

j
i′,l

 (31)

where ξµl,i =
∑

µ′ Al
µ,µ′x

µ′

i is the lth branch convolution on node µ. Since the network is linear, we
are able to perform the Gaussian integration exactly and get

G(t) = −N

2

∑
l

log(det(Ii,i′ +
σ2
w

N0L
tµξµi,lξ

ν
i′,lt

ν)) (32)
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where the determinant is over the i, i′ matrix, and thus performing the determinant we arrive at

G(t) = −N

2

∑
l

log(1 + tT
Kl

L
t)), (33)

where Kl
µ,ν =

σ2
w

N

∑
i t

µξµi,lξ
ν
i,l is the Gaussian process kernel for branch l.

Next, we insert L delta functions
∫ ∏

l dhlδ(hl − tTKlt) to enforce the identity G(t) =∑
l −

N
2 log(1 + hl) and use the Fourier representation of it with auxiliary variables ul to get:

Z =

∫ L−1∏
l=0

dhlduldt exp
(
itTY −

∑
l

N

2
log(1 + hl) +

∑
l

N

2σ2
w

ulhl −
1

2
tT
(∑

l

1

L
ulKl + TI

)
t
)

=

∫ L−1∏
l=0

dhldul exp
(
−
∑
l

N

2
log(1 + hl) +

∑
l

N

2σ2
w

ulhl
1

2
Y T
(∑

l

1

L
ulKl + TI

)−1

Y
)
(34)

where

Kl =
σ2
w

N0
[AlXXTAlT ]|P (35)

is the input kernel for branch l. Now as N → ∞ and α = P
N fixed, we can perform the saddle point

approximation and get the saddle points for hl as

1 + hl =
σ2
w

ul
(36)

Plugging this back to the equation, we get

Z =

∫
Πl dule

−Heff (u), (37)

with the effective Hamiltonian
Heff (u) = S(u) + E(u), (38)

where we call S(u) the entropic term

S(u) = −
∑
l

N

2
log ul +

∑
l

N

2σ2
w

ul (39)

and E(u) the energetic term

E(u) =
1

2
Y T (

∑
l

1

L
ulKl + TI)−1Y +

1

2
log det(

∑
l

1

L
ulKl + TI) (40)

Therefore, after integrating out Wl, the effective kernel is given by

K =
∑
l

1

L
ulKl, (41)

and the saddle point equations for ul’s are determined by

N(1− ul

σ2
w

) = −Y T (K + TI)−1ulKl

L
(K + TI)−1Y +Tr[K−1ulKl

L
], (42)

where we call
rl = Y T (K + TI)−1ulKl

L
(K + TI)−1Y (43)

and
Trl = Tr[K−1ulKl

L
] (44)

As we will show later, these represent the mean and variance of the readout norm squared respec-
tively. In the T = 0 case, the saddle point equation becomes

N(1− ul

σ2
w

) = −Y TK−1ulKl

L
K−1Y +Tr[K−1ulKl

L
] (45)
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A.3 PREDICTOR STATISTICS AND GENERALIZATION

We can get the predictor statistics of each branch readout yνl (G) on a new test node ν by considering
the generating function:

Z(η1, . . . , ηL) =

∫
DΘexp

{
−β

2

∑
µ

(fµ(G; Θ)− yµ)2

+
∑
l

iηl
1√
NL

∑
i

a
(l)
i h

(l),ν
i (G,Wl)−

T

2σ2
w

ΘTΘ

} (46)

Therefore, by taking the derivative with respect to each ηl, we arrive at the statistics for yl(x) as:

⟨fν
l (G)⟩ = ∂iηl

logZ
∣∣
η⃗=0

(47)

⟨δf2
l,ν(G)⟩ = ∂2

iηl
logZ

∣∣
η⃗=0

(48)

After integrating out the weights Θ layer by layer, we have:

Z(η1, . . . , ηL) =

∫
Πldul exp

{∑
l

(
N

2
log ul −

N

2σ2
w

ul

)
+

1

2
(iY +

∑
l

1

L
ηlulk

ν
l )

T (
∑
l

1

L
ulKl + TI)−1(iY +

∑
l

ηl
1

L
ulk

ν
l

− 1

2
log det(

∑
l

1

L
ulKl + TI)− 1

2

∑
l

η2l
1

L
Kν,ν

l

}
. (49)

Here

kνl =
σ2
w

N0
[AlXXTAl]|(P,ν) (50)

is the P × 1 column kernel matrix for test node ν and all training nodes, and

Kν,ν
l =

σ2
w

N0
[AlXXTAl]|(ν,ν) (51)

is the single matrix element for the test node. Therefore, eventually, we have:

⟨fν
l ⟩ =

ulk
T
l,ν

L
(K + TI)−1Y (52)

and

⟨δf2
l,ν⟩ =

ulK
ν,ν
l

L
−

ulk
T
l,ν

L
(K + TI)−1ulkl,ν

L
(53)

The predictor statistics of the overall readout f =
∑

l fl is given by:

⟨fν(G)⟩ =
∑
l

ulk
T
l,ν

L
(K + TI)−1Y = kTν (K + TI)−1Y (54)

⟨δf(G)2ν⟩ =
∑
l

ulK
ν,ν
l −

∑
l,l′

ulk
T
l,ν(K + TI)−1ul′kl′,ν = Kν,ν − kTν (K + TI)−1kν (55)

18



Published as a conference paper at ICLR 2025

A.4 STATISTICS OF BRANCH READOUT NORMS

From the partition function Eq.22, we can relate the mean of readout weights al to the auxiliary
variable t by

⟨al⟩W = −i
σ2
w√
N

ΦT
l ⟨t⟩ = − σ2

w√
NL

ΦT
l (K + TI)−1Y, (56)

where Φl is the node feature matrix for the hidden layer nodes. We have

⟨aTl ⟩⟨al⟩ = σ2
wY

T (K + TI)−1ulKl

L
(K + TI)−1Y = rlσ

2
w (57)

We can calculate the second-order statistics of al: the variance is

⟨δaTl δal⟩ = σ2
wTr(I +

σ2
wβ

NL
ΦlΦ

T
l )

−1 = σ2
w(N − Tr(K + TI)−1ulKl

L
) = σ2

w(N − Trl) (58)

Therefore,
⟨a2l ⟩ = ⟨δaTl δal⟩+ ⟨δaTl δal⟩ = Nσ2

w + σ2
wrl + 1− σ2

wTrl = Nul (59)

Therefore, we have proved the main text claim that the order parameter ul’s are really the mean
squared readout norms of the branches.

B THE NARROW WIDTH LIMIT FOR GENERAL ARCHITECTURES

In this section, we demonstrate that our results on the narrow-width limit can be generalized to any
network with branching structures, supported by both theoretical and empirical evidence.

Consider a general branching network, with L independent branches each with hidden layer weight
Wl and readout weight al, ie.

f(x; Θ) =

L−1∑
l=0

1√
L
fl(x; Θl) =

∑
l

1√
NL

alϕl(x;Wl), (60)

where ϕl(x;Wl) represents any feed-forward function on the dataset X , ie. in matrix form the
branch l readout is Fl = ϕl(

1√
N0

XWl). As an example, ϕl(XWl) = 1√
N0

AlXWl represents l

convolutions on the node features in the BPB-GCN architecture. ϕl(XWl) =
1√
N0

AlXWl can also
represent an attention head l for attention-networks with frozen attention Al, as well as a kernel
convolution for patch l in the CNN architecture. In the residual-MLP example below, ϕl represents
either the linear or the ReLu branch.

With the general branching network, we can similarly consider the posterior distribution in the
Bayesian setup as Eq. 4 with squared error as the likelihood term and L2 regularization as the
prior term. Provided the network is linear, the partition function Eq.5 can be integrated in a similar
fashion and arrive at the saddle point equation

N(1− ul

σ2
w

) = −Y T (K + TI)−1ulKl

L
(K + TI)−1Y +Tr[K−1ulKl

L
], (61)

with K =
∑

l ulKl/L and Kl corresponding to the NNGP kernel (Lee et al. (2018)). In fact, even
with non-linear activations, we conjecture that the kernel renormalization still holds with the order
parameters ul that satisfies the saddle point equation, and the posterior weight statistics calculated
with the renormalized kernel agrees with the experiments as empirically shown in the residual-MLP
section.

B.1 THE GENERALIZED EQUIPARTITION THEOREM

With the general branching network, we show the narrow width limit result for the student-teacher
setup. Specifically we prove the following
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The generalized equipartition theorem : For the general branching network Eq. 60, where the
teacher network width is Nt with W ∗

l,ij ∼ N (0, σ2
t ) and a∗i,l ∼ N (0, β2

l ) and the student network
with layer width N in the Bayesian regression setup of Eq. 4, at T = 0 temperature, in the limit
Nt → ∞ and α = P/N → ∞, there exists a solution to the saddle point equations 12

ul = σ2
t β

2
l /σ

2
w. (62)

Proof : The proof is exactly the same as before, except for changing Kl as a general NNGP kernel
that corresponds to the feature map ϕl for branch l.

B.2 RESIDUAL-MLP

In the following, we show a simple 2-layer residual network as an example for the general branching
networks, with a linear branch ϕ0(x) =

1√
N0

W0x and a ReLU branch ϕ1(x) =
1√
N0

ReLu(W1x).
Therefore, the overall kernel is K = 1

2 (u0K0 + u1K1), with the NNGP kernels Kl given by

K0 = Klinear =
σ2

N0
X0X

T
0 (63)

and the relu kernel (Cho & Saul (2009))

K1(x, x
′) = Krelu(x, x

′) =
1

2π

√
K0(x, x)K0(x′, x′)J(θ), (64)

where
J(θ) = sin(θ) + (π − θ) cos(θ) (65)

and

θ = cos−1(
K0(x, x

′)√
K0(x, x)K0(x′, x′)

) (66)

For the student-teacher task (details in Appendix C.3 ), we observe the same narrow-width limit
phenomenon as in the BPB-GCN case, where each student branch robustly learns the teacher’s
corresponding branch but approaches the same GP limit as the network width gets larger.

Figure 9: Statistical average of student readout norms squared as a function of network width from
theory and HMC sampling, for the residual-MLP student-teacher task, with fixed σw = 1.

As shown in Figure 9 and 10, there is a symmetry breaking of branches from the GP-limit to the
narrow-width limit, with the ReLu branch and the linear branch learning their corresponding teacher
branch norms as N decreases. Furthermore, narrower network performs better in terms of the bias
and larger σw corresponds to a shorter transition window from the GP-limit to the narrow-width
limit, similar to the BPB-GCN case. As shown in Figure 11 and 12, the trade-off between the bias
and variance contribution is more pronounced for small σw’s, usually with an optimal width for the
generalization error. These results support our generalized equipartition theorem and demonstrates
that the narrow width limit is a general phenomenon for branching networks.
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(a) (b)

Figure 10: ⟨∥al∥2⟩σ2
w/N as a function of network width N for a range of σw values. (a) Linear

branch; (b) Relu branch. The student branch norms with different regularization strengths all con-
verge to the same teacher readout norm values at narrow width.

(a) (b)

Figure 11: Student residual-MLP network generalization performance as a function of network
width N and regularization strength σw. (a) Bias; (b) Variance.

B.3 RESIDUAL-MLP ON CIFAR10

We also perform theory and experiments on the Cifar10 (Krizhevsky et al. (2009)) dataset for a
binary classification task (translated to Bayesian regression), with details elaborated in Appendix
C.4. Similarly, there exists symmetry breaking of branches and the branch norms converge at the
narrow width for different σw’s, as shown in Figure 13,14. Interestingly, the ReLu branch completely
dominates at the narrow width, which means the ReLu branch is much more important for the
residual-MLP when the training sample size is much bigger than the network width.

Furthermore, we also show in Figure 15,16(a) that the dominance of ReLu branch at narrow width
drives the bias to decrease, albeit overall genralization is dominated by the variance. Using the
average of the label predictors over different experimental samples, we show that the test accuracy
indeed decreases with larger network width N in Figure 16(b).
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Figure 12: Overall generalization as a sum of bias and variance in Figure 11.

Figure 13: Statistical average of student readout norms squared as a function of network width from
theory and HMC sampling, for the Cifar10 dataset with residual-MLP, with fixed σw = 1.

C EXPERIMENTAL DETAILS

C.1 STUDENT-TEACHER CSBM

For the student-teacher task, we use the contextual stochastic block model introduced by Deshpande
et al. (2018) to generate the graph G. The adjacency matrix is given by

Aij =


1 with probability p = cin/n, if i, j ≤ n/2

1 with probability p = cin/n, if i, j ≥ n/2

1 with probability q = cout/n, otherwise
(67)

where
cin,out = d±

√
dλ (68)

d is the average degree and λ the homophily factor.

The feature vector x⃗µ for a particular node µ is given by

x⃗µ =

√
µ

n
yµu⃗+ ξ⃗µ, (69)

where
u⃗ ∼ N (0, IN0

), ξ⃗µ ∼ N (0, IN0
) (70)

In the experiment, we use N0 = 950,d = 20,λ = 4 and µ = 4. The teacher network parameters
are variance σ2

t = 1, width Nt = 1024, branch norms variance β2
0 = 0.4, β2

1 = 2 for individual
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(a) (b)

Figure 14: Cifar10 ⟨∥al∥2⟩σ2
w/N as a function of network width N for a range of σw values. (a)

Linear branch; (b) Relu branch. The student branch norms with different regularization strengths all
converge to the same teacher readout norm values at narrow width.

(a) (b)

Figure 15: Residual-MLP generalization performance on Cifar10 as a function of network width N
and regularization strength σw. (a) Bias; (b) Variance.

element of the readout vector al. We used total number of nodes n = 2600 with train ratio 0.65
for semi-supervised node regression. Temperature T = 0.0005σ2

w for each σw value in σw =
{0.5, 0.8, 1.0, 1.2}.

C.2 CORA

For the Cora dataset, we use a random split of the data (total nodes n =2708) into 21% as training
set and 79% as test set. We group the classes (1, 2, 4) into one group and the rest for the other group
for binary node regression, with labels as ±1’s. The Bayesian theory and HMC sampling follows
the same design as in the student-teacher setup. We use temperature T = 0.01 for both theory
and sampling as the sampling becomes more difficult for smaller temperature. This explains the
discrepancy of the GP limit bias for different σw values in σw = {1.0, 1.2, 1.4} .

C.3 STUDENT-TEACHER RESIDUAL-MLP

For the student-teacher task of the residual MLP, we use the data matrix X generated from i.i.d
unit Gaussian distribution, with input dimension N0 = 1024, training sample size P = 1280 and
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(a) (b)

Figure 16: (a) Overall generalization error for residual-MLP on Cifar10. (b) Test accuracy on Ci-
far10, calculated using the class label by averaging the predictions from HMC samples.

test sample size Ptest = 320. The teacher network weights are also generated with i.i.d Gaussian,
with the hidden layer width Nt = 1024, hidden layer weight variance σ2

w = 1, and readout branch
variance β2

l = (2.4, 0.4) for the two branches. The temperature is set as T = 0.001σ2
w for a range

of σw values in σw = {0.6, 0.8, 1.0, 1.2, 1.5}.

C.4 CIFAR10

For the Cifar10 dataset, we filter the category of airplane and that of cat for the regression task.
We use a random split of training sample size P = 1000 and test sample size Ptest = 1000. The
input data is only from the red channel with input dimension N0 = 1024. The temperature is set
at T = 0.005σ2

w for a range of σw values in σw = {1.0, 1.2, 1.5}. Within the compute budget, we
observe significant sample correlations, which has a large impact on measuring the bias term. This
is why we observe relatively large deviation of the bias results from theory in Figure 15(a).

C.5 HAMILTONIAN MONTE CARLO

The sampling experiments in the paper are all done with Hamiltonian Monte Carlo (Betancourt
(2017); Neal (2012); Chandra et al. (2021)) simulations, a popular method for sampling a proba-
bility distribution. HMC has faster convergence to the posterior distribution compared to Langevin
dynamics. We used Numpyrho to set up chains and run the simulations on the GPU cluster. All
experiments are within 20 GPU hours budget on Nvidia A100-40G. Due to memory constraint, we
only sampled up to N = 1024 hidden layer width for the student-teacher CSBM experiment and
N = 64 for the Cora experiment. Since we mainly aim to demonstrate the narrow width effect in
this paper, this suffices the purpose.

24


	Introduction
	Related works
	BPB-GCN
	Parallel branching GCN architecture
	Bayesian node regression
	Kernel renormalization and order parameters
	Predictor statistics and generalization

	The narrow width limit
	Robust learning of branches: the equipartition conjecture
	Student-Teacher experiment on robust branch learning

	BPB-GCN on Cora
	Discussion
	Conclusion
	Details on Theory of BPB-GCN
	Summary of Notations
	Kernel renormalization
	Predictor statistics and generalization
	Statistics of branch readout norms

	The narrow width limit for general architectures 
	The generalized equipartition theorem
	Residual-mlp
	Residual-mlp on Cifar10

	Experimental details
	Student-teacher CSBM
	Cora
	student-teacher residual-mlp
	Cifar10
	Hamiltonian Monte Carlo


