
10 Appendix

10.1 Pseudo-code for DQN Pro

Below, we present the pseudo-code for DQN Pro. Notice that the difference between DQN and DQN
Pro is minimal (highlighted in gray).

Algorithm 1 DQN with Proximal Iteration (DQN Pro)
1: Initialize ✓, N, period, replay buffer D,↵, and c̃
2: s env.reset(), w ✓, numUpdates 0
3: repeat

4: a ⇠ ✏-greedy
�
Q(s, ·;w)

�

5: s0, r env.step(s, a)
6: add hs, a, r, s0i to D
7: if s0 is terminal then

8: s env.reset()
9: end if

10: for n in {1, . . . , N} do

11: sample B = {hs, a, r, s0i}, compute rwh(w)

12: w
�
1� (↵/c̃)

�
w + (↵/c̃)✓ � ↵rwh(w)

13: numUpdates numUpdates + 1
14: if numUpdates % period = 0 then

15: ✓ w
16: end if

17: end for

18: until convergence

10.2 Implementation Details

Table 1 and 2 show hyper-parameters, computing infrastructure, and libraries used for the experiments
in this paper for all games tested. Our training and evaluation protocols and the hyper-parameter
settings closely follow those of the Dopamine baseline. To report performance results, we measured
the undiscounted sum of rewards obtained by the learned policy during evaluation.

13

DQN hyper-parameters (shared)

Replay buffer size 200000
Target update period 8000
Max steps per episode 27000
Evaluation frequency 10000
Batch size 64
Update period 4
Number of frame skip 4
Number of episodes to evaluate 2
Update horizon 1
✏-greedy (training time) 0.01
✏-greedy (evaluation time) 0.001
✏-greedy decay period 250000
Burn-in period / Min replay size 20000
Learning rate 10�4

Discount factor (�) 0.99
Total number of iterations 3⇥ 107

Sticky actions True
Optimizer Adam Kingma & Ba (2015)
Network architecture Nature DQN network Mnih et al. (2015)
Random seeds {0, 1, 2, 3, 4}

Rainbow hyper-parameters (shared)

Batch size 64
Other Config file rainbow_aaai.gin from Dopamine

DQN Pro and Rainbow Pro hyper-parameter

c̃ (DQN Pro) 0.2
c̃ (Rainbow Pro) 0.05

Table 1: Hyper-parameters used for all methods for all 55 games of Atari-2600 benchmarks
. All results reported in our paper are averages over repeated runs initialized with each of the random

seeds listed above and run for the listed number of episodes.

Computing Infrastructure

Machine Type AWS EC2 - p2.16xlarge
GPU Family Tesla K80
CPU Family Intel Xeon 2.30GHz
CUDA Version 11.0
NVIDIA-Driver 450.80.02

Library Version

Python 3.8.5
Numpy 1.20.1
Gym 0.18.0
Pytorch 1.8.0

Table 2: Computing infrastructure and software libraries used in all experiments in this paper.

14

https://github.com/google/dopamine/blob/master/dopamine/agents/rainbow/configs/rainbow_aaai.gin

10.3 Proofs

Theorem 1. The Proximal Bellman Optimality Operator T ?
c,f is a contraction with fixed point v?.

We make two assumptions:

1. f is smooth, or more specifically that its gradient is 1-Lipschitz: ||rf(v1)�rf(v2)|| 
||v1 � v2|| 8v1, 8v2 .

2. the value of the parameter c is large, in particular c > 2
1�� .

Proof. Both terms are convex and differentiable, therefore by setting the gradient to zero, we have:

T ?
c,fv = T ?v +

1

c

�
rf(v)�rf(T ?

c,fv)
�
,

We can then show:

||T ?
c,fv1 � T ?

c,fv2|| = ||T ?v1 +
1

c

�
rf(v1)�rf(T ?

c,fv1)
�
� T ?v2 �

1

c

�
rf(v2)�rf(T ?

c,fv2)
�
||

 ||T ?v1 � T ?v2||+
1

c
||rf(v1)�rf(v2)||+

1

c
||rf(T ?

c,fv1)�rf(T ?
c,fv2)||

(first assumption)

 ||T ?v1 � T ?v2||+
1

c
||rf(v1)�rf(v2)||+

1

c
||T ?

c,fv1 � T ?
c,fv2||

This implies:

c� 1

c
||T ?

c,fv1 � T ?
c,fv2||  ||T ?v1 � T ?v2||+

1

c
||rf(v1)�rf(v2)||

(first assumption)

 ||T ?v1 � T ?v2||+
1

c
||v1 � v2||

 �c+ 1

c
||v1 � v2||

Therefore,

||T ?
c,fv1 � T ?

c,fv2|| 
�c+ 1

c� 1
||v1 � v2|| ,

Allowing us to conclude that T ?
c,f is a contraction (second assumption).

Further, to show that v? is indeed the fixed point of T ?
c,f , notice from the original formulation:

T ?
c,fv := argmin

v0
||v0 � T ?v||22 +

1

c
Df (v

0, v) ,

that, at point v⇤ setting v0 = v? jointly minimizes the first term, because v? = T ?v? due to fixed-
point defintion, and it also minimizes the second term because Df (v?, v?) = 0 and that Bregman
divergence is non-negative. Therefore, T ?

c,fv
? = v?; v? is the fixed-point of T ?

c,fv
?. Since, T ?

c,f is a
contraction, this fixed point is unique.

Theorem 2. Consider the PMPI algorithm specified by:

⇡k G✏0k
vk�1 , (4)

vk (T ⇡k
�)nvk�1 + (1� �)✏k . (5)

Define the Bellman residual bk := vk � T ⇡k+1vk, and error terms xk := (I � �P⇡k)✏k and

yk := �P⇡⇤
✏k. After k steps:

v⇤ � v⇡k = v⇡
⇤
� (T ⇡k+1

�)nvk
| {z }

dk

+(T ⇡k+1

�)nvk � v⇡k| {z }
sk

15

• where dk  �P⇡⇤
dk�1 �

�
(1� �)yk�1 + �bk�1

�
+ (1� �)

Pn�1
j=1 (�P

⇡k)jbk�1 + ✏0k

• sk 
�
(1� �)(�P⇡k)n + �I

�
(I � �P⇡k)�1bk�1

• bk 
�
(1� �)(�P⇡k)n + �I

�
bk�1 + (1� �)xk + ✏0k+1

We make two assumptions:

1. we assume ✏ error in policy evaluation step, as already stated in equation (4).
2. we assume ✏0 error in policy greedification step ⇡k G✏0k

vk�18k. This means 8⇡ T ⇡vk �
T ⇡k+1vk  ✏0k+1. Note that this assumption is orthogonal to the thesis of our paper, but we
kept it for generality.

Proof. Step 0: bound the Bellman residual: bk := vk � T ⇡k+1vk .

bk = vk � T ⇡k+1vk
= vk � T ⇡kvk + T ⇡kvk � T ⇡k+1vk

(from our assumption 8⇡ T ⇡vk � T ⇡k+1vk  ✏0k+1)
 vk � T ⇡kvk + ✏0k+1

= vk � (1� �)✏k � T ⇡kvk + (1� �)�P⇡k✏k + (1� �)✏k � (1� �)�P⇡k✏k + ✏0k+1⇣
from T ⇡kvk + (1� �)�P⇡k✏k = T ⇡k(vk � (1� �)✏k

�⌘

= vk � (1� �)✏k � T ⇡k(vk � (1� �)✏k) + (1� �) (I � �P⇡k)✏k| {z }
xk

+✏0k+1

= vk � (1� �)✏k � T ⇡k(vk � (1� �)✏k) + (1� �)xk + ✏0k+1

(from vk � (1� �)✏k = (T ⇡k
�)nvk�1)

= (1� �)(T ⇡k)nvk�1 + �vk�1 � T ⇡k
�
(1� �)(T ⇡k)nvk�1 + �vk�1

�
+ (1� �)xk + ✏0k+1

(from linearity of T ⇡k)
= (1� �)(T ⇡k)nvk�1 � T ⇡k

�
(1� �)(T ⇡k)nvk�1

�
+ �

�
vk�1 � T ⇡kvk�1

�
+ (1� �)xk + ✏0k+1

= (1� �)
⇣
(T ⇡k)nvk�1 � T ⇡k

�
(T⇡k)nvk�1

�⌘
+ �

�
vk�1 � T ⇡kvk�1

�
+ (1� �)xk + ✏0k+1

= (1� �)
⇣
(T ⇡k)nvk�1 � (T ⇡k)n

�
T ⇡kvk�1

�⌘
+ �

�
vk�1 � T ⇡kvk�1

�
+ (1� �)xk + ✏0k+1

= (1� �)(�P⇡k)n
�
vk�1 � T ⇡k(vk�1| {z }

=bk�1

)
�
+ �

�
vk�1 � T ⇡kvk�1| {z }

=bk�1

�
+ (1� �)xk + ✏0k+1 ,

allowing us to conclude:
bk =

�
(1� �)(�P⇡k)n + �I

�
bk�1 + (1� �)xk + ✏0k+1 .

Step 1: bound the distance to the optimal value: dk+1 := v⇤ � (T ⇡k+1

�)nvk .

dk+1 = v⇤ � (T ⇡k+1

�)nvk

= T ⇡⇤
v⇤ � T ⇡⇤

vk + T ⇡⇤
vk � T ⇡k+1vk| {z }

✏0k+1

+ T ⇡k+1vk � (T ⇡k+1

�)nvk
| {z }

=gk+1

 �P⇡⇤
(v⇤ � vk) + ✏0k+1 + gk+1

= �P⇡⇤
(v⇤ � vk) + (1� �)�P⇡⇤

✏k � (1� �)�P⇡⇤
✏k + ✏0k+1 + gk+1

= �P⇡⇤
⇣
v⇤ �

�
vk � (1� �)✏k

�⌘
� (1� �) �P⇡⇤

✏k| {z }
yk

+✏0k+1 + gk+1

= �P⇡⇤�
v⇤ � (T ⇡k

�)nvk�1
| {z }

=dk

�
� (1� �)yk + ✏0k+1 + gk+1

= �P⇡⇤
dk � (1� �)yk + ✏0k+1 + gk+1

16

Additionally we can bound gk+1 as follows:

gk+1 = T ⇡k+1vk � (T ⇡k+1

�)nvk

= (1� �)
�
T ⇡k+1vk � (T ⇡k+1

)nvk
�
+ �(T⇡k+1vk � vk)

= (1� �)
n�1X

j=1

(�P⇡k+1)jbk + �(�bk)

Allowing us to conclude that:

dk+1  �P⇡⇤
dk �

�
(1� �)yk + �bk

�
+ (1� �)

n�1X

j=1

(�P⇡k+1)jbk + ✏0k+1

Step 2: bound the distance between the approximate value and the value of the policy: sk :=
(T⇡k

�)nvk�1 � v⇡k .

sk = (T⇡k
�)nvk�1 � v⇡k

= (T⇡k
�)nvk�1 � (T ⇡k)1vk�1

= (1� �)(T ⇡k)nvk�1 + �vk�1 � (1� �)(T ⇡k)1vk�1 � �(T ⇡k)1vk�1

= (1� �)
�
(T ⇡k)nvk�1 � (T ⇡k)1vk�1

�
+ �

�
vk�1 � (T ⇡k)1vk�1

�

= (1� �)(�P⇡k)n
�
vk�1 � (T ⇡k)1vk�1

�
+ �

�
vk�1 � (T ⇡k)1vk�1

�

=
�
(1� �)(�P⇡k)n + �I

��
vk�1 � (T ⇡k)1vk�1

�

=
�
(1� �)(�P⇡k)n + �I

�
(I � �P⇡k)�1

�
vk�1 � T ⇡kvk�1| {z }

bk�1

�
.

Allowing us to conclude that:

sk =
�
(1� �)(�P⇡k)n + �I

�
(I � �P⇡k)�1bk�1 .

17

Figure 7: Comparison between DQN Pro (red) and DQN (blue) over 55 Atari games (Part I).

11 Learning curves

We present full learning curves of DQN, DQN Pro, Rainbow, and Rainbow Pro for the 55 Atari
games. All results are averaged over 5 independent seeds.

18

Figure 8: Comparison between DQN Pro (red) and DQN (blue) over 55 Atari games (Part II).

19

Figure 9: Comparison between Rainbow Pro (yellow) and Rainbow (green) over 55 Atari games
(Part I).

20

Figure 10: Comparison between Rainbow Pro (yellow) and Rainbow (green) over 55 Atari games
(Part II).

21

Figure 11: A study on games with the strongest (top) and weakest performance for Rainbow Pro with
the original c̃ = 0.05. Using a slightly less powerful proximal term (corresponding to larger c̃ = 0.1)
enables us to recover the downside (bottom) while still providing benefits on games that are more
conducive to using the proximal updates (top).

12 Motivating Example for Adaptive c̃

In this section we specifically look at 4 domains in which Rainbow Pro did significantly better than
the original Rainbow, as well 4 domains where Rainbow Pro is underperforming Rainbow. Note,
again, that it is uncommon for Rainbow Pro with the original c̃ to underperform, but here we have a
deeper dive into these cases for a better understanding.

From Figure 11, we observe that by using a slightly larger value of c̃, which slightly decreases the
incentive for online-target proximity, we can recover from the downside, while still maintaining
superior performance on games that are conducive to proximal updates. This suggest that, while
using a fixed c̃ value is enough to obtain significant performance improvement, adaptively choosing c̃
would provide us with even more reliable improvements when performing proximal updates. In this
context, a promising idea would be to hinge on the variance of our gradient updates when setting c̃.
We leave this promising direction for future work.

22

Figure 12: Performing proximal updates in the value space has a limited positive impact.

13 Proximal Updates in the Value Space

Our primary contribution was to show the usefulness of performing proximal updates in the parameter
space. That said, we also implemented a version of proximal updates that operated in the value space.
More specifically, in this case we updated the parameters of the online network as follows:

w bEhs,a,r,s0i

h�
r + �max

a0
bQ(s0, a0; ✓)� bQ(s, a;w)

�2i
+

1

c̃
bEhs,ai

h� bQ(s, a;w)� bQ(s, a; ✓)
�2
].

We conducted numerous experiments using variants of this idea (such as using separate replay buffer
for each term, performing the update for all actions in buffered states, etc) but we generally found the
value-space updates to be ineffective. As mentioned in the main paper, we believe this is because
the parameter-space definition can enforce the proximity globally, while in the value space one can
only hope to obtain proximity locally and on a batch of samples. To perform global updates we
may need to compute the natural gradient, which typically requires matrix invasion Knight & Lerner
(2018), and thus adding significant computational burden to the original algorithm. In comparison,
the parameter-space version is effective, simple to implement, and capable of enforcing proximity
globally due to the Lipschitz property of neural networks.

23

	Introduction
	Background and Notation
	Proximal Bellman Operator
	Deep Q-Network with Proximal Updates
	Experiments
	PMPI Experiments
	Atari Experiments
	Setup
	Results
	Additional Experiments

	Discussion
	Related Work
	Conclusion and Future work
	Acknowledgment
	Appendix
	Pseudo-code for DQN Pro
	Implementation Details
	Proofs

	Learning curves
	Motivating Example for Adaptive
	Proximal Updates in the Value Space

