
A Algorithm436

Algorithm 1: Policy Gradient Method using PFPN
Initialize the neural network parameter θ and learning rate α;
initialize particle parameters φi to uniformly distribute particles on each action dimension;
initialize the threshold ε to detect dead particles;
initialize the value of interval n to perform resampling.
while training does not converge do

for each environment step do
// Record the weight while sampling.
at ∼ πθ,P(·|st);Wi ←Wi ∪ {wi(st|θ)}

end
for each training step do

// Update parameters using SGD method.
φi ← φi + α∇J(φi) // Equation 6
θ ← θ + α∇J(θ) // Equation 7

end
for every n environment steps do

// Detect dead particles and set up target ones.
for each particle i do

if maxwi∈Wi wi < ε then
τi ∼ P (·|E [wk|wk ∈ Wk] , k = 1, 2, · · ·)
T ← T ∪ {τi}; Dτi ← Dτi ∪ {i}

end
end
// Resampling.
for each target particle τ ∈ T do

for each dead particle i ∈ Dτ do
// Duplicate particles.
φi ← φτ with µi ← µτ + εi
// Duplicate parameters of the last layer in the policy network.
ωi ← ωτ ; bi ← bτ − log(|Dτ |+ 1)

end
bτ ← bτ − log(|Dτ |+ 1); Dτ ← ∅

end
T ← ∅;Wi ← ∅

end
end

B Policy Network Logits Correction during Resampling437

Theorem. Let Dτ be a set of dead particles sharing the same target particle τ . Let also the logits438

for the weight of each particle k be generated by a fully-connected layer with parameters ωk for the439

weight and bk for the bias. The policy πPθ (at|st) is guaranteed to remain unchanged after resampling440

via duplicating φi ← φτ ,∀i ∈ Dτ , if the weight and bias used to generate the unnormalized logits of441

the target particle are shared with those of the dead one as follows:442

ωi ← ωτ ; bi, bτ ← bτ − log (|Dτ |+ 1) . (11)

Proof. The weight for the i-th particle is achieved by softmax operation, which is applied to the443

unnormalized logits Li, which is the direct output of the policy network:444

wi(st) = SOFTMAX(Li(st)) =
eLi(st)∑
k e

Lk(st)
. (12)

Resampling via duplicating makes dead particles become identical to their target particle. Namely,445

particles in Dτ ∪ {τ} will share the same weights as well as the same value of logits, say L′τ , after446

resampling. To ensure the policy identical before and after sampling, the following equation must be447

satisfied448 ∑
k

eLk(st) =
∑
Dτ∪{τ}

eL
′
τ (st) +

∑
k 6∈Dτ∪{τ}

eLk(st) (13)

13

where Lk is the unnormalized logits for the k-th particle such that the weights for all particles who449

are not in Dτ ∪ {τ} unchanged, while particles in Dτ ∪ {τ} share the same weights.450

A target particle will not be tagged as dead at all, i.e. τ 6∈ Dk for any dead particle set Dk, since a451

target particle is drawn according to the particles’ weights and since dead particles are defined as the452

ones having too small or zero weight to be chosen. Hence, Equation 13 can be rewritten as453 ∑
i∈Dτ

eLi(st) + eLτ (st) = (|Dτ |+ 1)eL
′
τ (st), (14)

Given that eLi(st) ≈ 0 for any dead particle i ∈ Dτ and that the number of particles is limited, it454

implies that455

eLτ ≈ (|Dτ |+ 1)eL
′
τ (st). (15)

Taking the logarithm of both sides of the equation leads to that for all particles in Dτ ∪ {τ}, their456

new logits after resampling should satisfy457

L′τ (st) ≈ Lτ (st)− log(|Dτ |+ 1). (16)

Assuming the input of the full-connected layer who generates Li is x(st), i.e. Li(st) = ωix(st)+ bi,458

we have459

ω′ix(st) + b′i = ωτx(st) + bτ − log (|Dτ |+ 1) . (17)

Then, Theorem can be reached.460

If we perform unweighted resampling, it is possible to pick a dead particle as the target particle for461

some particles. In that case462

L′τ (st) ≈ Lτ (st)− log(|Dτ |+ (1−
∑
k

δ(τ,Dk))), (18)

where L′τ (st) is the new logits shared by particles in Dτ and δ(τ,Dk) is the Kronecker delta function463

464

δ(τ,Dk) =
{

1 if τ ∈ Dk
0 otherwise (19)

that satisfies
∑
k δ(τ,Dk) ≤ 1. Then, for the particle τ , its new logits can be defined as465

L′′τ (st) ≈ (1−
∑
k

δ(τ,Dk))L′τ (st) +
∑
k

δ(τ,Dk)Lτ . (20)

Consequently, the target particle τ may or may not share the same logits with those in Dτ , depending466

on if it is tagged as dead or not.467

C PFPN with Off-Policy Policy Gradient Algorithms468

To enable PFPN applicable in state-action value based off-policy algorithms, we propose a reparam-469

terization trick in this section such that a sampled action aPθ (st) can be differentiable to the policy470

network parameter θ.471

C.1 Reparameterization Trick472

Let x(st|θ) ∼ CONCRETE({wi(st|θ); i = 1, 2, · · · }, λ) is a sampling result of a relaxed version of473

the one-hot categorical distribution supported by the probability of {wi(st|θ); i = 1, 2, · · · }, where474

x(st|θ) = {xi(st|θ); i = 1, 2, · · · } is reparametrizable and λ is picked to be 1 in our implementation.475

We apply the Gumbel-softmax trick [Jang et al., 2017] to get a sampled action value as476

a′(st) = STOP

(∑
i

aiδ(i, argmaxx(st|θ))

)
, (21)

14

where ai is the sample drawn from the distribution represented by the particle i with parameter φi,477

STOP(·) is a “gradient stop” operation, and δ(·, ·) denotes the Kronecker delta function. Then, the478

reparameterized sampling result can be written as follows:479

aPθ (st) =
∑
i

(ai − a′(st))mi + a′(st)δ(i, argmaxx) ≡ a′(st), (22)

wheremi := xi(st|θ)+STOP(δ(i, argmaxx(st|θ))−xi(st|θ)) ≡ δ(i, argmaxx(st|θ)) composing480

a one-hot vector that approximates the samples drawn from the corresponding categorical distribution.481

Since xi(st|θ) drawn from the concrete distribution is differentiable to the parameter θ, the gradient482

of the reparameterized action sample can be obtained by483

∇θaPθ (st) =
∑
i(ai − a′(st))∇θxi(st|θ);

∇φiaPθ = δ(i, argmaxx(st|θ))∇φiai.
(23)

Through these equations, both the policy network parameter θ and the particle parameters φi can be484

updated by backpropagation through the sampled action a′(st).485

C.2 Policy Representation with Action Bounds486

In off-policy algorithms, like DDPG and SAC, an invertible squashing function, typically the hyper-487

bolic tangent function, will be applied to enforce action bounds on samples drawn from Gaussian488

distributions, e.g. in SAC, the action for the k-th dimension at the time step t is obtained by489

at,k(ε, st) = tanhut,k (24)

where ut,k ∼ N (µθ(st), σ
2
θ(st)), µθ(st) and σ2

θ(st) are parameters generated by the policy network490

with parameter θ, and ut,k can be written ut,k = µθ(st) + ξt,kσ
2
θ(st) given a noise variable ξt,k ∼491

N (0, 1) such that at,k is reparameterizable. In our SAC implementation, we use Gaussian noises to492

generate action samples, i.e. ui,k ∼ N (µi,k, ξ
2
i,k) where µi,k and ξi,k are the parameters for the i-th493

particle at the k-th action dimension.494

Let at = {tanhut,k}where ut,k, drawn from the distribution represented by a particle with parameter495

φt,k, is a random variable sampled to support the action on the k-th dimension. Then, the probability496

density function of PFPN represented by Equation 3 can be rewritten as497

πPθ (at|st) =
∏
k

∑
i

wi,k(st|θ)pi,k(ut,k|φi,k)/(1− tanh2 ut,k), (25)

and the log-probability function becomes498

log πPθ (at|st) =
∑
k

log

[∑
i

wi,k(st|θ)pi,k(ut,k|φi,k)− 2 (log 2− ut,k − softplus(−2ut,k))

]
.

(26)

D Hyperparameters499

Table 2: Default hyperparameters in PFPN baselines.

Parameter Value

learning rate 1 · 10−4

resampling interval 1200 steps
dead particle detection threshold (ε) 0.0015
discount factor (γ) 0.95
clip range (DPPO) 0.2
GAE discount factor (DPPO, A3C, λ) 0.95
truncation level (IMPALA, c̄, ρ̄) 1.0
entropy loss coefficient (A3C, IMPALA) 0.00025
reply buffer size (SAC) 106

St

softmax a1

N(μ1,k, ξ1,k)2

softmax
aN

N(μN,k, ξN,k)2

at

Figure 9: PFPN architecture with a N -
dimension action space in our experiment.
⊕ denotes the concatenation operator.

15

We set the resampling interval as 1200 environment steps, which are 20 environment episodes500

of simulation. Since it is infeasible to analytically evaluate the differential entropy of a mixture501

distribution without approximation, we use the entropy of the categorical distribution for A3C502

and IMPALA benchmarks, which employ differential entropy during policy optimization. In our503

implementation, policy and value networks have a similar structure of two hidden fully-connected504

(FC) layers with neurons of 1024 and 512 respectively, as shown in Figure 9. The input state is505

normalized by moving average that is dynamically updated during training. By default, we place506

35 particles on each action dimension and use the set of particles as a mixture of Gaussians with507

state-dependent weights but state-independent components.508

E Additional Results509

E.1 Time Complexity510

0 2 4 6

Running Time [hour]

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

Walk

0 2 4 6 8

Running Time [hour]

0.0

0.2

0.4

0.6

0.8

1.0

Punch

0 2 4 6 8

Running Time [hour]

0.0

0.2

0.4

0.6

0.8

1.0

Kick

0 5 10

Running Time [hour]

0.0

0.2

0.4

0.6

0.8

1.0

Dance

PFPN Gaussian DISCRETE GMM

Figure 10: Learning performance as a function of the actual wall clock time using DPPO.

All policies were trained on a machine with Intel 6148G CPU and Nvidia V100 GPU. Training511

stops when a fixed number of samples is collected as reported in Figure 2. PFPN has a good time512

consumption performance compared to other baselines. Though the action sampling and particles513

resampling processes would take extra time, PFPN performs better because its fast convergence514

avoids wasting time on environment reset when early termination occurs.515

E.2 Baselines516

0.0 0.5 1.0 1.5

×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

A3C

Walk

0.0 0.5 1.0 1.5 2.0

×107

0.0

0.2

0.4

0.6

0.8

1.0
A3C

Punch

0.0 0.5 1.0 1.5 2.0

×107

0.0

0.2

0.4

0.6

0.8

1.0
A3C

Kick

0 1 2 3

×107

0.0

0.2

0.4

0.6

0.8

1.0
A3C

Dance

0.0 0.5 1.0 1.5

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

IMPALA

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0
IMPALA

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0
IMPALA

0 1 2 3

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0
IMPALA

PFPN Gaussian DISCRETE

Figure 11: Additional baseline results using A3C and IMPALA.

16

F Variance of Policy Gradient in PFPN Configuration517

Since each action dimension is independent to others, without loss of generality, we here consider the518

action at with only one dimension along which n particles are distributed and the particle i to represent519

a Gaussian distribution N (µi, σ
2
i). In order to make it easy for analysis, we set up the following520

assumptions: the reward estimation is constant, i.e. At ≡ A; logits to support the weights of particles521

are initialized equally, i.e. wi(st|θ) ≡ 1
n for all particles i and ∇θw1(st|θ) = · · · = ∇θwn(st|θ);522

particles are initialized to equally cover the whole action space, i.e. µi = i−n
n , σ2

i ≈ 1
n2 where523

i = 1, · · · , n.524

From Equation 7, the variance of the policy gradient under such assumptions is525

V[∇θJ(θ)|at] =
∫ At

∑
i pi(at|µt,σt)∇θwi(st|θ)∑
i wi(st|θ)pi(at|µt,σt)

a2tdat

∝
∑
i∇θwi(st|θ)

∫
a2tpi(at|µt, σt)dat

∝∼
∑
i(µ

2
i + σ2

i)∇θwi(st|θ)

∝
∑
i
(i−n)2+1

n2

= n
3 + 7

6n −
1
2

∼ 1− 3
2n +O(1

n2).

(27)

Given V[∇θJ(θ)|at] = 0 when n = 1, from Equation 27, for any n > 0, the variance of policy526

gradient V[∇J(θ)|at] will increase with n. Though the assumptions usually are hard to meet perfectly527

in practice, this still gives us an insight that employing a large number of particles may result in more528

challenge to optimization.529

This conclusion is consistent with that in the case of uniform discretization [Tang and Agrawal, 2019]530

where the variance of policy gradient is shown to satisfy531

V[∇θJ(θ)|at]DISCRETE ∼ 1− 1

n
. (28)

That is to say, in either PFPN or uniform discretization scheme, we cannot simply improve the532

control performance of the police by employing more atomic actions, i.e. by increasing the number533

of particles or using more bins in the uniform discretization scheme, since the gradient variance534

increases as the discretization resolution increases. However, PFPN has a slower increase rate, which535

implies that it might support more atomic actions before performance drops due to the difficulty in536

optimization. Additionally, compared to the fixed, uniform discretization scheme, atomic actions537

represented by particles in PFPN are movable and their distribution can be optimized. This means538

that PFPN has the potential to provide better discretization scheme using fewer atomic actions to539

meet the fine control demand and thus be more friendly to optimization using policy gradient.540

G Ablation Study541

Resampling Strategy. We consider two resampling strategies as comparison: (1) the weighted542

resampling strategy described in Section 3.3 that draws targets for dead particles according to the543

weights of the remaining, alive ones, and (2) the unweighted resampling strategy that picks a τi544

randomly from all alive particles. In Figure 12a, we also perform comparison to PFPN without any545

resampling. The weighted resampling strategy The unweighted resampling strategy draws targets546

uniformly from alive particles. It can be seen that both weighted and unweighted resampling could547

help improve the training performance significantly. However, unweighted resampling could lead to548

high variance by introducing too much uncertainty, since it could reactivate dead particles and place549

them in suboptimal locations with higher probability, compared to the weighted resampling. After550

resampling, even though the particles would be optimized or resampled once more if they are placed551

in bad locations, this could make the training process converge slower, as shown in the figure.552

Number of Particles. Since the particle configuration in PFPN is state-independent, it needs a553

sufficient number of particles to meet the fine control demand. Intuitively, employing more particles554

will increase the resolution of the action space, and thus increase the control capacity and make555

17

0.0 0.5 1.0 1.5

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

Walk

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Punch

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Kick

0 1 2 3

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Dance

Weighted Resampling (Default) Unweighted Resampling w/o Resampling

(a) Learning performance of PFPN with 35 particles on each action dimension but different resampling strategies.

0.0 0.5 1.0 1.5

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Im
it

a
ti

o
n

R
e
w

a
rd

s

Walk

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Punch

0.0 0.5 1.0 1.5 2.0

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Kick

0 1 2 3

of Samples×107

0.0

0.2

0.4

0.6

0.8

1.0

Dance

PFPN-35 (Default) PFPN-5 PFPN-10 PFPN-50 PFPN-100

(b) Comparison of PFPN using 35 particles per action dimension (PFPN-35) to that using 5, 10, 50 and 100
particles.

Figure 12: Sensitivity of PFPN to different resampling strategies and the number of particles.

fine control more possible. However, in Appendix F, we prove that due to the variance of policy556

gradient increasing as the number of particles increases, the more particles employed, the harder the557

optimization would be. Therefore, it may negatively influence the performance to employ too many558

particles. This conclusion is consistent with the results shown in Figure 12b. As it can be seen, PFPN559

with 5 and 10 particles per action dimension performs badly; though using 50 or 100 particles per560

action dimension slows down the convergence speed a little bit, our approach is not sensitive in terms561

of the final learning performance when a relative large number of particles are employed.562

18

	Algorithm
	Policy Network Logits Correction during Resampling
	PFPN with Off-Policy Policy Gradient Algorithms
	Reparameterization Trick
	Policy Representation with Action Bounds

	Hyperparameters
	Additional Results
	Time Complexity
	Baselines

	Variance of Policy Gradient in PFPN Configuration
	Ablation Study

