
AI4X 2025, Singapore, 8–11 July 2025

Development of a Polymer Property FoundationModel via GPT-2 Fine-Tuning

Arifin 1 Araki Wakiuchi 1 Ryo Yoshida 2

1JSR Corporation, Japan 2The Institute of Statistical Mathematics, Japan. Correspondence to: Arifin
fin_ari@jsr.co.jp.

1. Introduction
Data-driven polymer research has increasingly

highlighted the need for systematically designed
polymer property databases. To address this de-
mand, RadonPy—the first open-source Python li-
brary that fully automates all-atomclassicalMD sim-
ulations for polymers—has been developed.[1] The
integration of RadonPy into the SPACIER platform
via Bayesian optimization has enabled the discovery
of optical polymers that overcome traditional trade-
offs.[2] To further accelerate discoveries in polymer
research, the development of foundational models
for polymer properties is essential. In this work, we
investigated the predictive performance of large lan-
guage models (LLMs) by benchmarking their zero-
shot and few-shot prompting capabilities and fur-
ther examined the fine-tuning of these models.

2. Methods
2.1 Dataset and models
Webegan by evaluating local LLMmodels for pre-

dicting polymer properties such as density, specific
heat capacity at constant pressure (Cp), and refrac-
tive index. The dataset, obtained from the RadonPy
repository, comprised 1,077 datapoints. For the LLM
models, we focused on smaller models, including
GPT-2, GPT-Neo 1.3B, BLOOMZ-1b7, and Granite-2B-
Instruct (v3.0, v3.1, and v3.2).

2.2 Prompting
The example of the prompts is given as,

You are a polymer and computational
chemist. For each example below,
predict the density of the homopolymer:
{examples_text}. Now, given monomer SMILES
‘{smiles}’, predict density. ### Output
only a JSON object with one key “value” and
no extra text. ### Begin JSON:{

where ‘{smiles}’ is corresponded to monomer
SMILES. In the case of few-shot prompting, 3
datapoints from the dataset are included in {exam-
ples_text}.

2.3 Fine tuning
We examined the fine-tuning for the GPT-2 model

by adding a regressorheadon topof thefinal hidden-
state tensor. Here, we split the dataset into train-
ing and testing sets with an 80/20 split, targeting
density, Cp, and refractive index. We then ran the
model for 10 epochs. Furthermore, we also fine-
tuned GPT-2 using a mixture of queries related to

density, Cp, and refractive index, along with their
corresponding values. In this process, we employed
common loss functions for multi-target optimiza-
tion, called as symmetric mean absolute percentage
error (SMAPE).

2.4 Numerical tokenizer and pre-training
In this work, we implemented the special nu-

merical tokenizer that was introduced in OmniPred
paper.[3] The transformation ideas are:

1. Assign a token for the overall sign, <+> or <->.

2. For non-zero values, separates the number into
a scientific-notationmantissa and base-10 expo-
nent.

3. Wrap eachdigit in angle-bracket tokens like <3>.

4. After that, the exponent’s sign is tokenized (<+>
or <->) and each exponent digit is likewise
bracketed.

5. A special shortcut for exact zero is [<+>, <0>].

6. The final list therefore has the structure [sign]
+ mantissa_digit_tokens + [exp_sign] +
exponent_digit_tokens.

For the pretraining, the learning rate was set to
10−4 and the number of epochs was 50. The loss
function then becomes the average negative log-
likelihood of each true token under the model’s
predicted next-token distributions (Causal Language
Modeling loss).

3. Results and Discussions
Overall performance of zero-shot predictions was

disappointing, as they often produced identical val-
ues or NaN outputs. Few-shot approach resulted
in similar prediction performance across all small
models, with an R2 of around 0.25, and it eliminated
NaN outputs completely. Figure 1 show the density
predictions for all polymers in the dataset with few-
shot prompting.
The performance of the fine tuning with regres-

sor head on the test sets was significantly better than
few-shot prompting method, achieving R2 values of
0.96 for density, 0.83 for Cp, and 0.92 for refractive in-
dex. When we employed the mixed dataset, the pre-
dictions work well for density and refractive index,
with R2 values of 0.96 and 0.89, respectively. How-
ever, the model performed poorly for Cp. This dis-
crepancy is expected since the scale of the Cp values

https://orcid.org/0000-0001-7541-3326
https://orcid.org/0000-0001-7607-2922
https://orcid.org/0000-0001-8092-0162
mailto:fin_ari@jsr.co.jp


AI4X 2025, Singapore, 8–11 July 2025

is significantly different from that of density and re-
fractive index. Table 1 summarized the prediction
performances with regression head.
The pretraining with numerical tokenizer gives

similar or better prediction performances than the
regression head. By employing this technique, we
could trainmixed dataset and achieved test R2 values
of 0.94, 0.92, and 0.88 for the predictions of density,
Cp, and refractive index, respectively (Figure 2).

Fig. 1: Few-shot prompting results on several small
LLMmodels

Table 1: Performance results by training method
and target for the fine tuningwith regressor head.

Training Method Target R2

Each Dataset Density 0.96
Cp 0.83
Refractive
Index

0.92

Mixed Datasets Density 0.96
Cp -17.45
Refractive
Index

0.89

References

[1] Yoshihiro Hayashi, Junichiro Shiomi, Junko
Morikawa, and Ryo Yoshida. Radonpy: auto-
mated physical property calculation using all-
atom classical molecular dynamics simulations
for polymer informatics. npj Computational Ma-
terials, 8:222, 2022.

[2] Shun Nanjo, Arifin, Hayato Maeda, Yoshihiro
Hayashi, Kan Hatakeyama-Sato, Ryoji Himeno,
Teruaki Hayakawa, and Ryo Yoshida. Spacier:
on-demandpolymer designwith fully automated
all-atomclassicalmolecular dynamics integrated
into machine learning pipelines. npj Computa-
tional Materials, 11:16, 2025.

[3] Xingyou Song, Oscar Li, Chansoo Lee, Bangding
Yang, Daiyi Peng, Sagi Perel, and Yutian Chen.

Fig. 2: Prediction on test dataset by GPT-2 pretrained
with numerical tokenizer.

Omnipred: Languagemodels as universal regres-
sors. arXiv preprint arXiv:2402.14547, 2024.


	Introduction
	Methods
	Dataset and models
	Prompting
	Fine tuning
	Numerical tokenizer and pre-training

	Results and Discussions

