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A RELATED WORKS

A.1 MULTIMODAL LARGE LANGUAGE MODELS

Due to the success of large Language models (LLMs) like GPTs (Radford et al., 2019; Brown et al.,
2020; Ouyang et al., 2022), LLAMA (Touvron et al., 2023) and Vicuna (Chiang et al., 2023), Mul-
timodal Large Language Models (MLLMs) have recently experienced substantial development. In-
structBLIP (Dai et al., 2023), LLaVA (Liu et al., 2023a), and MiniGPT-4 (Zhu et al., 2023) are based
on open-source LLMs using vision-language instruction tuning get promising results. mPLUG-
Owl (Ye et al., 2023) leverages the capabilities of pre-trained LLMs, a visual knowledge module,
and a connected visual abstractor module to effectively align images with text. LAMM (Yin et al.,
2023) extend the research of MLLMs to point clouds and propose a training framework optimized
for modalities’ extension. Otter (Li et al., 2023a) utilizes multimodal context instruction tuning
data, demonstrating an improved ability to follow instructions and in in-context learning. LLaMA-
Adapter-v2 (Gao et al., 2023) propose an early fusion strategy to solve the interference between
image-text alignment and instruction following learning targets. Shikra (Chen et al., 2023a) and
Kosmos-2 (Peng et al., 2023) integrate grounding data during the training phase, enabling the model
to develop grounding capabilities. In order to comprehensively assess the capabilities of these
MLLMs, we present the first Comprehensive Evaluation Framework (ChEF) that can holistically
profile each MLLM and fairly compare different MLLMs.

A.2 BENCHMARKS FOR LARGE LANGUAGE MODELS

In recent years, significant efforts have been made to comprehensively evaluate large language mod-
els from diverse perspectives (Liang et al., 2022; Wang et al., 2023d; Bommasani et al., 2021;
Gehrmann et al., 2021; 2022; Brown et al., 2020; Gao et al., 2021; von Werra et al., 2022; Sri-
vastava et al., 2022). Gao et al. (2021) provides a unified framework to test autoregressive language
models on a large number of different evaluation tasks. Liang et al. (2022) measures seven metrics
that reflect a range of societal considerations, including accuracy, calibration, robustness, fairness,
bias, toxicity, and efficiency, in order to improve the transparency of language models. Li et al.
(2023c) propose to evaluate the instruction following ability from the aspect of how well models
can follow instructions that may not align with their priors. Recent studies evaluating the qual-
ity of natural language generation (Zheng et al., 2023; Liu et al., 2023b; Wang et al., 2023a) have
indicated that GPT-based metrics typically exhibit superior performance compared to traditional
reference-based and reference-free baseline metrics in terms of their correlation with human qual-
ity judgments. These evaluation metrics effectively assess the capabilities of LLMs from multiple
dimensions. However, in the evaluation of MLLMs, there is currently a lack of frameworks and
relevant metrics. These frameworks and metrics are of significant importance in assessing MLLMs.

A.3 BENCHMARKS FOR MULTIMODAL LARGE LANGUAGE MODELS

MLLMs have demonstrated remarkable capabilities (Liu et al., 2023a; Zhu et al., 2023; Dai et al.,
2023) and are poised to address increasingly complex multimodal tasks. Various benchmarks have
emerged to evaluate MLLMs. Some works focus on evaluating MLLMs using existing conventional
multimodal datasets (Wang et al., 2023c) or only evaluate one or a few factors of MLLMs (Shao
et al., 2023; Li et al., 2023d; Yu et al., 2023; Bitton et al., 2023), which may not provide a compre-
hensive evaluation suitable for these models. Recent benchmarks (Li et al., 2023b; Liu et al., 2023c;
Fu et al., 2023) often focus on building a multimodal evaluation dataset for MLLMs. These bench-
marks have been designed to transform open-ended predictions into predefined categorical choices.
For instance, MME transforms free-form responses into binary True/False questions, while Li et al.
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(2023b); Liu et al. (2023c) employ multi-choice questions. However, the efficacy of these bench-
marks is contingent upon the quality of the dataset construction and may suffer from scalability
issues. More recently, efforts such as Yin et al. (2023); Xu et al. (2023) have attempted to estab-
lish evaluation frameworks, yet they have been characterized by limitations in terms of scalability
and comprehensiveness. In response to these challenges, ChEF offers a standardized framework for
conducting versatile evaluations and facilitates seamless integration of new models and tasks.

B CHEF (COMPREHENSIVE EVALUATION FRAMEWORK) MODULES

ChEF is a comprehensive evaluation framework aiming at providing a fair and holistic assessment
of MLLMs’ performance across diverse multimodal tasks. To accomplish this objective, our design
principles encompass the following key aspects: Modular, Scalable, Flexible, Reliable, and Indica-
tive. Based on these principles, we carefully design and implement ChEF with four components i.e.,
Scenario, Instruction, Inferencer, and Metric. In this section, we will introduce the details of each
module.

B.1 SCENARIO

The Scenario pertains to the datasets and tasks utilized for evaluating the proficiency of MLLMs in
visual and multimodal tasks. Following the principles, the Scenario is designed to be scalable. Any
Scenario can be easily integrated into ChEF by defining the required Instruction and Metric with
the provided interfaces. Due to the substantial similarities among datasets within the same visual
task, we categorize them based on task divisions. Within each task, the Scenarios can share similar
implementations for the given interfaces.

To facilitate the active participation of the open-source community in expanding the scope of
Scenarios, we incorporate several prominent datasets from highly regarded visual tasks as exem-
plary Scenarios. These datasets include CIFAR-10 (Krizhevsky & Hinton, 2009) for classification,
Flickr30k (Young et al., 2014) for image captioning, ScienceQA (Lu et al., 2022) for multimodal
question-answering, etc. Furthermore, we seamlessly integrate multi-task datasets, including MM-
bench (Liu et al., 2023c), SeedBench (Li et al., 2023b), and MME (Fu et al., 2023), into the frame-
work of ChEF. We warmly welcome the integration of additional Scenarios into ChEF by simply
implementing the requirements with the provided interfaces.

B.2 INSTRUCTION

The Instruction component plays a pivotal role in facilitating the model’s comprehension of the un-
derlying semantics within the Scenario and generating pertinent responses. Within ChEF, a standard
query is initially incorporated for each Scenario, such as “The photo of” for classification, providing
the model with a basis for answer generation. Nevertheless, it is noteworthy that divergent models
may interpret the same query dissimilarly, leading to variations in evaluation.

To ensure the universal compatibility of the Instruction module, in line with the design principle
of flexibility, we undertake measures to devise the query pool, encompassing frequently employed
queries that exhibit similar intents. This designation allows for the seamless integration of new
queries, thereby ensuring the requisite adaptability for different MLLMs. The standard query and
query pool are collectively referred to as Query.

Moreover, we firmly believe that leveraging the In-context Example (ICE) as the Instruction
presents a more comprehensive and generalized approach, empowering models to grasp the intri-
cacies of the assigned task and generate responses in the desired format and content. The ICE is
retrieved from the dataset based on various criteria commonly employed in the field of NLP, in-
cluding Random ICE, Fixed ICE, and Top-K ICE (Wu et al., 2023; Liu et al., 2022; Su et al.,
2023).

(1) Random ICE is retrieved at random, without considering their relevance or importance. An
example is shown in Figure 1.
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Question: What type of environment is depicted in the picture? 
Options : 
(A) Street 
(B) forest
(C) home 
(D) shopping mall
Answer: (A)

Question: Which mood does this image convey? 
Options : 
(A) Sad 
(B) Anxious
(C) Happy 
(D) Angry
Answer: (A)

Question: The passage below describes an experiment. Read the passage and then follow the 
instructions below. Madelyn applied a thin layer of wax to the underside of her snowboard and rode the 
board straight down a hill. Then, she removed the wax and rode the snowboard straight down the hill 
again. She repeated the rides four more times, alternating whether she rode with a thin layer of wax on 
the board or not. Her friend Tucker timed each ride. Madelyn and Tucker calculated the average time it 
took to slide straight down the hill on the snowboard with wax compared to the average time on the 
snowboard without wax. Figure: snowboarding down a hill. Identify the question that Madelyn and 
Tucker's experiment can best answer. What is the correct option for this question?
Options :
(A) Does Madelyn's snowboard slide down a hill in less time when it has a thin layer of wax or a thick 
layer of wax? 
(B) Does Madelyn's snowboard slide down a hill in less time when it has a layer of wax or when it does 
not have a layer of wax?
Answer:

Random ICE

Figure 1: An example of Random ICE. The Random ICE are randomly retrieved from the dataset,
without considering their relevance or importance.

Question: Figure: Great Victoria Desert. The Great Victoria Desert is a hot desert ecosystem located in 
Western Australia and South Australia. It is the largest desert in Australia! The Great Victoria Desert is 
home to the rare great desert skink. To stay cool during the day, great desert skinks live in holes they 
dig in the ground. Which statement describes the Great Victoria Desert ecosystem? 
Options: 
(A) It has thick, moist soil. 
(B) It has dry, thin soil.
Answer: (B)

Question: Figure: Tongue Point Marine Life Sanctuary. Tongue Point Marine Life Sanctuary is in western 
Washington State. The park is on the coast of the Pacific Ocean. It has many tide pool ecosystems. 
Which better describes the tide pool ecosystems in Tongue Point Marine Life Sanctuary? 
Options: 
(A) It has water that is poor in nutrients. It also has only a few types of organisms. 
(B) It has water that is rich in nutrients. It also has many different types of organisms.
Answer: (B)

Question: The passage below describes an experiment. Read the passage and then follow the 
instructions below. Madelyn applied a thin layer of wax to the underside of her snowboard and rode the 
board straight down a hill. Then, she removed the wax and rode the snowboard straight down the hill 
again. She repeated the rides four more times, alternating whether she rode with a thin layer of wax on 
the board or not. Her friend Tucker timed each ride. Madelyn and Tucker calculated the average time it 
took to slide straight down the hill on the snowboard with wax compared to the average time on the 
snowboard without wax. Figure: snowboarding down a hill. Identify the question that Madelyn and 
Tucker's experiment can best answer. What is the correct option for this question?
Options :
(A) Does Madelyn's snowboard slide down a hill in less time when it has a thin layer of wax or a thick 
layer of wax? 
(B) Does Madelyn's snowboard slide down a hill in less time when it has a layer of wax or when it does 
not have a layer of wax?
Answer:

Fixed ICE

Figure 2: An example of Fixed ICE. The Fixed ICE is predetermined based on prior knowledge or
experiment.
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Question: The passage below describes an experiment. Read the passage and then follow the 
instructions below.
Carson made six batches of muffins over the course of one day. He used whole wheat flour in three of 
the batches and white flour in the other three batches. He divided the batter into muffin tins, using two 
ounces of batter per muffin. He baked the muffins in a 350¬∞F oven for 20 minutes. After allowing the 
muffins to cool, Carson measured the dimensions of the muffins and calculated their volumes. He 
compared the volumes of the muffins made with whole wheat flour to the volumes of the muffins made 
with white flour. Figure: muffins cooling. Identify the question that Carson's experiment can best 
answer. 
Options:
(A) Does the type of flour used in the muffins affect the number of muffins that turn brown after 30 
minutes in the oven? 
(B) Do muffins made with white flour have larger volumes than muffins made with whole wheat flour?
Answer: (B)

Question: The passage below describes an experiment. Read the passage and then follow the 
instructions below. Madelyn applied a thin layer of wax to the underside of her snowboard and rode the 
board straight down a hill. Then, she removed the wax and rode the snowboard straight down the hill 
again. She repeated the rides four more times, alternating whether she rode with a thin layer of wax on 
the board or not. Her friend Tucker timed each ride. Madelyn and Tucker calculated the average time it 
took to slide straight down the hill on the snowboard with wax compared to the average time on the 
snowboard without wax. Figure: snowboarding down a hill. Identify the question that Madelyn and 
Tucker's experiment can best answer. What is the correct option for this question?
Options :
(A) Does Madelyn's snowboard slide down a hill in less time when it has a thin layer of wax or a thick 
layer of wax? 
(B) Does Madelyn's snowboard slide down a hill in less time when it has a layer of wax or when it does 
not have a layer of wax?
Answer:

Question: People can use the engineering-design process to develop solutions to problems. One step in 
the process is testing if a potential solution meets the requirements of the design. The passage below 
describes how the engineering-design process was used to test a solution to a problem. Read the 
passage. Then answer the question below. Devin was a mechanical engineer who was designing  to 
record temperature, precipitation, and wind speed. The weather station would be used in a town where 
the highest recorded temperature was 40℃. Devin wanted to make sure the weather station would 
work even in unusually warm weather. So, he set an indoor test chamber to 50℃ with low moisture and 
no wind. He left the weather station in the chamber overnight. The next day, he checked to see if the 
weather station displayed accurate measurements after 24 hours at 50℃. Figure: a weather station. 
Which of the following could Devin's test show? 
Options:
(A) if the weather station would work when the temperature was 50℃ 
(B) how well the weather station would work when it was windy
Answer: (A)

Top-k Text ICE

Figure 3: An example of Top-k Text ICE. The Top-k Text ICE is retrieved from the dataset based
on text similarity.

(2) Fixed ICE is predetermined based on prior knowledge or experiments. These ICE can serve as
instructional cues to encourage the model to replicate and generate outputs in a format consistent
with the provided examples, as shown in Figure 2

(3) Top-k ICE is retrieved based on either the image similarity (Top-k Image ICE) or the text (Top-k
Text ICE) similarity, as shown in Figure 3,4.

The designation and implementation of the Query and ICE significantly contribute to the flexibility
of evaluation.

B.3 INFERENCER

The Inferencer plays a vital role in determining the model’s response to questions. Within ChEF,
it incorporates a fundamental auto-regressive generation method. However, due to the free-form
and long-term nature of its output, evaluating the quality of the generated text becomes subjective
and unreliable (Yin et al., 2023; Li et al., 2023b). To address this concern, we design the following
Inferencers to support reliable evaluation:
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Question: Which of the following captions best describes this image? 
Options: 
(A) A person swimming in a pool 
(B) A group of people sunbathing on a beach 
(C) A person skiing down a mountain 
(D) A woman doing yoga in a park
Answer: (C)

Question: Based on the image, what activities have the couple likely participated in 
recently? 
Options: 
(A) The couple has likely participated in skiing and snowboarding activities. 
(B) The couple has likely participated in ice skating and snowshoeing activities. 
(C) The couple has likely participated in beach volleyball and surfing activities. 
(D) The couple has likely participated in hiking and camping activities. 
Answer: (A)

Question: The passage below describes an experiment. Read the passage and then follow the 
instructions below. Madelyn applied a thin layer of wax to the underside of her snowboard and rode the 
board straight down a hill. Then, she removed the wax and rode the snowboard straight down the hill 
again. She repeated the rides four more times, alternating whether she rode with a thin layer of wax on 
the board or not. Her friend Tucker timed each ride. Madelyn and Tucker calculated the average time it 
took to slide straight down the hill on the snowboard with wax compared to the average time on the 
snowboard without wax. Figure: snowboarding down a hill. Identify the question that Madelyn and 
Tucker's experiment can best answer. What is the correct option for this question?
Options :
(A) Does Madelyn's snowboard slide down a hill in less time when it has a thin layer of wax or a thick 
layer of wax? 
(B) Does Madelyn's snowboard slide down a hill in less time when it has a layer of wax or when it does 
not have a layer of wax?
Answer:

Top-k Image ICE

Figure 4: An example of Top-k Image ICE. The Top-k Image ICE is retrieved from the dataset
based on image similarity.

(1) Direct: This is an auto-regressive generation method employed without sampling. The output
of the MLLMs is determined through greedy search, ensuring consistent output across multiple
inference instances for enhanced reliability.

(2) Chain-of-Thought (CoT): This answering approach includes a special query, “Let’s think step
by step”, which prompts the model to provide responses in a sequential manner. It prompts the
model to provide its reasoning process, ensuring that the model’s answers are well-thought-out and
dependable.

(3) Perplexity (PPL): This Inferencer constrains MLLMs’ output within a limited text scope, named
as answer pool, and derives the answer by computing the likelihood. The answer pool is either
fixed, retrieved, or generated based on the specific Scenario. For example, in multi-choice question-
answering Scenarios, the answer pool is the four options {A, B, C, D}. For certain Scenarios,
it includes the ground-truth answer and several negative candidates either generated or retrieved.
PPL confines the model’s output within a specific range, guaranteeing that the model selects ex-
actly matched answers based on discrimination rather than generating similar responses. Treating
MLLMs as discriminative entities for specific Scenario evaluation enhances objectivity and reliabil-
ity in the evaluation process.

(4) Multi-Turn: This method decomposes complex tasks into subtasks and generates answers se-
quentially based on each subtask. For example, in the context of object detection, the initial In-
struction may pertain to the object categories present in the image, followed by subsequent inquiries
regarding the bounding boxes for each detected object category. This approach supports objective
and reliable evaluation by assessing the model’s responses to each subtask, thereby enhancing ob-
jectivity and reliability. Notably, various Inferencers can be invoked and seamlessly integrated with
one another within multiple turns. For illustration, the CoT can be employed during the initial turn,
while the subsequent turn can leverage the Direct.
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These Inferencers augment the evaluation framework of ChEF, enabling more objective and trust-
worthy assessments of model performance.

B.4 METRIC

The selection of Metrics is crucial when evaluating MLLMs, as it should encompass the evalua-
tion capabilities for traditional visual tasks while considering the novel characteristics of MLLMs
as generative models. In the context of traditional computer vision tasks, we believe it is more suit-
able to conduct adaptation based on the existing evaluation metrics. As a result, within the ChEF
framework, we integrate well-established metrics such as BLEU for captioning, accuracy for classi-
fication, and mAP for detection, which are commonly used in traditional computer vision tasks.

Additionally, when employing the PPL as Inferencer in evaluation pipelines, we rely on accuracy
as the primary Metric since the generated text is confined to an answer pool. This methodology
enables the harmonization of evaluation across various Scenarios, as accuracy is adopted as the
shared assessment criterion.

C DESIDERATA

Based on ChEF, it becomes rather convenient to set up new evaluations to quantify the desired
capabilities (or called desiderata) that a competent MLLM model should possess, as a reliable
agent that can perform real-world multimodal interactions. The desiderata include calibration, in-
context learning, instruction following, language performance, hallucination, and robustness. In this
section, we will introduce the details of each desideratum.

C.1 CALIBRATION

Calibration aims to evaluate the model’s performance to be simultaneously accurate and to provide
appropriate uncertainty in its outputs, as emphasized in the work by HELM (Liang et al., 2022).
This is particularly significant in risk scenarios We evaluate calibration by Expected Calibration
Error (ECE) (Naeini et al., 2015; Guo et al., 2017). Formally, let y be the ground truth, and ŷ be
the model’s prediction with associated confidence p̂. The ECE examines the difference between
the model’s predicted confidence p̂ and the probability the model is correctly given p̂, as shown in
equation 1.

ECE = E[|p̂− E(y = ŷ|p̂)|] (1)

To estimate the expected accuracy E(y = ŷ|p̂) from finite samples, we compute the ECE by binning
the model’s predictions into m bins following prior work (Guo et al., 2017; Liang et al., 2022). We
choose uniform-mass bins for better approximation with k = 10, where an equal number of samples
fall into each bin. Let Bm be a set of indices i of samples falling in m-th bin, then the average
confidence and accuracy of Bm are defined as

conf (Bm) =
1

|Bm|
∑
i∈Bm

p̂i (2)

acc (Bm) =
1

|Bm|
∑
i∈Bm

1(ŷi = yi) (3)

Therefore, we can approximates equation 1 by equation 4.

ECE =

k∑
m=1

|Bm|
n

|conf (Bm)− acc (Bm)| (4)

The difference between conf and acc for a given bin represents the calibration gap (visualized in
Figure 7 ). The lower the ECE, the better the calibration of the model, indicating that the predicted
confidence p̂ more accurately represents the true probability.
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Question: What landmark is this? and where 
is it? 
Options:
(A) The Statue of Liberty in New York, USA 
(B) The Eiffel Tower in Paris, France
(C) St. Basil’s Cathedral in Moscow, Russia 
(D) Blue Domed Church in Santorini, Greece
Answer: (D)

Question: Where is this?  
Options:
(A) Singapore 
(B) London 
(C) Shanghai
(D) Paris
Answer: (A)

Question: Where is it located?  
Options: 
(A) Hong Kong 
(B) Shanghai 
(C) Singapore 
(D) New York 
Answer: 

Question: What landmark is this? and where is it? 
Options:  
(A) The Statue of Liberty in New York, USA 
(B) The Eiffel Tower in Paris, France 
(C) St. Basil’s Cathedral in Moscow, Russia 
(D) Blue Domed Church in Santorini, Greece
Answer: (D)

Question: Where is this?  
Options: 
(A) Singapore 
(B) London
(C) Shanghai 
(D) Paris
Answer: (A)

Question: Where is it located?  
Options: 
(A) Hong Kong 
(B) Shanghai 
(C) Singapore 
(D) New York 
Answer: 

You will now see some examples. The example has no relation to
the provided image content. You need to follow the example and 
answer the final question based on the image content.

ICE with image ICE without image

Figure 5: Difference between ICE with image and without image. The ICE are retrieved based
on the images’ similarity to the input images.

C.2 IN-CONTEXT LEARNING

In-context Learning (ICL) aims to evaluate MLLMs’ ability to perform new tasks without any
gradient-based training (Wu et al., 2023; Brown et al., 2020). This ability is capable of general-
izing to unseen cases, which opens up many new technological possibilities that were previously
considered unique to humans. While in the field of NLP, LLMs have demonstrated their ability for
ICL. However, within the domain of MLLMs, this potential remains unexplored. Most MLLMs
lack the ability for ICL (Li et al., 2023a). Therefore, considering the ICL ability is crucial when
evaluating multimodal large language models.

ICL adds a small number of ICE before Query as the Instruction and has demonstrated its ability
to enhance the performance of LLMs in few-shot scenarios. Given that multimodal tasks typically
involve visual data, incorporating the ICE with images in MLLMs is a reasonable approach. How-
ever, some MLLMs currently only support single-image input. Given the presence of an image in
the Query, the image of ICE cannot be included. Considering the limited support for multi-image
input in certain MLLMs, we implement two ICL methodologies: one utilizing ICE without image
and the other incorporating ICE with images, as shown in Figure 5. In the case of ICE without
image, to prevent any confusion between the content of ICE and the images in the Query for the
MLLMs, we add an additional Instruction, explicitly informing the MLLMs that the provided ICE
text has no relation to the provided image content. For the selection of ICE, we implement retriever
methods such as Random, Fixed, and Top-k, as mentioned in Section B.2.

To measure MLLMs’ ICL ability, we utilize ICE as Instruction for each specific Scenario. We
compute their accuracy and use the relative accuracy change as the final score. Specifically, we
compute the accuracy under the 0-shot setting (without using ICE) and the average accuracy values
for varying numbers of ICE, ranging from 1 to N . In multi-choice question-answering paradigms,
random guessing can yield an expected lower-bound accuracy, which can be misleading in terms of
performance evaluation. To mitigate the impact of this potentially deceptive performance on robust-
ness assessments, we systematically eliminate the bias introduced by random choice. Therefore, we
introduce the Relative ICL Accuracy for Multi-choice (RIAM), adapted from Chen et al. (2023b);
Schiappa et al. (2022), to more accurately assess the model’s ICL ability. The RIAM primarily
calculates the relative accuracy change of the model before and after using ICE.
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C.3 INSTRUCTION FOLLOWING

Taking inspiration from (Li et al., 2023c), we utilize three groups of instructions for verbalizer
manipulation: natural, neutral, unnatural, to evaluate how well models can follow instructions that
may not align with their priors. The levels in terms of aligning with prior knowledge of these three
groups are ranked as natural > neutral > unnatural. We expect the model to answer the question
following instructions and generate a new answer corresponding to the original answer. In practice,
we select different numbers of verbalizers for each group of verbalizer manipulation, depending on
the alignment with the model’s prior knowledge. Each verbalizer maps “A|B|C|D” to different new
options.

(1) Natural.“1|2|3|4|5” ,“I|II|III|IV|V” and “first|second|third|fourth|fifth”.

(2) Neutral. “Smith|Johnson|Williams|Jones|Brown” and “foo|dog|hip|oh|cat”.

(3) Unnatural. The choices are mapped to their respective next choices as the new verbalizer for
each given question (e.g., “D|A|B|C” corresponding to “A|B|C|D”).

We calculate the Match Ratio (MR) to determine the percentage of samples that adhere to the ver-
balizer manipulation instructions, mapping their original answers to corresponding new answers.
This calculation helps mitigate the influence of the model’s accuracy in answering questions and
highlights its proficiency in following verbalizer manipulation instructions. A higher MR indicates
a superior ability of the model to follow instructions.

C.4 LANGUAGE PERFORMANCE

Please act as an impartial judge and conduct a comprehensive assessment of a multimodal AI assistant's performance in the field of 
Visual Question Answering (VQA). Each data sample to be evaluated follows the following format:

[Question]
{Question}
[Ground Truth]
{Ground truth}
[Assistant's Chain of Thought]
{Chain of thought generated by AI assistant}
[Assistant's Final Choice]
{Final Choice generated by AI assistant}

Your task is to evaluate the quality of natural language generation from AI assistant considering factors such as the helpfulness, 
relevance, accuracy, depth, creativity, and level of detail of the response. 
Please first provide a comprehensive explanation of your evaluation and an overall score ranging from 0 to 10 based on explanation, 
where a higher score indicates better overall performance. Please output in the following format:

[Explanation]
{Evaluation Explanation}
[Overall Score]
{An integer ranging from 0 to 10 representing the final evaluation score}

Please ensure that your evaluation score comprehensively captures the AI assistant's performance avoiding any potential bias. Assuming 
that the visual information mentioned by the AI assistant is contained in the image, you only need to evaluate the quality of the 
generated text. Your assessments will contribute to enhancing the assistant's effectiveness in visual question answering.

GPT-4 System Message

Figure 6: System message for GPT-4 to evaluate language performance of MLLMs. The System
Message includes the evaluation task description, the format of the evaluation input template, the
evaluation criteria, and the format of the evaluation output template. The phrases enclosed in “[]”
represent domain names, which remain constant during the testing process. The phrases enclosed
in “{}” represent the meanings of the domain names, which is a placeholder to be replaced with the
specific content corresponding to the domain name during testing.

Evaluating the quality of natural language generation is a challenging task, often requiring scoring
based on various aspects such as coherence, consistency, fluency, and more. Recent studies (Zheng
et al., 2023; Liu et al., 2023b; Wang et al., 2023a) have indicated that GPT-based metrics typically
exhibit superior performance compared to traditional reference-based and reference-free baseline
metrics in terms of their correlation with human quality judgments. Thus, we employ GPT to score
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the chain-of-thought text generated by the model in the multimodal question-answering Scenarios,
aiming to evaluate the model’s language performance.

In contrast to NLP, where GPT can evaluate the quality of natural language generation without
references (Zheng et al., 2023; Liu et al., 2023b; Wang et al., 2023a), the evaluation process in the
visual Scenarios presents a distinct challenge as GPT lacks access to visual information. Therefore,
we implement specific adaptations for evaluating GPT’s performance in multimodal tasks as follows:

(1) Reference-Based Evaluation: We provide GPT with ground-truth sentences (i.e. answers and
questions) as the reference during the evaluation, which ensures faithfulness of the chain-of-thought.

(2) Visual Information Assumption: GPT is prompted to assume that all visual information men-
tioned in the test model’s responses is contained in the image. This measure prevents GPT from
misjudging descriptions of images in the chain-of-thought as language hallucinations (which may
not be explicitly stated in the given question). This helps avoid unwarranted reductions in the lan-
guage performance score.

(3) Selective Sampling of Correct Conclusions: We selectively extract samples in which the
MLLMs’ conclusions are correct. This reduces the impact of conclusion accuracy on the evalua-
tion of language generation quality, as mentioned in Section E.4.

(4) Efficient and Scalable Evaluation: For more efficient and scalable evaluation, instead of pair-
wise comparisons, we individually assess each MLLM’s response, which is called Single Answer
Grading. This method exhibits high agreement with human experts in NLP tasks as demonstrated in
(Zheng et al., 2023).

(5) Multiple Evidence Calibration: (Wang et al., 2023b) To make the GPT score more reliable
and interpretable, we prompt the GPT to generate an explanation as evaluation evidence before
generating the final overall score. Thanks to the properties of autoregressive models, this method
allows GPT to calibrate scores based on evaluation evidence. To further reduce the systematic error
of GPT evaluation, we conduct Multiple Evidence Calibration, sampling multiple GPT responses
for each evaluation query, and taking the average score of all responses as the final evaluation score.

To apply the adaptations below, we modify the system message for GPT-4. Figure 6 shows the
system message for GPT-4 to evaluate the language performance of MLLMs.

C.5 ROBUSTNESS

Robustness aims at evaluating the capability of MLLMs to maintain accurate performance and mean-
ingful outputs in the face of diverse challenges and variations in input data. This includes addressing
data corruption and perturbations, which ensures the model’s reliability in real-world applications.
To evaluate the robustness of our model, we carefully select mild image and text corruptions, draw-
ing inspiration from recent work (Liang et al., 2022; Qiu et al., 2022; Chen et al., 2023b; Schiappa
et al., 2022).

For image corruptions, we incorporate five corruption categories: noise, blur, weather, digital
(sourced from ImageNet-C (Hendrycks & Dietterich, 2019)), and others (fundamental data aug-
mentation techniques). For text corruption, we introduce five categories like (Chen et al., 2023b):
basic, sentence, word, character (sourced from (Wang et al., 2021)) and choice. The choice cat-
egory specifically represents additional corruption introduced for multi-choice question-answering
Scenarios. All the corruption methods are shown in Table 1 and Table 2. These corruption methods
we employ do not distort the core information of the images and text. For instance, the Center Crop
for images retains at least 90% of the image content. Text perturbations solely target the questions,
and in the options section, only Circular Option and Reverse Option (circular shifting and reverse
order on options respectively) are applied, ensuring that the original meaning of the questions and
correct answers remain unchanged.

To simulate real-world complexity, we construct composite corruption sequences with random sever-
ity levels for both image and text within each sample. Specifically, corruption methods from various
categories are composited in a specific order. For each category, the corruption method to apply is
selected based on a composite strategy. We employ two strategies: Random, where one corruption
method from the category is chosen randomly, and Sequential, where all methods from the category
are applied sequentially. This approach enables us to assess the model’s robustness in a scalable
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Table 1: Image corruption methods are categorized into five types. In the robustness experiments,
the corruption for each image is formed by sequentially combining methods each with random
severity level from the following five categories: Noise, Blur, Weather, Digital, and Other. Each
category’s method is selected based on the corresponding combination strategy: Random denotes
the random selection of one method from all methods within that category, while Sequential implies
the consecutive execution of all methods within that category. Severity represents the number of
adjustable severity levels for the corruption method.

Category Method Severity Compose Strategy

Noise

Gaussian Noise 5

RandomShot Noise 5
Impulse Noise 5
Speckle Noise 5

Blur

Defocus Blur 5

Random
Frosted Glass Blur 5

Motion Blur 5
Zoom Blur 5

Gaussian Blur 5

Weather

Snow 5

Random
Frost 5
Fog 5

Brightness 5
Spatter 5

Digital

Contrast 5

Random
Elastic 5
Pixelate 5

JPEG Compression 5
Saturate 5

Other
Center Crop 5

SequentialResize 5
Rotate 5

Table 2: Text corruption methods are categorized into five types. In the robustness experiments,
the corruption for each text is formed by sequentially combining methods each with random sever-
ity level from the following five categories: Basic, Sentence, Word, Character, and Choice. Each
category’s method is selected based on the corresponding combination strategy: Random denotes
the random selection of one method from all methods within that category, while Sequential implies
the consecutive execution of all methods within that category. Severity represents the number of
adjustable severity levels for the corruption method.

Category Method Severity Compose Strategy

Basic Lowercase 1 SequentialConstraction/Expansion 1

Sentence

Passive 1

Random
Active 1
Casual 1
Formal 1
Back Translation 1

Word
Swap Synonym 5

RandomInsert Adv. 1
Add Irrelevant 1

Character

Ocr 5

RandomTypos 5
Spelling Error 5
Keyboard 5

Choice Circular Options 1 RandomReverse Options 1

11
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manner, rather than evaluating the model for each instance of every separate corruption. By apply-
ing image corruption and text corruption at the same time, we can evaluate the model’s performance
in handling joint corruption across visual and textual domains.

To assess the model’s robustness more accurately, we introduce the Relative Robustness for Multi-
choice (RRM). Similar to the RIAM described in Section C.2, we eliminate the bias introduced by
random choice. The RRM primarily calculates the relative accuracy change of the model beyond
random guessing accuracy before and after corruptions.

C.6 HALLUCINATION

Hallucination refers to the generated content that is nonsensical or unfaithful to the provided source
content (Ji et al., 2023). Similar to LLMs, MLLMs also encounter the challenge of hallucination.
Since objects are the core elements that contribute to the visual semantics of an image, we study
the object hallucination problem, which refers to the generated descriptions containing objects that
are inconsistent with the given image (Biten et al., 2022). As a result, we utilize the Polling-based
Object Probing Evaluation (POPE) pipeline (Li et al., 2023d) on MSCOCO (Lin et al., 2014). The
fundamental concept behind this approach is to transform the evaluation of hallucination into a series
of binary classification tasks. This is achieved by presenting MLLMs with straightforward Yes-or-
No questions regarding the presence of specific objects within the images (e.g., “Is there a car in
the image?”). Each image is prompted with six such Yes-or-No questions. To generate the probing
objects, POPE considers three polling strategies by sampling the objects randomly, from popular
objects, and among those frequently co-occurring objects, respectively. Additionally, we employ
PPL to enhance the reliability of our evaluation. Similar to POPE, we also adopt Metrics including
accuracy, precision, recall, F1-Score, and the ratio of “Yes” responses.

D EXPERIMENTS: DETAILS OF EVALUATION SETUP

D.1 DETAILS OF THE EVALUATED MODELS

Table 3: Details of the evaluated MLLMs. mPLUG stands for mPLUG-Owl and LAv2 stands for
LLaMA-Adapter-v2.

MLLM Visual Model Language Model Overall Parameter
LLaVA CLIP ViT-L/14 MPT 7B 7B
LAMM CLIP ViT-L/14 Vicuna 13B 13B
MiniGPT-4 EVA-G Vicuna 7B 8B
mPLUG CLIP ViT-L/14 LLaMA 7B 7B
Otter CLIP ViT-L/14 LLaMA 7B 9B
LAv2 CLIP ViT-L/14 LLaMA 7B 7B
InstructBLIP EVA-G Vicuna 7B 8B
Shikra CLIP ViT-L/14 LLaMA 7B 7B
Kosmos-2 CLIP ViT-L/14 Decoder 1.3B 1.6B

Table 4: Success rate in choice extraction on MMBench. The results represent the success rate in
choice extraction of Step-1, which is defined in MMBench. MMBench released the evaluation code
for three models. The results in ChEF are aligned with those in MMBench.

MMBench ChEF
LLaVA 14.85 14.78
MiniGPT-4 55.58 52.52
InstructBLIP 91.2 91.52

In Table 3, we show the details of all the evaluated MLLMs in ChEF. In order to ensure that the
evaluated MLLMs are relatively up-to-date, we attempt to align the results of the choice extraction
success rate in Step-1 with MMBench (Liu et al., 2023c), which is a recently proposed multimu-
dal benchmark. We align the results with all the open-sourced evaluated MLLMs in MMBench, as
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Table 5: Details of default Recipes. Acc. is accuracy. CoT→ PPL means Multi-Turn with CoT
in the first turn and PPL in the second.

Scenario Instruction Inferencer Metric
CIFAR10 Standard Query PPL Acc.
Omnibenchmark Standard Query Multi-Turn PPL WeightedACC
Flickr30k Standard Query PPL Acc.
VOC2012 Standard Query Multi-Turn PPL Acc.
FSC147 Standard Query PPL Acc.
ScienceQA Standard Query CoT → PPL Acc.
MMBench Standard Query CoT → PPL Acc.
MME Standard Query PPL Acc.
SEEDBench Standard Query PPL Acc.

Table 6: Results of VanillaEval and CircularEval on MMBench. The results reveal a substantial
decrease in accuracy when switching from VanillaEval to CircularEval.

VanillaEval CircularEval
LLaVA 43.13 10.24
LAMM 44.47 14.21
MiniGPT-4 54.34 26.46
mPLUG 49.57 12.24
Otter 53.91 26.27
LAv2 57.06 24.01
InstructBLIP 65.73 46.8
Shikra 63.26 43.08
Kosmos-2 25.60 0.1

shown in Table 4. Due to differences in evaluation settings, such as input queries, inference strate-
gies, and metrics, the evaluated results on MMBench in ChEF may differ slightly from those in
MMBench.

D.2 DEFAULT RECIPES FOR SCENARIOS

In ChEF, we provide default Recipes for each Scenario. In Table 5, we show the details of the default
Recipes for each Scenario. Among the Scenarios, the Omnibenchmark is meticulously labeled using
a hierarchical chain of categories, facilitated by the Bamboo tree methodology (Zhang et al., 2022).
For Instruction, we employ standard queries as nearly all MLLMs lack the ability for in-context
learning.

For Inferencer, we adopt PPL for most Scenarios. For ScienceQA and MMBench, we employ
Multi-Turn, with the first turn using the CoT, followed by the PPL in the second turn. For fine-
grained classification tasks, we utilize the Multi-Turn, where each turn is a PPL, to hierarchically
inquire about categories. For detection tasks, the first turn employs PPL to inquire about categories,
while the second turn utilizes PPL to inquire about bounding boxes. The answer pool for CIFAR-
10 encompasses the ten predefined classes, while for FSC147, it involves the ground truth values
with an additional range of ±2. The answer pool for Omnibenchmark is randomly retrieved from the
category tree in Bamboo (Zhang et al., 2022). In the case of Flickr30k, the answer pool is determined
by retrieving the top-k negative candidates from the test data based on BERT similarity (Reimers &
Gurevych, 2019). The answer pool for VOC2012 is randomly generated by scaling and translating
the ground-truth bounding boxes. The answer pool for multimodal question-answering tasks is the
options {A, B, C, D}.

In the Metric, a single accuracy measure is utilized to assess all Scenarios uniformly. For certain
specialized Scenarios, we adopt specific approaches to calculate accuracy. For Omnibenchmark,
weighted accuracy is employed, which entails a weighted accuracy calculation based on the granu-
larity of the predicted classification. MMBench provides two evaluation settings (i.e., VanillaEval
and CircularEval), where the CircularEval is used to assess the MLLMs’ consistency in responses
for the same question when the order of options is changed. We conduct evaluations in both settings,
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Table 7: Details of Recipes for six dimensions of desiderata. ICL is in-context learning. Ins.
Follow. is instruction following and Lang. Perf. is language performance.

Desiderata Scenario Instruction Inferencer Metric
Calibration MMBench + ScienceQA Standard Query CoT → PPL ECE
ICL MMBench + ScienceQA Random ICE CoT → PPL RIAM
Ins. Follow. MMBench + ScienceQA Standard Query CoT → PPL MR
Lang. Perf. ScienceQA Standard Query CoT → PPL GPT-based Metric
Robustness MMBench + ScienceQA Standard Query CoT → PPL MRR
Hallucination MSCOCO Standard Query PPL Acc

Table 8: Results of calibration. Acc. stands for accuracy and ECE is the Expected Calibration
Error. The overall score is calculated through 1 - weighted average ECE, representing the reliability
of the model’s prediction probability. The entries that are both bold and underlined indicate the best
performance.

MLLM
Scenario ScienceQA MMBench OverallAcc. ↑ ECE% ↓ Acc. ↑ ECE% ↓

LLaVA 46.55 7.26 44.13 14.66 90.01
LAMM 52.75 20.79 44.47 28.52 76.36
MiniGPT-4 47.00 15.28 54.34 15.24 84.73
mPLUG 48.44 15.72 49.57 15.47 84.15
Otter 50.22 21.10 53.91 10.52 82.80
LAv2 54.34 8.17 57.06 14.19 89.61
InstructBLIP 55.18 10.57 65.73 6.25 91.25
Shikra 45.21 14.57 63.26 6.65 88.35
Kosmos-2 34.60 10.63 25.60 11.13 89.19

as shown in Table 6. Across all MLLMs, a significant decline is observed, indicating MLLMs’ poor
performance in consistency. The utilization of CircularEval assesses a composite capability with
both visual performance and consistency. To disentangle these two dimensions of capability, we
employ the VanillaEval for the default Recipe and incorporate hallucination and robustness within
the desiderata to evaluate the dimensions associated with consistency.

D.3 RECIPES FOR DESIDERATA

We employ specialized Recipes to assess the six dimensions of desiderata, as shown in Table 7. All
the six dimensions of desiderata except language performance and hallucination are evaluated on
MMBench and ScienceQA. Language performance is evaluated on 250 samples random retrieved
from ScienceQA and MMBench. Following POPE (Li et al., 2023d), hallucination is specifically
assessed on the MSCOCO dataset (Lin et al., 2014).

In terms of the Instruction, Random ICE is employed as the Instruction for ICL evaluation, while
standard queries are utilized for the other dimensions. For most MLLMs that lack support for multi-
image input, the Random ICE consists solely of text, while for MLLMs that do support multi-image
input, such as Otter (Li et al., 2023a), the Random ICE is adapted to incorporate images. For
instruction following evaluation, we concatenate instructions from different groups of verbalizer
manipulation at the end of the standard query.

For the Inferencer, we employ Multi-Turn with the first turn using the CoT, followed by PPL.
The Metric we use for each dimension is discussed in Section C.

E EXPERIMENTS: EMPIRICAL EXPERIMENTS ON DESIDERATA

E.1 CALIBRATION

The calibration results are presented in Table 8. To illustrate the differences in calibration perfor-
mance, we also provide reliability diagrams for LLaVA and Otter on ScienceQA in Figure 7. In
reliability diagrams, predictions are sorted based on the MLLMs’ confidence scores, and an equal
number of predictions are grouped into 10 bins. By calculating the average confidence and accuracy
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(a) LLaVA (b) Otter

Figure 7: Reliability diagrams for LLaVA and Otter on ScienceQA. The red excess parts rep-
resent the degree of insufficient confidence of the model, and the blue excess parts represent the
degree of overconfidence of the model.

within each bin, we can compare and evaluate the gap between confidence and accuracy intuitively.
The observations are as follows:

(1) Higher accuracy does not imply better calibration. In ScienceQA, LLaVA demonstrates an aver-
age accuracy with the lowest ECE, showing a relatively better calibration. In contrast, Otter achieves
higher accuracy with the highest ECE, showing a relatively worse calibration. Reliability diagrams
provide a more intuitive and detailed illustration. We can observe that the confidence and actual
accuracy in the first 9 bins exhibited a clear correlation, indicating that the predicted confidence
of the first 90% of LLaVA is relatively well calibrated. However, the reliability diagram of Otter
shows a larger gap between confidence and accuracy, suggesting that Otter’s predicted confidence is
relatively poorly calibrated.

(2) Higher confidence does not imply higher accuracy and better calibration. In the reliability dia-
grams, both MLLMs have a substantial gap between confidence and accuracy in the last bin, which
contains samples with top 10% confidence. Both MLLMs exhibit overconfidence in these samples,
which reminds us to avoid considering higher confidence as evidence for higher accuracy. Addi-
tionally, it can be observed that the gap between accuracy and confidence does not decrease with
increasing confidence, indicating that confidence cannot effectively represent reliability.

(3) InstructBLIP achieves the highest accuracy in both visual tasks, while simultaneously exhibiting
remarkably low ECE, indicating exceptional calibration. Conversely, other models demonstrate
a certain trade-off between the two dimensions. It implies that InstructBLIP can yield superior
calibration, so as to provide precise answers to questions while accurately conveying its uncertainty.

E.2 IN-CONTEXT LEARNING

The evaluations of in-context learning (ICL) are conducted on ScienceQA and MMBench, with ICE
numbers set at 0, 1, 2, and 3 respectively. The ICL retriever used in the experiments is Random. The
experimental results are illustrated in Figure 8(a). To evaluate the influence of accompanying images
in ICE, we also conduct experiments using Otter, mPLUG-Owl, and MiniGPT-4, as shown in Fig-
ure 8(b). These models are evaluated on MMBench using random retrieved ICE with and without
images respectively. To compare the different performance of MLLMs with retrieved ICE under
different settings, we further evaluate MMBench, utilizing LLaVA, Shikra, Otter, and MiniGPT-4,
as shown in Figure 9. The methodologies employed for the ICE retriever include Random, Fixed,
Top-k Text, and Top-k Image. The observations are as follows:

(1) It can be observed from Figure 8(a) that most of the MLLMs exhibited a decline in performance
compared to the zero-shot setting, except for Otter and Kosmos-2. This can be attributed to Otter’s
training on in-context instruction tuning data, thus enhancing its ICL capabilities. In contrast, the
observed improvement in Kosmos-2’s performance is due to its struggles to comprehend the mean-
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(a) (b)

Figure 8: Results of in-context learning. (a) Average results of in-context learning on ScienceQA
and MMBench utilizing various ICE numbers. (b) Results of in-context learning on MMBench
for Otter, mPUG-Owl, and MiniGPT-4, utilizing various ICE numbers with and without images
respectively.

Figure 9: Experimental results of evaluation with ICE as Instruction under different retriever
settings. The retriever methodologies employed encompass Random, Fixed, Top-k Text, and Top-k
Image.

ing of options {A, B, C, D} provided in the question, resulting in difficulty in aligning the answers
to options. The number of ICE does not present a significant impact on the results. From an overall
perspective, the majority of MLLMs do not demonstrate capabilities in ICL.

(2) Otter demonstrates a slight enhancement when deploying ICE with images compared to the
ICE without image, as shown in Figure 8(b). However, its performance attenuates in the absence of
images, failing to manifest its ICL capabilities. This suggests that integrating ICE with an image is
a judicious design choice within MLLMs. Contrarily, neither mPLUG-Owl nor MiniGPT-4 shows
improvement in their capabilities regardless of the presence or absence of images in the ICE.

(3) It can be observed from Figure 9 that different retrievers have different results, and the Top-
k method exhibits slightly inferior performance compared to the others. This potential decline in
performance might be attributed to the fact that the MLLMs might regard the given answer in a
similar ICE as the correct answer for the Query, thereby influencing the model’s prediction.

E.3 INSTRUCTION FOLLOWING

Table 9 reports the results of instruction following on ScienceQA and MMBench. We also report the
original accuracy Acc and the weighted average accuracy Accvm of different verbalizer manipulation
instructions. To further explore the instruction following, we show the results of different verbalizer
manipulations in Figure 10. We also provide the results in Figure 10, that follow the ranking of
different groups of instructions in alignment with prior knowledge (natural > neutral > unnatural),
where MR also decreases sequentially. The observations are as follows:

(1) We observed that some MLLMs do not experience a significant decrease in Accvm compared to
Acc when the MR is low. This can be attributed to cases where the original response is incorrect
but become correct after verbalizer manipulation. On the other hand, questions that are initially
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Table 9: Results of instruction following. The abbreviations we use are: Acc for original accuracy;
Accvm for the weighted average accuracy for different instructions of verbalizer manipulation; MR
for the weighted average match ratio for different instructions of verbalizer manipulation, as defined
in Section C; Avg. for an average of results on ScienceQA and MMBench. The entries that are both
bold and underlined indicate the best performance.

MLLM
Scenario ScienceQA MMBench Avg.

Acc ↑ Accvm ↑ MR% ↑ Acc↑ Accvm ↑ MR% ↑ Acc ↑ Accvm ↑ MR% ↑
LLaVA 46.55 41.10 46.23 44.13 35.02 39.60 45.66 38.86 43.79
LAMM 52.75 41.41 42.41 44.47 34.11 34.72 49.70 38.72 39.58
MiniGPT-4 47.00 36.95 43.01 54.34 41.81 43.78 49.70 38.74 43.29
mPLUG 48.44 39.93 40.28 49.57 35.39 33.43 48.86 38.25 37.76
Otter 50.22 38.65 38.30 53.91 33.29 36.90 51.58 36.67 37.78
LAv2 54.34 41.71 44.40 57.06 27.38 28.83 55.34 36.43 38.66
InstructBLIP 55.18 38.23 45.07 65.73 37.59 43.46 59.07 38.00 44.47
Shikra 45.21 35.80 37.89 63.26 31.58 32.91 51.86 34.24 36.05
Kosmos-2 34.60 35.36 17.70 25.60 32.17 14.19 31.29 34.18 16.41

Figure 10: Results of instruction following with different verbalizer manipulation, where Nat-
ural represents the accuracy with instructions of natural verbalizer; Neutral represents the accuracy
with instructions of neutral verbalizer; Unnatural represents the accuracy with instructions of unnat-
ural verbalizer; the dotted line represents the accuracy of random guessing.

answered correctly remain largely consistent between before and after verbalizer manipulation. This
suggests that the models exhibit higher instruction following ability on confident questions but are
more susceptible to disturbance on uncertain questions. It indicates a correlation between instruction
following and confidence in question answering.

(2) The distributions of Acc and MR are entirely different, where the distribution of MR is more
discriminative. For Kosmos2, Accvm increases because its original accuracy is lower than that of
random guessing (35.80 on ScienceQA, 27.57 on MMBench), and random guessing improves accu-
racy. Kosmos-2 exhibits a similar Accvm to Shikra but has the lowest MR, further confirming that
Kosmos-2 has degenerated into random guessing, leading to its poor performance on instruction
following.

(3) The results of natural and neutral are significantly higher than that of unnatural, suggesting
that the model is more likely to follow instructions in the natural and neutral categories. This is
further supported by their probabilities being higher than random guessing, indicating that the model
indeed possesses a certain level of understanding of these two sets of instructions rather than making
random guesses. On the other hand, most of the unnatural instructions perform well below the level
of random guessing, demonstrating that following unnatural instructions is highly challenging for
current MLLMs.
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(4) InstructBLIP performs best in the natural category but exhibits a noticeable performance drop
in the neutral category, suggesting that InstructBLIP relies more on prior knowledge for instruction
understanding rather than comprehending new instruction content.

E.4 LANGUAGE PERFORMANCE

MLLM Lang. Perf.
LLaVA 84.82
LAMM 79.08
MiniGPT-4 70.66
mPLUG 88.44
Otter 74.05
LAv2 90.85
InstructBLIP 80.01
Shikra 66.67
Kosmos-2 45.86

(a) (b)

Figure 11: Analysis of language performance. (a) Complete results of language performance.
This desiderata only evaluates the natural language generation quality of thought chains in which the
model provides correct conclusions to prevent conclusion accuracy from dominating the language
performance score. (b) Accuracy distribution in language performance. We divide the evaluation
samples into four intervals based on GPT scores and calculate the conclusion accuracy within each
interval.

Table 11(a) provides the results of language performance. To illustrate the role of selective sam-
pling of correct, Figure 11(b) displays the distribution of accuracy across different score ranges of
language performance scores. We also provide a typical example in Figure 12, comparing the dis-
parity in language performance between LLaVA and Shikra when both provide correct answers. The
following presents our key observations:

(1) Kosmos-2 exhibits poor performance due to its inability to provide reasoning processes in prac-
tical multi-choice question-answering Scenarios. Conversely, Shikra demonstrates relatively weak
performance attributed to its incapacity to deliver reasoning analysis. Despite prompts intended to
elicit the reasoning process, Shikra tends to provide direct answers, leading to lower scores. In real
interactive scenarios, MLLMs should offer some form of reasoning alongside their answers. Merely
achieving higher accuracy does not necessarily guarantee enhanced interactivity. Therefore, the sig-
nificance of language performance is highlighted. This finding further emphasizes the imperative
need to evaluate language performance in MLLMs.

(2) As shown in Figure 11(b), it can be observed that samples with lower language performance
scores (0-3) provided by GPT are predominantly incorrect answers by the MLLMs, indicating that
the low scores are largely influenced by the accuracy of the answers rather than language perfor-
mance. Conversely, in the three bins with scores > 3, the accuracy significantly improved. It is
worth noting that despite most models providing correct answers, there are substantial differences
in language performance. Therefore, it is appropriate to evaluate the language performance of only
the correct samples to mitigate the impact of answer accuracy on the evaluation.

(3) Figure 12, as a typical example, illustrates the difference in language performance between
LLaVA and Shikra, when they both provide correct answers. Regarding Shikra, GPT-4 noted that its
generated-chain of-thought, while yielding the correct answer, lacks relevance to the given options.
This inconsistency could potentially cause confusion, resulting in a lower score of 6. In the case
of LLaVA, its generated chain-of-thought showcases a logical process that adeptly employs visual
information for reasoned deductive reasoning. GPT successfully acknowledges the strengths of
LLaVA’s chain-of-thought, providing a comprehensive explanation for its impressive score of 9.
The deduction of one point may be attributed to a limited presence of divergent associations and
generalizations.
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[Assistant’s Chain of Thought]
The animal's feet that are adapted for digging are the groundhog's feet. The image shows two groundhogs, one with its 
feet on the ground and the other with its feet in the air. This indicates that the groundhog's feet are well-suited for 
digging and burrowing, which is a natural behavior for groundhogs. 
[Assistant's Final Choice]
(A)

LLaVA

[Explanation]
The AI assistant's answer is helpful, relevant and accurate in terms of the question asked. The assistant correctly 
identified the groundhog's feet as being adapted for digging, which is the correct answer as provided by the ground 
truth. Furthermore, the assistant's inference based on the visual clues in the image - "one with its feet on the ground 
and the other with its feet in the air" - demonstrates an adequate depth of understanding of the scenario and the 
natural behavior of this particular animal. The method of deduction and articulation the AI utilized was detailed and 
appropriate for the context of the question, showing however no special creativity. This showcases the strengths of a 
multimodal AI in its ability to synthesize visual and contextual data for accurate interpretation. 

[Overall Score]
9

[Question]
Question: Which animal's feet are also adapted for digging?
Options: 
(A) groundhog 
(B) bottlenose dolphin
[Ground Truth]
(A) 

[Assistant's Chain of Thought] 
two small black and white animals resting on the sand So the answer is badger
[Assistant's Final Choice]
(A)Shikra

[Explanation] 
The assistant did provide the correct answer, which implies some level of accuracy. However, the chain of thought 
mentioned does not directly connect to the final choice. The assistant indicates two small black and white animals resting 
on the sand but then proceeds to say the answer is a badger, which is not among the provided options. This inconsistency 
in the chain of thought may lead to confusion for the user. Regardless, the assistant ultimately provided the correct 
answer but its line of reasoning wasn't explicitly clear and did not align with the provided options. The assistant could 
have directly related the image to a groundhog's known ability to dig, providing a more accurate, relevant, and detailed 
response. 

[Overall Score] 
6

GPT-4

Shikra’s Language Performance

LLaVA’s Language Performance

GPT-4

[Question]
Question: Which animal's feet are also adapted for digging?
Options: 
(A) groundhog 
(B) bottlenose dolphin
[Ground Truth]
(A) 

Figure 12: Examples of language performance evaluation on Shikra and LLaVA, where two
models exhibit varying levels of natural language generation quality. GPT-4 generates an evaluation
explanation as evidence and then generates an overall score based on the Chain-of-Thought and the
final choice generated by the Assistant. Here, we present only one explanation and the overall score
generated by GPT-4. Note that in practice, for each sample, GPT-4 generates five explanations and
their corresponding overall scores through sampling. The final score for the sample is obtained by
averaging these five overall scores.

E.5 ROBUSTNESS

The robustness experiment is conducted on ScienceQA and MMBench, results are presented in Ta-
ble 10. The accrandom on ScienceQA is 35.80. The accrandom on MMBench is 27.57. In order
to evaluate the influence of different corruptions, we conduct experiments on ScienceQA and MM-
Bench using different corruption types, as shown in Figure 13. These corruptions encompass both
image corruption and text corruption. The observations are as follows:

(1) The experimental results indicate that current MLLMs, when subjected to image and text cor-
ruption, do not exhibit significant decreases in accuracy in absolute terms. However, it is the portion
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Table 10: Results of robustness. Acc represents the original accuracy without corruptions; Acccrp
represents the accuracy after image and text corruptions; RRM% is Relative Robustness for multi-
choice; Avg. is the weighted average results on ScienceQA and MMBench; As Kosmos-2† degener-
ates into random guessing, the results are meaningless. The entries that are both bold and underlined
indicate the best performance.

MLLM
Scenario ScienceQA MMBench Avg.

Acc ↑ Acccrp ↑ RRM% ↑ Acc ↑ Acccrp ↑ RRM% ↑ Acc Acccrp ↑ RRM% ↑
LLaVA 46.55 39.12 30.88 44.13 33.16 33.76 45.66 36.92 31.94
LAMM 52.75 40.11 25.43 44.47 34.69 42.13 49.70 38.11 31.58
MiniGPT-4 47.00 38.37 22.95 54.34 35.88 31.04 49.70 37.45 25.93
mPLUG 48.44 40.70 38.77 49.57 29.85 10.36 48.86 36.70 28.31
Otter 50.22 39.07 22.68 53.91 35.29 29.31 51.58 37.68 25.12
LAv2 54.34 43.38 40.88 57.06 33.84 21.26 55.34 39.87 33.66
InstructBLIP 55.18 41.89 31.42 65.73 43.03 40.51 59.07 42.31 34.77
Shikra 45.21 36.59 8.40 63.26 38.35 30.20 51.86 37.24 16.43
Kosmos-2† 34.60 35.67 10.83 25.60 27.33 12.18 31.29 32.29 11.33

Figure 13: Results of robustness under different settings. The accuracy in this figure represents
the weighted average results on ScienceQA and MMBench. The origin represents the original accu-
racy; Image Crp. represents the accuracy after image corruption; Text Crp. represents the accuracy
after text corruption; I.&T. Crp. represents the accuracy after both image and text corruption; the
dotted line represents the accuracy of random guessing.

of accuracy beyond random guessing that truly reflects the model’s capabilities, and this portion is
retained at less than half after perturbation. Given the prevalence of perturbations in daily environ-
ments, evaluating a model’s robustness becomes pivotal.

(1) Image corruptions have a relatively minor effect on model performance, possibly owing to the
robustness of the pre-trained vision encoder. In contrast, text corruptions show a significant impact
on performance, potentially due to the heightened sensitivity of the MLLMs’ text encoder when
incorporating the visual tokens.

E.6 HALLUCINATION

Table 11 presents the evaluation results for different difficulty levels of hallucination. Among them,
LLaVA, LAMM, mPLUG-Owl, and Kosmos-2 exhibit more severe hallucination issues, as they
tend to answer “Yes” very easily. This leads to nearly 100% Recall but with Acc and Precision both
close to 50%, akin to random selection. Apart from these four models, the other models achieved
relatively meaningful results. Overall, InstructBLIP achieved the best results, while Shikra also
performed competitively, with an average accuracy being only 1.72% lower than InstructBLIP’s.

20



Under review as a conference paper at ICLR 2024

Table 11: Results of Hallucination. Acc represents the accuracy of prediction; Precision represents
how many of the predicted positive samples are true positive samples; Recall represents how many of
all true positive samples are correctly identified; and Yes% represents the probability that the model
outputs a yes answer. The entries that are both bold and underlined indicate the best performance.

Dataset MLLM Acc Precision Recall F1 Score Yes%

MSCOCO-Random

LLaVA 51.55 51.55 100 68.03 100
LAMM 53.84 54.12 52.91 69.19 95.53
Minigpt4 80.93 89.67 71.20 79.38 40.92
mPLUG 55.81 53.85 99.80 69.95 95.53
Otter 82.27 89.11 74.73 81.29 43.23
LAv2 75.40 69.54 93 79.58 68.93
InstructBLIP 90.24 93.55 87.06 90.19 47.97
Shikra 87.18 87.00 88.33 87.66 52.33
Kosmos-2 51.55 51.55 100 68.03 100

MSCOCO-Popular

LLaVA 50 50 100 66.67 100
LAMM 50 50 99.93 66.65 99.93
Minigpt4 74.3 75.4 72.13 73.73 47.83
mPLUG 49.97 49.98 99.8 66.6 99.83
Otter 73.57 73.03 74.73 73.87 51.17
LAv2 59.10 55.42 93 69.45 83.90
InstructBLIP 83.37 81.07 87.07 83.96 53.7
Shikra 83.3 80.25 88.33 84.10 55.03
Kosmos-2 50 50 100 66.67 100

MSCOCO-Adverarial

LLaVA 50 50 100 66.67 100
LAMM 50.13 50.06 99.60 66.64 99.47
Minigpt4 72.17 72.51 71.40 71.95 49.23
mPLUG 50.06 50.03 99.80 66.65 99.73
Otter 70.07 68.35 74.73 71.40 54.67
LAv2 56.77 53.92 93 68.27 86.23
InstructBLIP 80.63 77.14 87.07 81.80 56.43
Shikra 79.27 74.78 88.33 81 59.07
Kosmos-2 50 50 100 66.67 100

(a) (b)

Figure 14: Variance across seeds. (a) Experiments are conducted on CIFAR10, Flickr30k, Sci-
enceQA, and MMBench utilizing various random seeds. (b) Experiments of Language Performance.
The results show the deviation from the mean score of 5 sampled evaluation evidence. The black
line within each boxplot represents the median.

F CHEF PROVIDES RELIABLE ASSESSMENTS OF DESIDERATA

Due to the modular design of ChEF, we have the flexibility to employ different Recipes for eval-
uating the same Scenario and finally identify the most reasonable Recipe that can provide reliable
and indicative assessments through experiments. Besides the reliability of evaluating the visual
performance, we also try to ensure the stability and reliability of evaluating the desiderata. We
conduct experiments to investigate the inherent randomness within them. This entailed scrutinizing
the consistency of random factors, such as the utilization of random retrieved ICE for Instruction
in ICL evaluation. Additionally, the evaluation of language performance, which is based on GPT
assessment, inherently incorporates stochastic elements.
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To evaluate the stability of random ICE as Instruction, we conduct experiments on CIFAR10,
Flickr30k, ScienceQA, and MMBench, employing a diverse set of random seeds. To emphasize
deviations from the mean value, we first calculate the average of results from the five different seed
sets. Then, for each seed, we determine the deviation by subtracting this average and taking the
absolute value of the difference. This approach highlights the variation in results for each seed com-
pared to the average. As illustrated in Figure 14(a), the deviation for most model results is at around
1.0, indicating notable stability.

To mitigate systematic errors in GPT evaluation, we employed Multiple Evidence Calibration. In
this approach, we prompt GPT-4 to provide evaluation explanations as evidence for deriving the fi-
nal score, as described in Section C.4. As illustrated in Figure 14(b), our prompts effectively ensure
the stability of GPT’s scores across multiple samplings, where the maximum deviation is controlled
under 1.0. This implies that GPT can maintain a consistent scale across multiple evaluations. Fur-
thermore, the use of five sampled responses is deemed sufficient for GPT to furnish reliable and
meaningful language performance scores.

These results indicate that the Recipe we provide for evaluating the desiderata is indicative and
reliable.
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