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ABSTRACT
Multi-label image classification is crucial for a wide range of multi-
media applications. To address the resource limitation issue, various
knowledge distillation (KD) methods have been developed to trans-
fer knowledge from a large network (referred to as the "teacher")
to a small network (referred to as the "student"). However, exist-
ing KD methods do not explicitly distill the dependencies between
labels, which limits the model ability to capture multi-label cor-
relation. Furthermore, although existing methods for multi-label
image classification have utilized the second-order label pair de-
pendency (direct dependency between two labels), the high-order
label pair dependency, which captures the indirect dependency
between two labels, remains unexplored. In this paper, we propose
a Multi-Order Label Pair Dependencies Knowledge Distillation
(MDKD) framework. MDKD explicitly distills the knowledge to
capture multi-order dependencies between labels, including the
label pair dependencies from second-order and high-order, thus
transferring the insight of label correlations from different perspec-
tives. Extensive experiments on Pascal VOC2007, MSCOCO2014,
and NUS-WIDE demonstrate the superior performances of MDKD.

CCS CONCEPTS
• Computing methodologies→ Object recognition.

KEYWORDS
Knowledge distillation; Multi-label image classification; Indirect
dependency

1 INTRODUCTION
Natural scenes in the real world often cover multiple objects. For
example, as shown in Figure 1, an image from a street scene may
include annotations for labels such as person, dog, car, and parking
meter. Multi-label image classification aims to recognize each of
these labels concurrently, which is crucial for a wide range of multi-
media applications, including recommendation systems [27], image
retrieval [23], and scene understanding [21]. To capture complex
label features, there is always a necessity to train large models to
obtain desirable performance in multi-label image classification.
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Figure 1: An illustration of fourth-order label pair depen-
dency formed by parking meter-car-person-dog, and the cor-
responding attention maps by different methods: 1) Vanilla:
the backbone trained without distillation; 2) L2D: a logits-
based method that achieves the state-of-the-art performance
in KD formulti-label image classification; 3) Teacher: the pre-
trained backbone used for distillation; 4) Ours: the MDKD
framework that explicitly transfers the knowledge to recog-
nize multi-order label pair dependencies during distillation.

Despite the remarkable achievements in multi-label image clas-
sification facilitated by deep neural networks, deploying these sub-
stantial models on resource-constrained devices, such as mobile
phones, poses a significant challenge due to limited computational
capacity and the necessity for swift inference times. To address this
issue, knowledge distillation (KD) [10] have emerged as a powerful
strategy, aiming to enhance the performance of small networks
(referred to as "students") through the knowledge from large net-
works (known as "teachers"). Recently, KD methods have shown
promising results to boost the capabilities of multi-label image clas-
sification [13, 22, 25, 26]. However, a common shortfall among these
methods is their lack of explicit focus on modeling the multi-label
dependencies, such as second-order label pair dependencies, which
restricts their ability to fully understand the intricate relationships
among multi-label.

The second-order label pair dependency, which considers the
direct label co-occurrence, has played a crucial role in reasoning
the occurrence of multi-label. For instance, MLGCN [3] proposed
modeling second-order label pair dependencies, achieved through
a learnable static correlation matrix. Additionally, Ye et al. [28]
introduced a dynamic graph model to handle occasional label corre-
lations in different images, while CADM [3] proposed incorporating
the class-aware graph to explore label correlations. However, de-
spite these advancements in second-order label pair dependencies,
the exploration into the high-order label pair dependencies remains
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unexplored. High-order label pair dependencies extend beyond di-
rect co-occurrences to consider indirect relations. For example, in a
street scene scenario like Figure 1, the association between car and
person and the co-occurrence of person and dog imply an indirect
dependency between car and dog. This scenario reflects a third-
order label pair dependency, considering the indirect dependencies
with person as the mediate label. Moreover, given that a parking
meter is often associated with a car in urban street scenes, the above
third-order label pair dependency could be further extended to a
fourth-order one which implies the indirect relations between park-
ing meter and dog, composing of the mediate second-order label
pair dependencies of parking meter-car, car-person, and person-dog.
Additionally, it is worth noting that the label sequences with the
same endpoint labels but different mediate labels give rise to mul-
tiple high-order label pair dependencies. That is, a fourth-order
label pair dependency formed by label sequence parking meter-
car-person-dog does not consider the same thing as that in parking
meter-person-car-dog, as the former considers the mediate second-
order label pair dependencies of parking meter-car, car-person, and
person-dog, while the latter considers the mediate second-order
label pair dependencies of parking meter-person, person-car, and
car-dog.

In this paper, we propose aMulti-Order Label PairDependencies
Knowledge Distillation (MDKD) framework for multi-label image
classification, which explicitly distills the knowledge to discern la-
bel pair dependencies at multiple orders, including the second-order
and high-order ones. Specifically, MDKD measures the multi-order
label pair dependencies directly from the label predicted probabil-
ities, which requires no extra architecture and training strategy
within the general framework of multi-label image classification.
Then, the measured label dependencies from teacher and student
are aligned to encourage the knowledge transfer of multi-order
label pair dependencies. As shown in Figure 1, by learning to cap-
ture the multi-order label pair dependencies, our MDKD correctly
recognizes the parking meter, car, person, and dog, matching the
attention from the teacher, while the vanilla and L2D fail to achieve
this.

The main contributions are three-fold as follows:
•We first explore the indirect label pair dependencies, denoted

by high-order label pair dependencies, in the field of multi-label
image classification.

•We propose anMDKD framework for multi-label image classifi-
cation that transfers knowledge to identify label pair dependencies
at multiple orders, including direct (second-order) and indirect
(high-order) ones.

• Extensive experiments on Pascal VOC2007 [8], MSCOCO2014
[12], and NUS-WIDE [4] demonstrate the capability of our method.

2 RELATEDWORK
2.1 Multi-label Dependency
Multi-label image classification has recently yielded significant at-
tention due to its importance in multimedia applications. Existing
methods for multi-label image classification focus on modeling the
label correlations, which provides prior knowledge for multi-label

classification: MLGCN [3] proposed modeling the label dependen-
cies by a learnable static correlation matrix. Considering the occa-
sional label co-occurrence, Ye et al. [28] proposed a dynamic graph
model, capable of capturing the occasional label correlations at
various images. Moreover, Zhu et al. [33] proposed refining the
dynamic label co-occurrence by specific scenes. Beyond second-
order label dependencies (between two labels), Wu et al. proposed
an adaptive hypergraph for modeling these intricate many-to-one
high-order interactions. However, these methods still can not ex-
plicitly model the indirect label dependencies. In this paper, we
harness the multi-order label indirect correlation into KD. It is also
worth noting that while the existing method [24] proposed utiliz-
ing the high-order dependency in multi-label learning, it simply
considers how a single label will be impacted by a group of labels.
In our MDKD, the combination of multi-order label pair dependen-
cies provides a more granular perspective about how a single label
impacts another via different orders of dependencies (direct and
indirect) under a multi-label context.

2.2 Multi-label Knowledge Distillation
KD [10] aims to transfer knowledge from a large teacher network
to a simpler and smaller student network. Existing KD methods
can be primarily divided into two categories: logits-based methods
and feature-based methods. Logits-based methods concentrate on
designing distillation loss to transfer knowledge in the logits: For
instance, the mutual learning strategy [32] encourages concurrent
training of the teacher and student networks, enhancing the learn-
ing process through a cooperative framework. On the other hand,
TAKD [16] proposed the "teacher assistant"—an intermediate-sized
network that promotes the knowledge transfer between the more
complex teacher and the simpler student networks. Feature-based
methods focus on distilling knowledge from intermediate feature
layers: For instance, FitNet [1] proposed minimizing the similar-
ity between the feature maps of teacher and student. Attention
transfer [30] focuses on attention maps rather than direct feature
map comparisons. ReviewKD [2] proposed using multiple layers in
teachers to supervise one layer in students.

While KD has been demonstrated to be a powerful strategy for
transferring knowledge to students, the direct transplantation of
typical KD to multi-label image classification presents a signifi-
cant challenge. Specifically, logits-based methods often obtain the
predicted probabilities based on the softmax function. However,
softmax function is not suitable for multi-label, because the sum
of predicted probabilities may not equal one in multi-label image
classification. Feature-based methods proposed aligning the feature
maps between teacher and student. This approach, while effec-
tive in harnessing contextual information, inadvertently biases the
model towards the predominant objects. Therefore, it leads to the
marginalization of less prominent objects within the scene.

Previous efforts have explored performing KD in multi-label im-
age classification: Xu et al. [25] proposed a complementary parallel
self-distillation to learn the joint patterns and the category-specific
patterns of labels. Song et al. [22] proposed estimating the uncer-
tainty of prediction to handle difficult labels. Liu et al. [13] proposed
to enhance the label prediction by a weakly-supervised detection.
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Figure 2: An overview of MDKD framework. The multi-order label pair dependencies are measured from the label predicted
probabilities, where all possible label sequences are considered. The label dependencies from teacher and student are aligned
for the knowledge transfer in recognition of label pair dependencies.

Yang et al. [26] proposed using the feature compactness in label-
wise embeddings of the same classes, as well as the dispersion
across different classes. Moreover, Yang et al. proposed a Multi-
Label Logits Distillation (MLD) loss, which divides multi-label tasks
into several binary classification problems. This stems from the
understanding that the probabilistic of labels do not sum to one in
a multi-label image. However, existing methods ignore explicitly
modeling the distillation of label dependencies. To address this
problem, we explore the distillation of label dependencies in this
paper.

3 METHODOLOGY
Given a data sample {(x, 𝑦)}, we have x ∈ X with its corresponding
label vector 𝑦 ∈ Y, whereX ⊂ R𝑑 is the 𝑑-dimensional input space
and Y ⊂ {0, 1}𝐶 denotes the target space with 𝐶 classes. For each
instance x, the 𝑗-th component 𝑦 𝑗 of 𝑦 is used to indicate whether
𝑦 𝑗 is relevant to x or not. Specifically, 𝑦 𝑗 is relevant to x when
𝑦 𝑗 = 1, and conversely 𝑦 𝑗 is irrelevant to x if 𝑦 𝑗 = 0.

Figure 2 illustrates the MDKD framework. Given a batch of input
instances (images), and the label indices {1, 2, · · · ,𝐶}, the backbone
network 𝑓 outputs a batch of predicted probabilities from teacher
model {(𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝐶 )}𝑏𝑖=1, where𝐶 represents the total number
of labels and 𝑏 denotes the batch size. 𝑦𝑖𝑘 denotes the predicted
probability for𝑘-th label within 𝑖-th instance. Note that the notation
used in this paper takes superscripts T and S to denote the teacher
and the student models. For example, 𝑦T

𝑖𝑘
and 𝑦S

𝑖𝑘
represent two

label predicted probabilities computed from the teacher network
𝑓 T and the student network 𝑓 S , respectively.

Following previous KD methods [10, 16, 26], MDKD integrates
supervision loss between student output and the ground truth,
and the soft label distillation loss, which encourages the knowledge

transfer from teacher to student. For a batch of samples {(x𝑖 , 𝑦𝑖 )}𝑏𝑖=1,
the ground truth loss is implemented by Binary Cross Entropy (BCE)
loss, encouraging the label predicted probabilities of the student
network to be near to the ground truth:

LBCE = − 1
𝑏

(
𝑏∑︁
𝑖=1

𝐶∑︁
𝑘=1

𝑦𝑖𝑘 log
(
𝑦S
𝑖𝑘

)
+ (1 − 𝑦𝑖𝑘 ) log

(
1 − 𝑦S

𝑖𝑘

))
. (1)

The soft label loss is implemented by multi-label logits distillation
lossLMLD, which considers the fact that in multi-label learning, the
label predicted probabilities of all classes should sum to one. It min-
imizes the divergence between the binary predicted probabilities
of teacher and student, which is computed as:

LMLD =
1
𝑏

𝑏∑︁
𝑖=1

𝐶∑︁
𝑘=1

D
( [
𝑦T
𝑖𝑘
, 1 − 𝑦T

𝑖𝑘

]
∥
[
𝑦S
𝑖𝑘
, 1 − 𝑦S

𝑖𝑘

] )
, (2)

where [·, ·] is the concatenation operation. D(·| |·) represents the
KL divergence D(𝑃 | |𝑄) = ∑

𝑥∈X 𝑃 (𝒙) log
(
𝑃 (𝒙 )
𝑄 (𝒙 )

)
.

However, with the BCE loss and multi-label logit distillation loss,
the label dependencies still can not be explicitly distilled to the
student. MDKD aims at distilling the multi-order label pair depen-
dencies discerned by the teacher from input instances. Specifically,
MDKD includes a batch-level multi-order label pair dependency
distillation loss LBD and an instance-level multi-order label pair
dependency distillation loss LID. The motivation behind incor-
porating these two levels of dependency distillation comes from
the observation that some labels exhibit consistent co-occurrence
across all scenarios, such as tennis racket and ball, whereas others
predominantly co-occur in specific contexts, for instance, person
and car in street scenes. While the batch-level multi-order label

3
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Figure 3: An overview of batch-level and instance-level multi-order label pair dependency distillation. 𝑘 , 𝑙 , 𝐿1, 𝐿2, · · · , 𝐿𝑛 denote
different label indices.

pair dependency distillation aims to encourage knowledge trans-
fer of common multi-order label dependencies within a batch, the
instance-level multi-order label pair dependency distillation trans-
fers the knowledge in recognition of occasional multi-order label
dependencies within an instance. These two levels of distillation
loss collaboratively promote the knowledge transfer of label pair
dependencies.

Overall, the total objective function of the proposed MDKD
framework can be represented as:

LMDKD = LBCE + 𝜆MLDLMLD + 𝜆BDLBD + 𝜆IDLID, (3)

where 𝜆MLD, 𝜆BD, and 𝜆ID are trade-off hyperparameters.

3.1 Batch-level Multi-Order Label Pair
Dependency Distillation

Figure 3 (left) illustrates the process of batch-level multi-order
label pair dependency distillation. Given the sets {𝑦1𝑘 , 𝑦2𝑘 , . . . , 𝑦𝑏𝑘 }
and {𝑦1𝑙 , 𝑦2𝑙 , . . . , 𝑦𝑏𝑙 }, where each represents the label predicted
probabilities by the teacher model for 𝑘-th label and 𝑙-th label
across various instances within a batch, respectively. The batch-
level second-order label pair dependencies are measured through
the mean square difference between two sets:

ΨT
(2) (𝑘, 𝑙) =

1
𝑏

𝑏∑︁
𝑖=1

(𝑦𝑖𝑘 − 𝑦𝑖𝑙 )2 , (4)

where𝑦𝑖𝑘 and𝑦𝑖𝑙 denote the label predicted probabilities for 𝑘-th la-
bel and 𝑙-th label, respectively, for the 𝑖-th instance in a batch. Based
on this measurement, the frequently co-occurring label pair exhibits
similar label predicted probabilities across various instances, re-
sulting in a lower mean square difference. We employ the Huber
loss to measure the second-order label pair dependencies disparity
between teacher and student, denoted as ℧

(
ΨT
(2) (𝑘, 𝑙),Ψ

S
(2) (𝑘, 𝑙)

)
,

where ℧(𝑎, 𝑏) is defined as follows:

℧(a, b) =

{ 1
2 (a − b)2 |a − b| ≤ 1,
|a − b| − 1

2 otherwise. (5)

It’s worth noting that the dependencies Ψ(2) (𝑘, 𝑙) and Ψ(2) (𝑙, 𝑘) are
considered the same for a lightweight complexity. This stems from
the understanding that the label dependency is mutual, where the
order slightly impacts the recognition of their dependency. Conse-
quently, it can be easily proved that the total number of label pairs
within second-order label pair dependency equals the combinations
(i.e., half of the permutations). Suppose Pba = a!

(a−b)! as the permu-
tations, the batch-level second-order label pair dependency loss,
LBD2 , which integrates the disparity of common second-order label
pair dependencies within a batch between teacher and student, is
defined as:

LBD2 =
2
P2
𝐶

∑︁
𝑘,𝑙∈[𝐶 ],𝑘≠𝑙

℧
(
ΨT
(2) (𝑘, 𝑙),Ψ

S
(2) (𝑘, 𝑙)

)
, (6)

where [𝐶] represents the sequence of label indices {1, 2, · · · ,𝐶}.
2
P2
𝐶

denotes the reciprocal of the total number of second-order label
pair dependencies, serving as a normalization for loss.

For the batch-level 𝑛-order label dependencies (𝑛 ≥ 3), each
batch-level 𝑛-order label pair dependency is measured by averaging
the batch-level second-order label pair dependencies involving all
intermediate label pairs. For example, given a fourth-order label se-
quence parking meter-car-person-dog, the batch-level fourth-order
label pair dependency between parking meter and dog, articulated
through this sequence, is derived by sequentially averaging the
batch-level second-order label pair dependencies of parking meter-
car, car-person, and person-dog. This stems from the understand-
ing that a sequence of 𝑛-order label pair dependency is achieved
through a series of mediate second-order label pair dependencies,
creating a chain of dependencies that bridge the two endpoint la-
bels. Given this, to present the formula for a sequence of batch-level
𝑛-order label pair dependency between the 𝐿1-th and 𝐿𝑛-th labels,
we define the label sequence as {𝐿1, 𝐿2, . . . , 𝐿𝑛}. Here, each element
𝐿𝑘 signifies a label index among the complete set of label indices

4
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{1, 2, . . . ,𝐶}. The batch-level 𝑛-th order label pair dependency, de-
noted by Ψ(𝑛) (𝐿1, 𝐿2, . . . , 𝐿𝑛), is measured by:

Ψ(𝑛) (𝐿1, 𝐿2, . . . , 𝐿𝑛) =
1

𝑛 − 1

𝑛−1∑︁
𝑖=1

Ψ(2) (𝐿𝑖 , 𝐿𝑖+1). (7)

The batch-level 𝑛-order label pair dependency distillation con-
siders the disparity of label pair dependencies captured by teacher
and student for all unique label sequences, where the Huber loss
℧

(
ΨT
(𝑛) (𝐿1, 𝐿2, . . . , 𝐿𝑛),Ψ

S
(𝑛) (𝐿1, 𝐿2, . . . , 𝐿𝑛)

)
(as defined in Eq. 5)

is employed to measure the disparity between teacher and student.
Given 𝐶 labels, it is easy to prove that the total number of label
pairs within the 𝑛-order is half of the permutation, i.e., P𝑛

𝐶

2 . The
batch-level 𝑛-order label pair dependency distillation loss, denoted
by LBD𝑛

, is defined as:

LBD𝑛
=

2
P𝑛
𝐶

P𝑛
𝐶
2∑︁

𝑗=1
℧

(
ΨT
(𝑛) (𝐿

𝑗

1, 𝐿
𝑗

2, . . . , 𝐿
𝑗
𝑛),ΨS

(𝑛) (𝐿
𝑗

1, 𝐿
𝑗

2, . . . , 𝐿
𝑗
𝑛))

)
,

(8)
where {𝐿 𝑗1, 𝐿

𝑗

2, . . . , 𝐿
𝑗
𝑛} denotes a 𝑛-order label sequence derived

from the complete set of label indices {1, 2, . . . ,𝐶}. Each element
𝐿
𝑗

𝑘
signifies a label index among the complete set of label indices

1, 2, . . . ,𝐶 . P
𝑛
𝐶

2 denotes the total number of 𝑛-order label pair depen-
dencies, and its reciprocal serves as a normalization for loss. It is
notable that when 𝑛 = 2, this equation is with the same formulation
as Eq. 6.

In the objective function of MDKD (Eq. 3), the part of batch-
level multi-order label pair dependency loss is obtained by the
weighted sum of global label dependency distillation loss from
different orders:

𝜆BDLBD =

𝑛∑︁
𝑖=2

𝜆BD𝑖
LBD𝑖

, (9)

where the series of 𝜆BD𝑖
denotes the trade-off parameters.

3.2 Instance-level Multi-Order Label Pair
Dependency Distillation

Different from the batch-level multi-order label pair dependency
distillation, which transfers the knowledge to recognize multi-order
label pair dependencies within a batch, the instance-level multi-
order label pair dependency distillation loss considers the occasional
label pair dependencies within different images. Figure 3 (right)
illustrates the process of instance-level multi-order label pair de-
pendency distillation. Given a batch of output probabilities from
a teacher model, denoted as {(𝑦𝑖1, 𝑦𝑖2, . . . , 𝑦𝑖𝐶 )}𝑏𝑖=1. The instance-
level second-order label pair dependency between 𝑘-th label and
𝑙-th label within 𝑖-th instance is measured by the square difference
of their label predicted probabilities:

Φ
(𝑖 )
(2) (𝑘, 𝑙) = (𝑦𝑖𝑘 − 𝑦𝑖𝑙 )2 . (10)

This approach stems from the understanding that while the occa-
sional label pair dependency is high, the square difference of label
predicted probabilities within each instance is low.

The instance-level label dependency loss aggregates the differ-
ence of instance-level second-order label pair dependencies be-
tween teacher and student across the entire batch 𝑏, where the
disparity of recognized instance-level second-order label pair de-
pendencies are also measured by Huber loss (Eq. 5):

LID2 =
1
𝑏

2
P2
𝐶

𝑏∑︁
𝑖=1

∑︁
𝑘,𝑙∈[𝐶 ],𝑘≠𝑙

℧
(
Φ
T,(𝑖 )
(2) (𝑘, 𝑙),ΦS,(𝑖 )

(2) (𝑘, 𝑙)
)
. (11)

For the instance-level 𝑛-order label dependencies (𝑛 ≥ 3), each
instance-level 𝑛-th order label pair dependency is measured by
averaging the instance-level second-order label pair dependencies
involving all intermediate label pairs. Consider a label sequence
{𝐿1, 𝐿2, . . . , 𝐿𝑛}, which forms an 𝑛-order label pair dependency be-
tween the 𝐿1-th and 𝐿𝑛-th labels. For the 𝑖-th instance, we define
the instance-level 𝑛-order label dependency, denoted as Φ(𝑖 )

(𝑛) (𝑘, 𝑙),
in the following formula:

Φ
(𝑖 )
(𝑛) (𝐿1, 𝐿2, . . . , 𝐿𝑛) =

1
𝑛 − 1

𝑛−1∑︁
𝑘=1

Φ
(𝑖 )
(2) (𝐿𝑘 , 𝐿𝑘+1). (12)

The instance-level 𝑛-order label dependency distillation loss
encourages the teacher model and student model to be consistent
for the instance-level 𝑛-order label dependencies, formula as:

LID𝑛
=

1
𝑏

2
P𝑛
𝐶

𝑏∑︁
𝑖=1

P𝑛
𝐶
2∑︁

𝑗=1
℧

(
Φ
T,(𝑖 )
(𝑛) (𝐿 𝑗1, 𝐿

𝑗

2, . . . , 𝐿
𝑗
𝑛),

Φ
S,(𝑖 )
(𝑛) (𝐿 𝑗1, 𝐿

𝑗

2, . . . , 𝐿
𝑗
𝑛)

)
,

(13)

where
∑𝑏
𝑖=1

∑ P𝑛
𝐶
2
𝑗=1 ensures that all possible label sequences within

each instance in a batch are considered in the loss function to
measure and minimize the difference in dependency predictions
between the teacher model and the student model. P

𝑛
𝐶

2 is the total
number of 𝑛-order label pair dependencies, and its reciprocal serves
as the normalization for loss. It is notable that when 𝑛 = 2, this
equation is with the same formulation as Eq. 11. In the objective
function of MDKD (Eq. 3), the part of instance-level multi-order
label pair dependency distillation loss is obtained by the weighted
sum of instance-level label dependency distillation loss from differ-
ent orders:

𝜆IDLID =

𝑛∑︁
𝑖=2

𝜆ID𝑖
LID𝑖

, (14)

where the series of 𝜆ID𝑖
represents the trade-off parameters.

Given the detailed formulas in Eq. 9 and Eq. 14, the total objective
function of MDKD in Eq. 3 can be re-written as:

LMDKD = LBCE+𝜆MLDLMLD+
𝑛∑︁
𝑖=2

𝜆BD𝑖
LBD𝑖

+
𝑛∑︁
𝑖=2

𝜆ID𝑖
LID𝑖

, (15)

where the series of 𝜆ID𝑖
and 𝜆BD𝑖

are renewed trade-off hyperpa-
rameters for each specific label pair dependency distillation loss.

5



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ACM MM ’24, October 28–November 1, 2024, Melbourne, Australia Anon. Submission Id: 2272

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 1: Performance on MS-COCO dataset for teacher and student models with the same network architectures.

Teacher ResNet-101 Swin-S WRN-101 WRN40-2 ResNet56
Student ResNet-34 Swin-T WRN40-1 WRN16-2 ResNet20
Metrics mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1
Teacher 73.02 73.81 68.24 82.18 79.86 77.44 74.96 75.68 71.01 75.42 77.11 74.68 72.18 74.26 68.09
Student 70.55 72.17 66.20 80.01 78.68 74.39 72.48 74.12 70.28 73.19 75.68 72.17 69.25 71.45 66.28
RKD [17] 70.68 72.32 66.34 80.45 79.11 74.82 73.98 75.25 71.42 73.18 75.62 72.15 69.48 71.98 67.18
PKT [18] 71.01 72.88 66.73 79.45 79.15 75.33 73.15 75.05 70.40 73.89 76.14 72.89 70.15 72.16 66.40

ReviewKD [2] 70.56 72.48 66.04 79.80 79.12 74.92 73.59 74.48 71.63 74.01 76.08 72.69 70.45 72.68 67.34
MSE [25] 70.80 72.54 66.15 79.48 80.02 76.15 72.15 74.05 71.88 74.22 76.15 73.05 69.40 72.44 67.48
PS [22] 70.18 72.00 67.89 80.33 80.94 76.09 72.65 74.33 72.19 73.04 75.65 73.48 69.77 71.18 66.34
L2D [26] 72.09 73.54 68.47 80.43 81.09 76.85 74.08 73.98 69.97 72.98 76.89 72.03 71.45 73.09 67.54
MDKD 73.35 74.13 68.89 82.33 82.17 77.56 76.88 77.45 74.18 75.34 77.20 73.89 73.37 74.08 68.29

Table 2: Performance on MS-COCO dataset for teacher and student models with different network architectures.

Teacher ResNet-101 Swin-T ResNet-101 VGG13 ResNet32×4
Student RepVGG-A0 ResNet-34 MobileNet v2 MobileNet v2 ShuffleNet-V2
Metrics mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1 mAP OF1 CF1
Teacher 73.02 73.81 68.24 80.01 78.68 74.39 73.02 73.81 68.24 74.08 75.05 72.20 79.44 79.04 75.98
Student 69.58 72.48 66.80 70.55 72.17 66.20 71.99 73.15 67.87 71.99 73.15 67.87 72.58 73.13 70.15
RKD [17] 70.55 72.98 67.05 71.13 72.68 66.89 71.56 73.18 67.99 72.48 73.48 67.48 72.00 73.27 70.49
PKT [18] 70.96 72.15 66.65 70.69 72.41 66.18 71.46 72.79 68.04 71.45 73.08 68.43 73.12 73.18 70.48

ReviewKD [2] 69.18 72.80 67.18 70.98 72.48 66.40 71.94 73.41 67.96 72.49 73.32 69.18 73.15 73.89 70.14
MSE [25] 70.18 73.05 67.45 71.08 72.84 67.01 71.59 73.18 68.04 72.00 73.90 68.87 72.14 73.64 71.00
PS [22] 70.69 72.44 67.39 71.32 72.05 66.84 71.15 73.04 67.54 71.43 72.98 68.78 72.45 73.81 70.78
L2D [26] 71.49 73.67 67.98 72.94 73.05 67.78 72.84 73.89 68.60 71.05 73.98 68.18 72.66 73.22 71.34
MDKD 72.65 74.66 68.42 74.01 74.99 68.49 73.40 74.45 69.41 73.98 74.89 71.80 74.07 75.13 72.66

Table 3: Performance of the comparing methods on VOC
dataset in terms of AP and mAP (%). The best results are
marked in red, and the second-best results are marked in
blue.

Methods Vanilla RKD[17] PKT[18] MSE[25] L2D[26] MDKD
bottle 56.89 57.15 57.91 57.80 59.24 59.96

pottedplant 67.15 66.89 66.48 68.15 70.10 72.88
chair 70.45 71.15 71.07 70.90 73.59 75.14
sofa 73.26 74.15 73.88 73.48 73.48 75.89

diningtable 76.05 76.54 76.43 77.15 78.10 79.25
cow 82.17 82.15 81.89 82.45 82.98 84.44

tvmonitor 82.59 83.18 83.40 82.48 84.15 85.94
bus 85.15 84.48 85.00 86.14 85.66 87.15
sheep 83.09 83.15 83.45 84.27 84.98 85.18

motorbike 88.15 89.48 88.15 87.45 88.18 89.03
dog 90.97 89.11 91.64 90.59 91.97 93.01
bird 90.56 91.76 91.45 90.35 91.67 91.72

bicycle 91.55 91.15 90.48 92.15 91.98 92.45
cat 91.08 91.45 91.66 91.47 92.45 93.48
boat 92.12 91.45 92.57 92.66 93.02 92.99
car 92.45 92.10 92.77 92.89 93.40 93.73
horse 94.89 93.67 93.01 93.75 95.47 96.10
person 95.77 95.42 95.26 96.08 96.22 96.87
train 96.03 96.98 96.55 96.48 96.77 97.15

aeroplane 97.15 97.48 97.54 96.88 97.06 97.89
mAP 84.88 84.94 85.03 85.18 86.02 87.01

4 EXPERIMENT
4.1 Datasets
We perform experiments on MS-COCO2014 (MS-COCO for short)
[12], Pascal VOC 2007 (VOC for short) [8], and NUS-WIDE [4], to
validate the effectiveness of our proposed method. VOC includes

5,011 images in the train-val set, 4,952 images in the test set, and
20 distinct label categories with an average of 1.6 labels per im-
age. NUS-WIDE contains 161,789 images and 107,859 test images,
covering 81 label categories. MS-COCO contains 82,081 images for
training and 40,137 for testing, with 80 label categories, an average
of 2.9 labels per image.

4.2 Metrics
We follow L2D [26] to use the mean average precision (mAP) over
all classes, average per-class F1-score (CF1), and overall F1-score
(OF1) to evaluate the performance. The OF1 and CF1 consider both
recall and precision.

4.3 Implementation Details
We utilize models pre-trained on the ImageNet dataset [5] as back-
bones. Images are uniformly resized to a resolution of 224x224
pixels. The batch size is set as 32. We adopt random horizontal
flipping and Cutout [6] for augmentation. The Adam optimizer [11]
is used to train the model for 110 epochs, starting with an initial
learning rate of 0.00015 and applying cosine annealing to adjust the
learning rate throughout the training process. The weight decay
is set to 0.0001. The highest order of multi-order label dependency
distillation is set as fourth-order. The 𝜆BD2 , 𝜆BD3 , 𝜆BD4 , 𝜆ID2 , 𝜆ID3 ,
and 𝜆ID4 are all set as 1. Following L2D [26], we set the 𝜆MLD as
10. For all feature-based methods, we perform distillation on the
feature maps output from the visual backbone 𝑓 . To validate the
MDKD with various architectures of teacher and student models,
we employ the common backbones including RepVGG [7], ResNet
[9], Swin Transformer [14], Wide ResNet (WRN) [31], MobileNet
v2 [19], and ShuffleNet-V2 [15].
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Table 4: Ablation studies for MLD, batch-level multi-order label pair dependency distillation and instance-level multi-order
label pair dependency distillation on MS-COCO.

MLD Batch-level (-order) Instance-level (-order) Metrics
second- third- fourth- fifth- sixth- second- third- fourth- fifth- sixth- mAP OF1 CF1

1 - - - - - - - - - - - 70.55 72.17 66.20
2 ✓ - - - - - - - - - - 71.21 72.85 67.43
3 ✓ ✓ - - - - ✓ - - - - 71.85 73.28 67.66
4 ✓ - ✓ - - - - ✓ - - - 71.58 73.48 68.00
5 ✓ ✓ ✓ - - - ✓ ✓ - - - 72.87 74.01 68.15
6 ✓ - ✓ ✓ - - - ✓ ✓ - - 73.15 73.54 68.01
7 ✓ ✓ ✓ ✓ - - - - - - - 73.25 73.48 68.90
8 ✓ - - - - - ✓ ✓ ✓ - - 73.04 74.02 69.11
9 ✓ ✓ ✓ ✓ - - ✓ ✓ ✓ - - 74.15 75.05 70.12
10 - ✓ ✓ ✓ - - ✓ ✓ ✓ - - 72.69 73.00 68.19
11 ✓ ✓ ✓ ✓ ✓ - ✓ ✓ ✓ ✓ - 73.58 75.52 69.75
12 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 74.26 74.79 69.85

4.4 Comparison Study
To evaluate our proposed method, we perform a comparison study
with state-of-the-art KD methods, including the logits-based (RKD
[17], MSE [25], PS [22], and L2D [26]) and feature-based (PKT [18]
and ReviewKD [2]) methods. Table 1 and Table 2 demonstrate the
comparison results on MS-COCO, evaluating the effectiveness of
teacher-student model pairings with both the same and different
architectures. Table 1 reveals that the MDKD method consistently
outperforms others across three metrics. For instance, a notable
improvement is observed when ResNet56 serves as the teacher
and ResNet20 as the student, with MDKD achieving mAP improve-
ments of 3.89% over RKD and 4.12% over the base student model.
Moreover, MDKD frequently surpasses even the performance of
teachers. This superior performance is evident across various back-
bone combinations, demonstrating the superior ability of MDKD.
Additionally, Table 2 reveals that the disparity in performance be-
tween teacher and student models with differing architectures is
larger than that when architectures are the same, yet MDKD still
significantly outperforms other methods and occasionally exceeds
the teacher model.

Furthermore, Table 3 shows the performance of different meth-
ods on VOC in terms of AP and mAP. It is shown that MDKD
achieves the highest scores in most cases than other KD methods,
including AP and mAP. Notably, for challenging classes such as
horse, where other methods may underperform compared to the
vanilla (without performing distillation), MDKD demonstrates a
remarkable 1.21% AP improvement over vanilla. Table 6 (Appen-
dix) presents comparison results on NUS-WIDE. It is shown that
MDKD also outperforms other state-of-the-art methods in all cases,
which demonstrates its superior ability. These experimental results
highlight that while the state-of-the-art methods only transfer the
knowledgewithin featuremaps and logits, they achieve sub-optimal
efficacy due to the lack of knowledge to capture label dependen-
cies, while our method leverages label dependencies to enhance
the KD in multi-label image classification tasks and achieves high
performances.

4.5 Ablation Study
To further evaluate the ability of multi-order label pair dependency
distillation, we conduct ablation studies on MS-COCO, employing

Figure 4: Sensitivity analysis of 𝜆𝐵𝐷2 , 𝜆𝐵𝐷3 , 𝜆𝐵𝐷4 , 𝜆𝐼𝐷2 , 𝜆𝐼𝐷3 ,
and 𝜆𝐼𝐷4 .

ResNet-101 as the teacher and ResNet-34 as the student. The results
are shown in Table 4, where the first row presents the baseline per-
formance of the student model without any distillation applied. The
results in rows 2, 3, 5, and 9 demonstrate a step-wise enhancement
with the implementation of second-order, third-order, and fourth-
order label pair dependency distillation, before the implementation
of fifth-order label pair dependency distillation. However, the dis-
tillation of fifth-order label pair dependencies and sixth-order label
pair dependencies (as seen in the last two rows) does not signifi-
cantly enhance the ability of the model. We argue that this phenom-
enon occurs because the correlation between label pairs becomes
increasingly marginal when extended to overly high orders.

4.6 Sensitivity Analysis
This section performs a sensitivity analysis on the parameters 𝜆𝐵𝐷2 ,
𝜆𝐵𝐷3 , 𝜆𝐵𝐷4 , 𝜆𝐼𝐷2 , 𝜆𝐼𝐷3 , and 𝜆𝐼𝐷4 to further evaluate their impact
on model effectiveness. As depicted in Figure 4, an increase in
these parameters from 0 to 1 promotes an improvement in model
performance. This observation reveals that the distillation of multi-
order label pair dependencies can improve the model performance.
Additionally, beyond the value of 1, the performance of the model
is insensitive to their values.
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Figure 5: Attention maps for person, dog, and cup by different methods.

Teacher

MDKD (Ours)

ReviewKD

L2D

Figure 6: The instance-level second-order label pair depen-
dencies of different methods, measured by square differ-
ence (lower values indicating higher correlation). The scores
among four labels: parkingmeter (p. m. for short), car, person,
and dog are presented. The input image is shown in Figure 1.

4.7 Visualization of Attention Map
To evaluate whether the student focuses on objects correctly cor-
responding to the teacher, we visualize the attention maps from
different classes using Grad-CAM [20]. Our MDKD method demon-
strates superior precision in recognizing objects compared to other
methods, as illustrated in Figure 5 and Figure 7 (Appendix). For
instance, in Figure 5, MDKD accurately captures the cup, while
other methods exhibit recognition failures. The clear recognition
of different classes reveals the superior ability of MDKD compared
with other methods.

4.8 Label Dependencies Knowledge Transfer
To evaluate whether the knowledge to recognize multi-order label
pair dependencies is better transferred in MDKD, we compare the
mean square and square differences in output probabilities from
different methods. The teacher is ResNet-101 and the student is
ResNet-34. We demonstrate the second-order label pair dependen-
cies in Figure 6 and Figure 8 (Appendix). The third-order label
pair dependencies and fourth-order label pair dependencies are
presented in Table 7 (Appendix) and Table 8 (Appendix). The re-
sults show that the label pair dependencies captured by MDKD

Table 5: Performance of reversed distillation on the MS-
COCO dataset.

Metrics mAP OF1 CF1
Teacher 70.55 72.17 66.20
Student 73.02 73.81 68.24
RKD [17] 73.48 74.02 68.84
PKT [18] 73.92 73.48 68.15

ReviewKD [2] 73.84 74.11 69.41
MSE [25] 73.66 74.02 69.52
PS [22] 73.05 73.98 68.54
L2D [26] 74.52 74.67 69.18
MDKD 76.89 77.45 73.68

better match the ones from the teacher compared to other methods,
which reveals its capability to transfer knowledge in recognition of
multi-order label pair dependencies.

4.9 Reversed Knowledge Distillation
Previous study [29] has shown that even a high-performing model
can be further improved through guidance from a less complex
model. To delve deeper into the efficacy ofMDKDwithin the context
of reverse KD, we experiment by assigning ResNet-34 as the teacher
and ResNet-101 as the student, resulting in the student surpassing
the performance of the teacher. As shown in Table 5, MDKD still
achieves higher scores than all other methods, underscoring its
exceptional capability.

5 CONCLUSION
In this paper, we propose the MDKD framework, which explicitly
transfers the knowledge to capture multi-order label pair dependen-
cies during KD. The multi-order distillation transfers the insight to
capture label correlations from different perspectives. Specifically,
MDKD includes batch-level multi-order label pair dependency dis-
tillation, which considers the multi-order label pair dependencies
within a batch, and instance-level multi-order label pair dependency
distillation, which addresses occasional label multi-order label pair
dependencies based on specific scenes. Extensive experiments on
different datasets reveal the superior ability of MDKD.
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