
Under review as a conference paper at ICLR 2021

A POLICY INVARIANCE UNDER INTERMEDIATE REWARDS

Assume the original Markov Decision Process (MDP) without the intermediate rewards is defined
as M = (S,A, T, γ, R), where S and A are state and action spaces, T is the state transition proba-
bilities, γ is the discount factor, and R is the rewards. When we introduce the intermediate rewards
Rm, the MDP is modified to M � = (S,A, T, γ, R�), where R� = R + Rm. The following theory
provides a sufficient and necessary condition for the modified MDP M � to achieve the same optimal
policy as the original MDP M .

Theorem 1. The modified MDP M � = (S,A, T, γ, R + F) with any shaping reward function F is
guaranteed to be consistent with the optimal policy of the original MDP M = (S,A, T, γ, R) if the
shaping function F have the following form

F (s, a, s�) = γΦ(s�)− Φ(s), (A.1)

where Φ : S → R is a potential function evaluated on states. For infinite-state case (i.e., the state
space is an infinite set) the potential function is additionally required to be bounded.

Proof. Please refer to Ng et al. (1999) for detailed proof.

From the above theorem, we can see our intermediate rewards in equation 3 is a potential based
shaping function and the potential function is Φ(s) = −H(y | s). For classification task where
y ∈ Y = {1, 2, . . . ,K} is a discrete variable, the entropy is naturally bounded, i.e., 0 ≤ H(y |
s) ≤ log|Y|, where |Y| is the cardinality of the label space. For regression task where y ∈ R, the
entropy is bounded by 0 ≤ H(y | s) ≤ H(y | ∅). The upper bound H(y | ∅) is determined by the
given surrogate model. Similarly, for the intermediate rewards in equation 10, the potential function
is Φ(s) = log p(xu|s)

|u| , and it is bounded for a given surrogate model.

B EXPERIMENTS

B.1 CLASSIFICATION

For classification task, we conduct experiments on MNIST and two UCI datasets. We downsample
the MNIST images to 16 × 16 to reduce the total number of features. Features are normalized into
the range [0, 1].

The surrogate model for classification task is a conditional extension of ACFlow, where the arbitrary
conditional distributions are conditioned on the target variable y. The ACFlow model for MNIST
is similar to the model they used in their original work (Li et al., 2019), which contains a stack of
conditional coupling transformations and a conditional Gaussian likelihood module. We additionally
condition them on the one-hot encoding of the target y. For UCI dataset, we use an autoregressive
likelihood module. To train the surrogate model, we randomly select two non-overlapping subsets
u and o and optimize the arbitrary conditional log likelihood

log p(y, xu | xo) = log p(xu | xo) + logP (y | xu, xo)

= log p(xu | xo) + log
p(xu, xo | y)P (y)�
y� p(xu, xo | y�)P (y�)

.
(B.2)

The agent is implemented as a PPO policy. Given the current state xo and the auxiliary information
from the surrogate model, we extract a set embedding using set transformer (Lee et al., 2019). The
inputs are first transformed to sets by concatenating with the one-hot encoding of their indexes.
The set embedding is beneficial to deal with arbitrary dimensionality of the inputs. The policy
network then takes the set embedding as inputs and outputs the next action. The critic network
takes the same set embedding as inputs and output an estimate of the state values. To help the agent
extract meaningful representations from its inputs, we let the prediction model fθ take the same
set embedding as input. The policy network, the critic network and the prediction function are all
implemented as fully connected layers.

We run the baseline model JAFA (Shim et al., 2018) using their public code. We cross-validate the
optimal architecture by modifying the number of layers and the size of each layer for both the agent
and the classifier.

13

Under review as a conference paper at ICLR 2021

We adapt EDDI (Ma et al., 2018) to perform classification task by modifying the decoder to output
Categorical distribution for y and Gaussian distribution for x. EDDI learns the distribution p(y, xo)
by utilizing a VAE based model. The acquisition metric for EDDI is

Ui = Exi∼p(xi|xo)DKL[p(z | xi, xo)�p(z|xo)]−Ey,xi∼p(y,xi|xo)DKL[p(z | y, xi, xo)�p(z | y, xo)],
(B.3)

which is estimated using the proposal distribution. Then, a greedy policy that acquires the feature
with maximum utility is employed. We similarly cross-validate the architecture for each dataset.

We also compare to a greedy policy using the surrogate model where the utility is calculated by
equation 8. At each acquisition step, the one with maximum utility is selected.

B.2 REGRESSION

For regression task, the target variable y is concatenated into the features x and the surrogate model
learns the distribution p(y, xu | xo) using the ACFlow. The agent is similarly implemented as
the PPO policy with a set transformer based feature extractor. Baseline models include JAFA and
EDDI, where the architecture is selected by cross validation. We also build a greedy policy using our
surrogate model by estimating the utility following equation 6. For GSMRL and JAFA, the reward
for a prediction ŷ is calculated as the negative MSE −�ŷ − y�22.

B.3 TIME SERIES

Acquiring features for time series data requires the agent to integrate chronological constraints into
the action space. For RL based approach, we manually set the probabilities of invalid action to
zeros. For greedy approach, inspired by Thompson sampling (Thompson, 1933; Russo et al., 2017),
we employ a prior distribution to encode our chronological constraint. Specifically, we set the prior
as a Dirichlet distribution that is biased towards the selection of earlier time steps:

π(ρ) = Dir [α(T − (max(o) + 1)), . . . ,α(T − (T − 1))] (ρ), (B.4)

where α is a hyperparameter, T is the total time steps, max(o) represents the latest time step already
acquired, and ρ is a distribution for acquisition over the remaining future time steps. However, we
still desire that the acquired features are informative for target y. Hence, we update the prior to a
posterior using time steps V that are drawn according to how informative they are:

p(Vn = t) ∝ exp(I(xt; y | xo)), t ∈ {max(o) + 1, . . . , T − 1}, n ∈ {1, . . . , N}, (B.5)

where N is the number of samples. Due to conjugacy, the posterior is also a Dirichlet distribution

p(ρ | V) = Dir

�
α(T − (max(o) + 1)) +

N�

n=1

I{Vn = max(o) + 1}, . . .
�
(ρ). (B.6)

Samples from posterior represent the probabilities of choosing each candidate, which now prefer
both earlier time steps and informative features. We draw a sample from posterior and select the
most likely time step at each acquisition step.

B.4 UNSUPERVISED

To perform active feature acquisition on unsupervised tasks, a.k.a, active instance recognition, we
modify the reward for prediction as the negative MSE of the unobserved features, i.e., −�x̂u−xu�22,
where x̂u is the imputed values of the unobserved features. The surrogate model is again an ACFlow
model and the agent is similarly implemented as a PPO policy.

The JAFA is adapted to this task by changing the classifier to an auto-encoder like model, where the
observed features xo are encoded to predict the unobserved features xu.

For EDDI, by plugging y = x into equation B.3, we have the acquisition metric for this setting as

Ui = Exi∼p(xi|xo)DKL[p(z | xi, xo)�p(z|xo)], (B.7)

since the second KL term in equation B.3 equals to zero.

To build a greedy policy using our surrogate model, we estimate the utility using equation 9. Monte
Carlo estimation is utilized to estimate the entropy.

14

Under review as a conference paper at ICLR 2021

Table 1: Hyperparameters for GSMRL and baselines.

GSMRL

set transformer {32, 64} × {1, 2}
set embedding size {32, 64}
policy network {32, 64} × {2, 3}
critic network {32, 64} × {2, 3}
prediction network {64, 128} × {2, 3}
advantage λ 0.95
discount factor γ 0.99
PPO clip range [0.8, 1.2]
entropy coefficient 0.0

JAFA
set embedding size {16, 32, 64, 128}
Q network {16, 32, 64, 128} × {2, 3, 4, 5}
prediction network {16, 32, 64, 128} × {2, 3, 4, 5}

EDDI

set embedding size {10, 20, 50, 100}
encoder {32, 64, 128, 256} × {3, 4, 5, 6}
latent code {10, 20, 50, 100}
decoder {32, 64, 128, 256} × {3, 4, 5, 6}

step 1 step 3 step 5 step 8 step 10

step 1 step 5 step 10 step 15 step 20

Figure D.1: Examples of the acquisition process
for AFA task from GSMRL.

step 1 step 3 step 5 step 8 step 10

step 1 step 5 step 10 step 15 step 20

Figure D.2: Examples of the acquisition process
for AFA task from GSM+Greedy.

C HYPERPARAMETERS

We search the hyperparameters for both our GSMRL and baselines using cross-validation. The
range of the hyperparameters is listed in Table 1.

D ADDITIONAL RESULTS

Due to the space limit, we only show one example for the acquisition process in the main text.
Figure D.1 and D.3 show some additional examples for AFA and AIR tasks respectively. In Fig. D.2
and D.4, we present several examples of the acquisition process from the greedy policy. Note that
the predictions for both the greedy and the non-greedy policy are from the same pretrained ACFlow
model, therefore the only difference is the acquired features. Comparing the greedy and the non-
greedy policy suggests that the non-greedy policy eliminates the prediction uncertainty much faster
than the greedy one.

In Fig. 4 and 10, we present the acquired features from our GSMRL for several testing examples.
To better understand the overall distribution of the acquired features across all the testing instances,
we plot the frequencies of each feature being acquired in Fig. D.5 and D.6 for both AFA and AIR
on MNIST respectively. A higher value of the frequency means the corresponding feature is ac-
quired for more testing instances. Specifically, the frequency for a feature equals to one means the
corresponding feature is a common feature acquired for all testing instances. The frequency loosely
represents the importance of each feature, which could help with model interpretation and reasoning
about decision making. We will explore this direction in future works.

15

Under review as a conference paper at ICLR 2021

step 1 step 3 step 5 step 10 step 15

averaged
samples

step 1 step 5 step 10 step 20 step 25

averaged
samples

Figure D.3: Examples of the acquisition process
for AIR task from GSMRL.

step 1 step 3 step 5 step 10 step 15

step 1 step 5 step 10 step 20 step 25

averaged
samples

averaged
samples

Figure D.4: Examples of the acquisition process
for AIR task form GSM+Greedy.

Figure D.5: Acquisition frequency for AFA. Figure D.6: Acquisition frequency for AIR.

16

Under review as a conference paper at ICLR 2021

��� ��� ��� ��� ��� ���
����������������������

��

��

��

��

��

���

�
�
�
�
��
�
�

�������������

�����

����

����������

����

(a) Classification

��� ��� ��� ��� ��� ��� ��� ���
����������������������

����

����

����

����

����

����

����

����

�
�
�
�

�������������������

�����

����

����������

����

� � � � �
����������������������

����

����

����

����

����

����

�
�
�
�

��������������������

(b) Regression

��� ��� ��� ��� ���
����������������������

��

��

��

��

���

�
�
�
�
��
�
�

����������������

�����

����

����������

����

(c) Time Series

�� �� �� �� �� �� ��
����������������������

����

����

����

����

����

����

����

����

����

�
�
�
�

������������

�����

����

����������

����

(d) Unsupervised

Figure D.7: Sensitivity analysis by running multiple times independently. Mean and standard devi-
ation are reported for both the number of acquisitions and task performance.

In Fig. D.7, we analyse the sensitivity of our model to random initialization by running our model
three times independently with different random seeds. We report the mean and standard deviation
for both the number of acquisitions and the task performance. Baseline performance are presented
for reference. We can see that our model is robust to random initialization and performs consistently
better than baselines.

17

