
A Generalized Bregman divergences

The expression Ω∗(v) + Ω(p) − 〈v, p〉 at the heart of Fenchel-Young losses is closely related to
Bregman divergences; see [3, Theorem 1.1] and [18]. In this section, we develop a similar relationship
between generalized Fenchel-Young losses and a new generalized notion of Bregman divergence.

Biconjugates. We begin by recalling well-known results on biconjugates [22]. Applying the
conjugate (1) twice, we obtain the biconjugate Ω∗∗(p). It is well-known that a function Ω is convex
and closed (i.e., lower-semicontinuous) if and only if Ω = Ω∗∗. This therefore provides a variational
characterization of lower-semicontinuous convex functions. This characterization naturally motivates
the class of Φ-convex functions (§4). If Ω is nonconvex, Ω∗∗ is Ω’s tightest convex lower bound.

Generalized biconjugates. The generalized conjugate in (5) uses maximization w.r.t. the second
argument p ∈ C. To obtain a generalized conjugate whose maximization is w.r.t. the first argument
v ∈ V instead, we define Ψ(p, v) := Φ(v, p). Note that if Φ is symmetric, the distinction between Φ
and Ψ is not necessary. Similarly to (5), we can then define the Ψ-conjugate of Λ: V → R as

ΛΨ(p) = max
v∈V

Ψ(p, v)− Λ(v) = max
v∈V

Φ(v, p)− Λ(v), (16)

i.e., the maximization is over the left argument of Φ. We define the corresponding argmax as

vΨ
Λ (p) := argmax

v∈V
Ψ(p, v)− Λ(v) = argmax

v∈V
Φ(v, p)− Λ(v). (17)

In particular, with Λ := ΩΦ, we can define the generalized biconjugate ΛΨ = ΩΦΨ : C → R.
Generalized biconjugates enjoy similar properties as regular biconjugates, as we now show.

Proposition 5 (Properties of generalized biconjugates). Let Ω: C → R, Φ: V × C → R and
Ψ(p, v) := Φ(v, p).

1. Lower-bound: ΩΦΨ(p) ≤ Ω(p) for all p ∈ C.
2. Equality: ΩΦΨ(p) = Ω(p) if and only if Ω is Ψ-convex.
3. Tightest lower-bound: ΩΦΨ(p) is the tightest Ψ-convex lower-bound of Ω(p).

Proofs are given in Appendix B.5. Similar results hold for ΛΨΦ, where Λ: V → R.

Definition. We can now define the generalized Bregman divergence DΦ
Ω : C × C → R+ as

DΦ
Ω(p, p′) := Ω(p)− Φ(vΨ

ΩΦ(p′), p)− Ω(p′) + Φ(vΨ
ΩΦ(p′), p′), (18)

where we recall that Ψ(p, v) := Φ(v, p) and using (17) we have

vΨ
ΩΦ(p) = argmax

v∈V
Ψ(p, v)− ΩΦ(v) = argmax

v∈V
Φ(v, p)− ΩΦ(v). (19)

We have therefore obtained a notion of Bregman divergence parametrized by a coupling Φ(v, p), such
as a neural network.

As shown in the proposition below, generalized Bregman divergences enjoy similar properties as
regular Bregman divergences. Proofs are given in Appendix B.6.
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Proposition 6 (Properties of generalized Bregman divergences). Let Ω be a Ψ-convex function,
where Ψ(p, v) := Φ(v, p).

1. Link with generalized FY loss: Denoting v := vΨ
ΩΦ(p′), we have DΦ

Ω(p, p′) = LΦ
Ω(v, p).

2. Non-negativity: DΦ
Ω(p, p′) ≥ 0, for all p, p′ ∈ C.

3. Identity of indiscernibles: DΦ
Ω(p, p′) = 0 ⇔ p = p′ if p 7→ Φ(v, p) − Ω(p) is strictly

concave for all v ∈ V .
4. Convexity: if p 7→ Φ(v, p)− Ω(p) is concave for all v ∈ V , then DΦ

Ω(p, p′) is convex in p.
5. Recovering Bregman divergences: If Φ(v, p) is the bilinear coupling 〈v, p〉, then we recover

the usual Bregman divergence DΩ : C × C → R+

DΦ
Ω(p, p′) = DΩ(p, p′) := Ω(p)− Ω(p′)− 〈∇Ω(p′), p− p′〉. (20)

Some remarks:

• The generalized Bregman divergence is between objects p and p′ of the same space C, while the
generalized Fenchel-Young loss is between objects v and p of mixed spaces V and C.

• If Φ(v, p) − Ω(p) is concave in p, then DΦ
Ω(p, p′) is convex in p, as is the case of the usual

Bregman divergence DΩ(p, p′). However, (19) is not easy to solve globally in general, as it is the
maximum of a difference of convex functions in v. This can be done approximately by using the
convex-concave procedure [72], linearizing the left part. We have the opposite situation with the
generalized Fenchel-Young loss: if Φ(v, p)−Ω(p) is convex-concave, LΦ

Ω(v, y) is easy to compute
but it is a difference of convex functions in v.

• Similarly, we may also define DΨ
ΩΦ(v, v′) = ΩΦ(v) − Ψ(pΦ

Ω(v′), v) − ΩΦ(v′) + Ψ(pΦ
Ω(v′), v′),

where we recall that pΦ
Ω(v) := argmaxp∈C Φ(v, p)− Ω(p). We have thus obtained a divergence

between two objects v and v′ in the same space V .

B Proofs

B.1 Proofs for Proposition 1 (properties of generalized conjugates)

1. Generalized Fenchel-Young inequality. From (5), we immediately obtain ΩΦ(v) ≥ Φ(v, p)−
Ω(p) for all v ∈ V and all p ∈ C.

2. Convexity. If Φ(v, p) is convex in v, then ΩΦ(v) is the maximum of a family of convex functions
indexed by p. Therefore, ΩΦ(v) is convex. Note that this is the case even if Ω(p) is nonconvex.

3. Order reversing. Since Ω ≤ Λ, we have

ΩΦ(v) = max
p∈C

Φ(v, p)− Ω(p) ≥ max
p∈C

Φ(v, p)− Λ(p) = ΛΦ(v).

4. Continuity. See [65, Box 1.8].
5. Gradient. See “Assumptions for envelope theorems” in §4.
6. Smoothness. We follow the proof technique of [46, Lemma 4.3], which states that v 7→

maxp∈C E(v, p) is (β + β2/γ)-smooth if E is β-smooth in (v, p) and γ-strongly concave in
p over C. We show here that if E(v, p) decomposes as E(v, p) = Φ(v, p) − Ω(p), where
Ω is γ-strongly convex over C but possibly nonsmooth (as is the case for instance of Shan-
non’s negentropy), and Φ(v, p) is β-smooth in (v, p) and concave in p, then we still have that
ΩΦ(v) = maxp∈C Φ(v, p)− Ω(p) is (β + β2/γ)-smooth.
For brevity, let us define the shorthand pΦ

Ω(v) := p?(v). From [46, Section A.3], we have

γ‖p?(v2)− p?(v1)‖2 ≤ 〈p?(v2)− p?(v1),∇2E(v2, p
?(v2))−∇2E(v1, p

?(v2))〉
for all v1, v2 ∈ V . With E(v, p) = Φ(v, p)− Ω(p), we obtain

γ‖p?(v2)− p?(v1)‖2 ≤ 〈p?(v2)− p?(v1),∇2Φ(v2, p
?(v2))−∇2Φ(v1, p

?(v2))〉.
Since Φ is β-smooth, we have for all p ∈ C

‖∇2Φ(v2, p)−∇2Φ(v1, p)‖∗ ≤ β‖(v2, p)− (v1, p)‖ = β‖v2 − v1‖.
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Combined with the Holder inequality 〈a, b〉 ≤ ‖a‖∗‖b‖, this gives

γ‖p?(v2)− p?(v1)‖2 ≤ β‖p?(v2)− p?(v1)‖‖v2 − v1‖.

Simplifying, we get

‖p?(v2)− p?(v1)‖ ≤ β

γ
‖v2 − v1‖. (21)

Therefore, pΦ
Ω(v) = p?(v) is β/γ-Lipschitz.

From Rockafellar’s envelope theorem [62, Theorem 10.31],∇ΩΦ(v) = ∇1Φ(v, p?(v)). Since Φ
is β-smooth, we therefore have

‖∇ΩΦ(v2)−∇ΩΦ(v1)‖∗ = ‖∇1Φ(v2, p
?(v2))−∇1Φ(v1, p

?(v1))‖∗
≤ β‖(v2 − p?(v2))− (v1, p

?(v1))‖
≤ β(‖v2 − v1‖+ ‖p?(v2)− p?(v1)‖)

≤
(
β +

β2

γ

)
‖v2 − v1‖

≤ 2
β2

γ
‖v2 − v1‖,

where we used (21) and β
γ ≥ 1.

A related result in the context of bilevel programming but with different assumptions and proof is
stated in [31, Lemma 2.2]. More precisely, the proof of that result requires twice differentiability
of E(v, p) = Φ(v, p)− Ω(p) while we do not. Moreover, applying that result to our setting would
require E(v, p) to be smooth in (v, p) while we only assume Φ(v, p) to be the case. We emphasize
again that Ω(p) is nonsmooth when it is the negentropy.

B.2 Proofs for Proposition 2 (closed forms)

1. Bilinear coupling. This follows from

ΩΦ(v) = max
p∈C
〈v, Up〉 − Ω(p) = max

p∈C
〈U>v, p〉 − Ω(p) = Ω∗(U>v)

and similarly for pΩ(v).
2. Linear-quadratic coupling. Let us define the function

F (p) =
γ

2
‖p‖22 −

1

2
〈p,Ap〉 − 〈p, b〉 =

1

2
〈p, (γI −A)p〉 − 〈p, b〉.

Its gradient is∇F (p) = (γI −A)p− b. Setting∇F (p?) = 0, we obtain

(γI −A)p? = b⇔ p? = (γI −A)−1b,

where we assumed that (γI −A) is positive definite. We therefore get

F (p?) =
1

2
〈p?, b〉 − 〈p?, b〉 = −1

2
〈p?, b〉 = −1

2
〈b, (γI −A)−1b〉.

3. Metric coupling. From (8), it is easy to check that Ω = −Λ⇔ ΩΦ = −ΛC with C = −Φ. From
[60, Proposition 6.1], we have ΛC = −Λ. Therefore, ΩΦ = −Ω.

B.3 Proofs for Proposition 3 (Properties of generalized Fenchel-Young losses)

1. Non-negativity. This follows immediately from the generalized Fenchel-Young inequality.
2. Zero loss. If pΦ

Ω(v) = y, then using LΦ
Ω(v, y) = F (v, y) − F (v, pΦ

Ω(v)), where F (v, p) =
Ω(p)−Φ(v, p), we obtainLΦ

Ω(v, y) = 0. Let’s now prove the reverse direction. Since the maximum
in (5) exists, we have F (v, pΦ

Ω(v)) ≤ F (v, y). If LΦ
Ω(v, y) = 0, we have F (v, pΦ

Ω(v)) = F (v, y).
Since the maximum is unique by assumption, this proves that y = pΦ

Ω(v).
3. Gradient. This follows directly from the definition (9).
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4. Difference of convex (DC). If Φ(v, p) is convex in p, ΩΦ(v) is convex (Proposition 1). Therefore,
v 7→ ΩΦ(v)− Φ(v, p) for all p ∈ C.

5. Smaller output set, smaller loss. Let Ω: C → R and let Ω′ be the restriction of Ω to C′ ⊆ C, i.e.,
Ω′(p) := Ω + IC′ , where IC′ is the indicator function of C′. From (5), we have (Ω′)Φ(v) ≤ ΩΦ(v)
for all v ∈ V . From (9), we therefore have LΦ

Ω′(v, p) ≤ LΦ
Ω(v, p) for all v ∈ V and all p ∈ C′.

6. Quadratic lower-bound. If a function F is γ-strongly convex over C w.r.t. a norm ‖ · ‖, then
γ

2
‖p− p′‖2 ≤ F (p)− F (p′)− 〈∇F (p′), p− p′〉 (22)

for all p, p′ ∈ C. If C is a closed convex set, we also have that p? = argminp∈C F (p) satisfies the
optimality condition

〈∇F (p?), p− p?〉 ≥ 0 (23)
for all p ∈ C [53, Eq. (2.2.13)]. Combining (22) with p′ = p? and (23), we obtain

γ

2
‖p− p?‖2 ≤ F (p)− F (p?).

Applying the above with F (p) = Ω(p)− Φ(v, p) and using p? = pΦ
Ω(v), we obtain

γ

2
‖y − pΦ

Ω(v)‖2 ≤ LΦ
Ω(v, y).

7. Upper-bounds. If F is α-Lipschitz over C with respect to a norm ‖ · ‖, then for all p, p′ ∈ C

|F (p)− F (p′)| ≤ α‖p− p′‖.

Applying the above with F (p) = Ω(p)− Φ(v, p) and p′ = pΦ
Ω(v), we obtain

LΦ
Ω(v, p) ≤ α‖p− pΦ

Ω(v)‖.

If Φ(v, p) is concave in p, then its linear approximation always lies above:

Φ(v, p′) ≤ Φ(v, p) + 〈∇2Φ(v, p), p′ − p〉,

for all p, p′ ∈ C. We then have

LΦ
Ω(v, p) = ΩΦ(v) + Ω(p)− Φ(v, p)

= max
p′∈C

Φ(v, p′)− Ω(p′) + Ω(p)− Φ(v, p)

≤ max
p′∈C

〈∇2Φ(v, p), p′〉 − Ω(p′) + Ω(p)− 〈∇2Φ(v, p), p〉

= Ω∗(∇2Φ(v, p)) + Ω(p)− 〈∇2Φ(v, p), p〉
= LΩ(∇2Φ(v, p), p).

B.4 Proof of Proposition 4 (calibration)

Background. The pointwise target risk of ŷ ∈ Y according to q ∈ 4|Y| is

`(ŷ, q) := EY∼q L(ŷ, Y ).

We also define the corresponding excess of pointwise risk, the difference between the pointwise risk
and the pointwise Bayes risk:

δ`(ŷ, q) := `(ŷ, q)− min
y′∈Y

`(y′, q).

We can then write the risk of f : X → Y in terms of the pointwise risk

L(f) := E(X,Y )∼ρ L(f(X), Y )

= EX∼ρX EY∼ρ(·|X)L(f(X), Y )

= EX∼ρX `(f(X), ρ(·|X)).

Let us define the Bayes predictor
f? := argmin

f : X→Y
L(f).
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The Bayes risk is then

L(f?) = min
f : X→Y

EX∼ρX EY∼ρ(·|X)L(f(X), Y )

= EX∼ρX min
y′∈Y

EY∼ρ(·|X)L(y′, Y )

= EX∼ρX min
y′∈Y

`(y′, ρ(·|X)).

Combining the above, we can write the excess of risk of f : X → Y as

L(f)− L(f?) = EX∼ρX δ`(f(X), ρ(·|X)).

Similarly, with the generalized Fenchel-Young loss (9), the pointwise surrogate risk of v ∈ V
according to q ∈ 4|Y| is

`ΦΩ(v, q) := EY∼q L
Φ
Ω(v, Y )

and the excess of pointwise surrogate risk is

δ`ΦΩ(v, q) := `ΦΩ(v, q)− min
v′∈V

`ΦΩ(v′, q).

Let us define the surrogate risk of g : X → V by

LΦ
Ω(g) := E(X,Y )∼ρ L

Φ
Ω(g(X), Y )

and the corresponding Bayes predictor by

g? := argmin
g : X→V

LΦ
Ω(g).

We can then write the excess of surrogate risk of g : X → V as

LΦ
Ω(g)− LΦ

Ω(g?) = EX∼ρX δ`
Φ
Ω(g(X), ρ(·|X)).

A calibration function [68] ξ : R+ → R+ is a function relating the excess of pointwise target risk and
pointwise surrogate risk. It should be non-negative, convex and non-decreasing on R+, and satisfy
ξ(0) = 0. Formally, given a decoder d : V → Y , ξ should satisfy

ξ(δ`(d(v), q)) ≤ δ`ΦΩ(v, q) (24)

for all v ∈ V and q ∈ 4|Y|. By Jensen’s inequality, this implies that the target and surrogate risks are
calibrated for all g : X → V [59, 56]

ξ(L(d ◦ g)− L(f?)) ≤ LΦ
Ω(g)− LΦ

Ω(g?).

From now on, we can therefore focus on proving (24).

Upper-bound on the pointwise target excess risk. We now make use of the affine decomposition
(12). Let σ := supy∈Y ‖V >ϕ(y)‖∗, where ‖ · ‖∗ denotes the dual norm of ‖ · ‖. Let us define

ỹL(u) := argmin
ŷ∈Y

〈ϕ(ŷ), V u+ b〉

and µϕ(q) := EY∼q[ϕ(Y )] ∈ conv(ϕ(Y)) ⊆ ϕ(Rk). From [16, Lemma 2],

δ`(ỹL(u), q) ≤ 2σ‖µϕ(q)− u‖ ∀u ∈ ϕ(Rk), q ∈ 4|Y|.

Using yL(p) = ỹL(u) with u = ϕ(p), we thus get

δ`(yL(p), q) ≤ 2σ‖µϕ(q)− ϕ(p)‖ ∀p ∈ Rk, q ∈ 4|Y|. (25)
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Bound on the pointwise surrogate excess risk (bilinear case). To highlight the difference with
our proof technique, we first prove the result in the bilinear case, assuming Ω is γ-strongly convex.
We follow the same proof technique as [56, 16] but unlike these works we do not require any
Legendre-type assumption on Ω. If Φ(v, p) = 〈v, ϕ(p)〉 = 〈v, p〉, we have

`ΦΩ(v, q) = EY∼q LΩ(v, Y )

= Ω∗(v) + EY∼qΩ(Y )− 〈v, µ(q)〉
= Ω∗(v) + Ω(µ(q))− 〈v, µ(q)〉+ EY∼qΩ(Y )− Ω(µ(q))

= LΩ(v, µ(q)) + EY∼qΩ(Y )− Ω(µ(q)),

where, when ϕ(y) = y, we denote µ(q) := EY∼q[Y ] ∈ conv(Y) ⊆ Rk for short. The quantity
EY∼qΩ(Y )− Ω(µ(q)) is called Bregman information [7] or Jensen gap, and is non-negative if Ω is
convex. This term cancels out in the excess of pointwise surrogate risk

δ`Ω(v, q) := `Ω(v, q)− min
v′∈V

`Ω(v′, q) = LΩ(v, µ(q))− min
v′∈V

LΩ(v′, µ(q)).

Since the Fenchel-Young loss achieves its minimum at 0, we have

δ`Ω(v, q) = LΩ(v, µ(q)).

Therefore, the excess of pointwise surrogate risk can be written in Fenchel-Young loss form. By the
quadratic lower-bound (10) and the upper-bound (25), we have

δ`Ω(v, q) = LΩ(v, µ(q)) ≥ γ

2
‖µ(q)− pΩ(v)‖2 ≥ γ

8σ2
δ`(yL(pΩ(v)), q))2.

Therefore the calibration function with the decoder d = yL ◦ pΩ is

ξ(ε) =
γε2

8σ2
.

Bound on the pointwise surrogate excess risk (linear-concave case). We now prove the bound
assuming that LΦ

Ω is smooth and Φ(v, p) = 〈v, ϕ(p)〉. This includes the previous proof as special
case because when Φ(v, p) = 〈v, p〉, then LΦ

Ω(v, y) = LΩ(v, y) is 1
γ -smooth in v if and only if Ω(p)

is γ-strongly convex in p (cf. §2).

By Theorem 4.22 in [57], if a function f(v) is M -smooth in v w.r.t. the dual norm ‖ · ‖∗ and is
bounded below, then

f(v)− min
v′∈V

f(v′) ≥ 1

2M
‖∇f(v)‖2.

With f(v) = `ΦΩ(v, q) = EY∼q LΩ(v, Y ), which is non-negative, we obtain

δ`ΦΩ(v, q) := `ΦΩ(v, q)− min
v′∈V

`ΦΩ(v′, q)

≥ 1

2M
‖∇1`

Φ
Ω(v, q)‖2

=
1

2M
‖EY∼q∇1L

Φ
Ω(v, Y )‖2

=
1

2M
‖∇ΩΦ(v)− EY∼q∇1Φ(v, Y )‖2

=
1

2M
‖∇1Φ(v, pΦ

Ω(v))− EY∼q∇1Φ(v, Y )‖2

=
1

2M
‖ϕ(pΦ

Ω(v))− EY∼qϕ(Y )‖2

=
1

2M
‖ϕ(pΦ

Ω(v))− µϕ(q)‖2.

We therefore have

δ`ΦΩ(v, q) ≥ 1

2M
‖µϕ(q)− ϕ(pΦ

Ω(v))‖2 ≥ 1

8σ2M
δ`(yL(pΦ

Ω(v)), q))2.

Therefore the calibration function with the decoder d = yL ◦ pΦ
Ω is

ξ(ε) =
ε2

8σ2M
.
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B.5 Proofs for Proposition 5 (Properties of generalized biconjugates)

The proofs are similar to that for C-transforms [65, Proposition 1.34].

1. Lower bound. Let Ω: C → R. We have

ΩΦΨ(p) := max
v∈V

Ψ(p, v)− ΩΦ(v)

= max
v∈V

Φ(v, p)− ΩΦ(v)

= max
v∈V

Φ(v, p)−
[
max
p′∈C

Φ(v, p′)− Ω(p′)

]
≤ max

v∈V
Φ(v, p)− Φ(v, p) + Ω(p)

= Ω(p).

Therefore, ΩΦΨ(p) ≤ Ω(p) for all p ∈ C. Analogously, for a function Λ: V → R, we have
ΛΨΦ(v) ≤ Λ(v) for all v ∈ V .

2. Equality. Since Ω is Ψ-convex, there exits Λ: V → R such that Ω = ΛΨ. We then have
ΩΦ = ΛΨΦ. Using the lower bound property, we get ΩΦ(v) = ΛΨΦ(v) ≤ Λ(v) for all v ∈ V . By
the order reversing property, we have ΩΦΨ(p) ≥ ΛΨ(p) = Ω(p) for all p ∈ C. However, we also
have ΩΦΨ(p) ≤ Ω(p) for all p ∈ C. Therefore, ΩΦΨ(p) = Ω(p) for all p ∈ C.

3. Tightest lower-bound. Let Ω′ be any lower bound of Ω that is Ψ-convex. Therefore, there exists
Λ: V → R such that Ω′(p) = ΛΨ(p) ≤ Ω(p) for all p ∈ C. By the order reversing property, we
have ΛΨΦ(v) ≥ ΩΦ(v) for all v ∈ V . By the lower bound property, we also have ΛΨΦ(v) ≤ Λ(v)
for all v ∈ V and therefore, Λ(v) ≥ ΩΦ(v) for all v ∈ V . Applying the order reversing property
once more, we get Ω′(p) = ΛΨ(p) ≤ ΩΦΨ(p) for all p ∈ C. Therefore ΩΦΨ is the tightest lower
bound of Ω.

B.6 Proofs for Proposition 6 (Properties of generalized Bregman divergences)

1. Link with generalized Fenchel-Young losses. From (16) and (17), we have

ΛΨ(p) = Φ(vΨ
Λ (p), p)− Λ(vΨ

Λ (p)) ∀p ∈ C

for any Λ: V → R. With Λ = ΩΦ, if Ω is Φ-convex, using Proposition 5, we have

ΩΦΨ(p) = Ω(p) = Φ(vΨ
Λ (p), p)− Λ(vΨ

Λ (p)) ∀p ∈ C.

Plugging Ω(p′) in (18) and using the shorthand v := vΨ
ΩΦ(p′), we get

DΦ
Ω(p, p′) = Ω(y)− Φ(v, p) + ΩΦ(v) = LΦ

Ω(v, p).

2. Non-negativity. This follows directly from the non-negativity of LΦ
Ω(v, p).

3. Identity of indiscernibles. If p = p′, we immediately obtain DΦ
Ω(p, p′) = 0 from (18). Let’s

prove the reverse direction. If DΦ
Ω(p, p′) = 0, we have F (vΨ

ΩΦ(p′), p) = F (vΨ
ΩΦ(p′), p′) where

F (v, p) = Ω(p)− Φ(v, p). Since by assumption F is strictly convex in p, we obtain p = p′.
4. Convexity. This follows from DΦ

Ω(p, p′) = Ω(p)− Φ(v, p) + const.
5. Recovering Bregman divergences. If Φ(v, p) = 〈v, p〉, we have

vΨ
ΩΦ(p) = argmax

v∈V
Φ(v, p)− ΩΦ(v) = argmax

v∈V
〈v, p〉 − Ω∗(v) = ∇Ω(p).

Plugging back in (18), we obtain the Bregman divergence (20).
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C Experimental details

C.1 Multilabel classification

Datasets. We used public datasets available at https://www.csie.ntu.edu.tw/~cjlin/
libsvmtools/datasets/. Dataset statistics are summarized in Table 3. For all datasets, we
normalize samples to have zero mean unit variance.

Table 3: Multilabel dataset statistics.

Dataset Type Train Dev Test Features Classes Avg. labels

Birds Audio 134 45 172 260 19 1.96
Cal500 Music 376 126 101 68 174 25.98

Emotions Music 293 98 202 72 6 1.82
Mediamill Video 22,353 7,451 12,373 120 101 4.54

Scene Images 908 303 1,196 294 6 1.06
Yeast Micro-array 1,125 375 917 103 14 4.17

Experimental details. In all experiments, we set the activation σ to relu(a) := max{0, a}.
For the unary model, we use a neural network with one hidden-layer, i.e., gθ(x) = W2σ(W1x+ b1) +
b2, where θ = (W2, b2,W1, b1), W2 ∈ Rk×m, b2 ∈ Rk, W1 ∈ Rm×d, b1 ∈ Rm, and m is the number
of hidden units. We use the heuristic m = min{100, d/3}, where d is the dimensionality of x.

For the pairwise model, in order to obtain a negative semi-definite matrix U , we parametrize
U = −AA> with A = [W1x + b1, . . . ,Wmx + bm], where Wj ∈ Rk×d and bj ∈ Rk In our
experiments, we choose a rank-one model, i.e., m = 1. Note that we use distinct parameters for the
unary and pairwise models but sharing parameters would be possible.

For the SPEN model, following [11, Eq. 4 and 5], we set the energy to Φ(v, p) = 〈u, p〉 −Ψ(w, p),
where v = (u,w), u = gθ(x) and w are the weights of the “prior network” Ψ (independent of x). We
parametrize Ψ(w, p) = W2σ(W1p+ b1) + b2, where w = (W2, b2,W1, b1), W2 ∈ R1×m, b2 ∈ R1

and W1 ∈ Rm×k, b1 ∈ Rm. To further impose convexity of Ψ in p, W2 needs to be non-negative. To
do so without using constrained optimization, we use the change of variable W2 = softplus(W ′2),
where softplus(a) := log(1 + exp(a)) is used as an element-wise bijective mapping.

Additional results. The gradient of ΩΦ(v) can be computed using the envelope theorem (Propo-
sition 1), which does not require to differentiate through pΦ

Ω(v). Alternatively, since ΩΦ(v) =
Φ(v, pΦ

Ω(v))− Ω(pΦ
Ω(v)), we can also compute the gradient of ΩΦ(v) by using the implicit function

theorem, differentiating through pΦ
Ω(v). To do so, we use the approach detailed in [17]. Results in

Table 4 show that the envelope theorem performs comparably to the implicit function theorem, if not
slightly better. Differentiating through pΦ

Ω(v) using the implicit function theorem requires to solve a
k × k system and its implementation is more complicated than the envelope theorem. Therefore, we
suggest to use the envelope theorem in practice.

Table 4: Comparison of envelope and implicit function theorems on the pairwise model (test accuracy
in %).

yeast scene mediamill birds emotions cal500

Envelope theorem 80.19 91.58 96.95 91.55 80.56 85.73
Implicit function theorem 80.33 91.58 96.95 91.54 80.53 85.57

In addition, we also compared the proposed generalized Fenchel-Young loss with the energy loss, the
binary cross-entropy loss and the generalized perceptron loss, which corresponds to setting Ω(p) = 0.
As explained in §3, the cross-entropy loss requires to differentiate through pΦ

Ω(v); we do so by implicit
differentiation. Table 5 shows that the generalized Fenchel-Young loss outperforms these losses.
As expected, the energy loss performs very poorly, as it can only push the model in one direction
[44]. Using regularization Ω, as advocated in this paper, is empirically confirmed to be beneficial for
accuracy.
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Table 5: Comparison of loss functions for the pairwise model (accuracy in %).

yeast scene mediamill birds emotions cal500

Generalized FY loss 80.19 91.58 96.95 91.55 80.56 85.73
Energy loss 42.35 33.02 40.92 14.29 55.50 39.27

Cross-entropy loss 79.00 90.78 96.77 91.56 78.08 85.89
Generalized perceptron loss 68.36 89.33 93.24 88.92 66.34 80.11

C.2 Imitation learning

Experimental details. We run a hyperparameter search over the learning rate of the ADAM
optimizer, the number of hidden units in the layers, the weight of the L2 parameters regularization
term and the scale of the energy regularization term Ω. We run the hyperparameter search for
4 demonstration trajectories and select the best performing ones based on the final performance
(averaged over 3 seeds).

Table 6: Hyperparameter search for imitation learning.

Model Learning rate Params regularization Energy regularization Hidden units
{1e-4, 5e-4, 1e-3} {0., 1., 10.} {0.1, 1., 10.} {16, 32, 64, 128}

Unary 5e-4 0.0 1. 16
Pairwise 1e-4 0.0 10. 32

Environments. We also provide performance of the expert agent as detailed by Orsini et al. [58] as
well as the description of the observation and action spaces for each environment.

Table 7: Dimension of observation space, dimension of action space, expert performance, and random
policy performance for each environment.

Task Observations Actions Random policy score Expert score

HalfCheetah-v2 17 6 -282 8770
Hopper-v2 11 3 18 2798
Walker-v2 17 6 1.6 4118
Ant-v2 111 8 123 5637
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