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Abstract

We consider decentralized machine learning over a network where the training data
is distributed across n agents, each of which can compute stochastic model updates
on their local data. The agent’s common goal is to find a model that minimizes the
average of all local loss functions. While gradient tracking (GT) algorithms can
overcome a key challenge, namely accounting for differences between workers’
local data distributions, the known convergence rates for GT algorithms are not
optimal with respect to their dependence on the mixing parameter p (related to the
spectral gap of the connectivity matrix).
We provide a tighter analysis of the GT method in the stochastic strongly convex,
convex and non-convex settings. We improve the dependency on p from O(p−2)
to O(p−1c−1) in the noiseless case and from O(p−3/2) to O(p−1/2c−1) in the
general stochastic case, where c ≥ p is related to the negative eigenvalues of the
connectivity matrix (and is a constant in most practical applications). This improve-
ment was possible due to a new proof technique which could be of independent
interest.

1 Introduction

Methods that train machine learning models on decentralized data offer many advantages over
traditional centralized approaches in core aspects such as data ownership, privacy, fault tolerance
and scalability [12, 33]. Many current efforts in this direction come under the banner of federated
learning [17, 29, 28, 12], where a central entity orchestrates the training and collects aggregate
updates from the participating devices. Fully decentralized methods, that do not rely on a central
coordinator and that communicate only with neighbors in an arbitrary communication topology, are
still in their infancy [24, 18].

The work of Lian et al. [24] on decentralized stochastic gradient descent (D-SGD) has spurred the
research on decentralized training methods for machine learning models. This lead to improved
theoretical analyses [16] and to improved practical schemes, such as support for time-varying
topologies [32, 3, 16] and methods with communication compression [45, 51, 15, 47]. One of the
most challenging aspect when training over decentralized data is data-heterogeneity, i.e. training
data that is in a non-IID fashion distributed over the devices (for instance in data-center training) or
generated in non-IID fashion on client devices [21, 13, 22, 23]. For example, the D-SGD method has
been shown to be affected by the heterogenity [16].

In contrast, certain methods can mitigate the impact of heterogeneous data in decentralized optimiza-
tion. For instance the gradient tracking (GT) methods developed by Lorenzo and Scutari [26] and
Nedić et al. [34], or the later D2 method by Tang et al. [46] which is designed for communication
typologies that remain fixed and do not change over time.
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Table 1: Important advances for Gradient Tracking in the strongly convex case. Our analysis improves upon all
prior rates for both with and without the stochastic noise in terms of the graph parameter p.

Reference rate of convergence to ε-accuracy considered stochastic noise

Nedić et al. [34] O
(
L3

µ3p2
log 1

ε

)
7

Alghunaim et al. [1] O
(
L

µ
log 1

ε +
1

p2
log 1

ε

)
7

Qu and Li [40] O
(
L2

µ2p2
log 1

ε

)
7

Pu and Nedić [39] Õ

(
σ2

µnε
+

√
Lσ

µ
√
pp
√
ε

+
C1√
ε

)
a X

this work Õ

(
σ2

µnε
+

√
Lσ

µ
√
pc
√
ε

+
L

µpc
log 1

ε

)
X

aC1 is a constant that is independent of ε, but can depend on other parameters, such as σ, µ, L, p

It is well known that GT methods do not depend on the heterogeneity of the data and that they
converge linearly on distributed strongly convex problem instances without stochastic noise [26, 34].
However, when we apply these methods in the context of machine learning, we need to understand
how they are affected by stochastic noise and how they behave on non-convex tasks.

In this paper, we develop a new, and improved, analysis of the gradient tracking algorithm with a
novel proof technique. Along with the parallel contribution [55] that developed a tighter analysis of
the D2 algorithm, we now have a more accurate understanding of in which setting GT works well and
in which ones it does not, and our results allow for a more detailed comparison between the D-SGD,
GT and D2 methods (see Section 5 below).

Our analysis improves over all existing results that analyze the GT algorithm. Specifically, we prove a
weaker dependence on the connectivity of the network (spectral gap) which is commonly incorporated
into the convergence rates via the standard parameter p. For example, in the strongly convex setting
with stochastic noise we prove that GT converges at the rate Õ

(
σ2

nε + 1
c ·
(
σ√
pε + 1

p log 1
ε

))
where σ2 is

an upper bound on the variance of the stochastic noise, and c ≥ p a new parameter (often a constant).
By comparing this result with the previously best known upper bound, Õ

(
σ2

nε + 1
p ·
(
σ√
pε + 1

p log 1
ε

))
,

by Pu and Nedić [39], we see that our upper bound improves the last two terms by a factor of c
p ≥ 1

and that the first term matches with known lower bounds [37]. The D2 algorithm [46] only converges
under the assumption that c is a constant2 and the recent upper bound from [55] coincides with our
worst case complexity for GT on all topologies where D2 can be applied. We provide additional
comparison of GT convergence rates in the Tables 1 and 2.

Contributions. Our main contributions can be summarized as:

• We prove better complexity estimates for the GT algorithm than known before with a new proof
technique (which might be of independent interest).

• In the non-asymptotic regime (of importance in practice), the convergence rate depends on the
network topology. By defining new graph parameters, we can give a tighter description of this
dependency, explaining why the worst case behavior is rarely observed in practice (see Section 5.1).
We verify this dependence in numerical experiments.
• We show that in the presence of stochastic noise, the leading term in the convergence rate of GT is

optimal—we are the first to derive this in the non-convex setting—and matching the unimprovable
rate of all-reduce mini-batch SGD.

2 Related Work

Decentralized Optimization. Decentralized optimization methods have been studied for decades
in the optimization and control community [48, 30, 52, 6]. Many decentralized optimization methods

2In D2 the smallest eigenvalue of the mixing matrix W must bounded from below: mini λi(W ) ≥ − 1
3

.

2



Table 2: Important advances for Gradient Tracking in the non-convex case. Our result improves upon all existing
rates in terms of the graph parameter p.

Reference rate of convergence to ε-accuracy considered stochastic noise

Lorenzo and Scutari [26] asymptotic convergence guarantees 7

Zhang and You [60] O
(
Lnσ2

ε2
+
Ln

p3ε

)
X

Lu et al. [27] O
(
C1 + C2σ

ε2

)
a X

this work Õ
(
Lσ2

nε2
+

Lσ

(
√
pc+ p

√
n)ε3/2

+
L

pcε

)
X

aC1 and C2 are constants that are independent of ε, but can depend on other parameters, such as σ, n, L, p.

[30, 11] are based on gossip averaging [14, 53, 4]. Such methods usually also work well on non-
convex problems and can be used used for training deep neural networks [3, 24, 46]. There exists
other methods, such as based on alternating direction method of multipliers (ADMM) [52, 10], dual
averaging [6, 31, 41], primal-dual methods [2, 19], block-coordinate methods for generalized linear
models [8] or using new gradient propagation mechanisms [50].

Decentralized Optimization with Heterogeneous Objective Functions. There exists several al-
gorithms that are agnostic to data-heterogeneity. Notably, EXTRA [42] and decentralized primal-dual
gradient methods [2] do not depend on the data heterogeneity and achieve linear convergence in
the strongly convex noiseless setting. However, these algorithms are not designed to be used for
non-convex tasks.

D2 [46, 55] (also known as exact diffusion [56, 57]) and Gradient Tracking (GT) [26] (also known as
NEXT [26] or DIGing [34]) are both algorithms that are agnostic to the data heterogeneity level, can
tolerate the stochastic noise, and that can be applied to non-convex objectives such as the training
of deep neural networks in machine learning. A limitation of the D2 algorithm is that it is not clear
how it can be applied to time-varying topologies, and that it can only be used on constant mixing
topologies with negative eigenvalue bounded from below by − 1

3 . Other authors proposed algorithms
that perform well on heterogeneous DL tasks [25, 59], but theoretical proofs that these algorithms are
independent of the degree of heterogeneity are still pending.

Gradient Tracking. There is a vast literature on the Gradient Tracking method itself. A tracking
mechanism was used by Zhu and Martínez [61] as a way to track the average of a distributed
continuous process. Lorenzo and Scutari [26] applied this technique to track the gradients, and
analyzed its asymptotic behavior in the non-convex setting with a time-varying topologies. Nedić
et al. [34] analyze GT (named as DIGing) in the strongly convex noiseless case with a time-varying
network. Qu and Li [40] extend the GT analysis to the non-convex, weakly-convex and strongly
convex case without stochastic noise. Nedić et al. [35] allow the different stepsizes on different
workers. Yuan et al. [58] analyze asymptotic behavior of GT for dynamic optimization. Pu and Nedić
[39] studied the GT method on stochastic problems and strongly convex objectives. Further, Xin et al.
[54] analyze asymptotic behavior of GT with stochastic noise. For non-convex stochastic functions
GT was analyzed by Zhang and You [60] and Lu et al. [27]. Li et al. [20] combine GT with variance
reduction to achieve linear convergence in the stochastic case. Tziotis et al. [49] obtain second order
guarantees for GT.

3 Setup

We consider optimization problems where the objective function is distributed across n nodes,

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

[
fi(x) = Eξ∼Di Fi(x, ξ)

]]
, (1)

where fi : Rd → R denotes the local function available to the node i, i ∈ [n] := {1, . . . n}. Each fi
is a stochastic function fi(x) = Eξ∼Di Fi(x, ξ) with access only to stochastic gradients∇Fi(x, ξ).
This setting covers empirical risk minimization problems with Di being a uniform distribution over
the local training dataset. It also covers deterministic optimization when Fi(x, ξ) = fi(x), ∀ξ.
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We consider optimization over a decentralized network, i.e. when there is an underlying communica-
tion graph G = (V,E), |V | = n, each of the nodes (e.g. a connected device) can communicate only
along the edges E. In decentralized optimization it is convenient to parameterize communication
by a mixing matrix W ∈ Rn×n, where wij = 0 if and only if nodes i and j are not communicating,
(i, j) /∈ E.

Definition 1 (Mixing Matrix). A matrix with non-negative entries W ∈ [0, 1]n×n that is symmetric
(W =W>) and doubly stochastic (W1=1, 1>W =1>), where 1 denotes the all-one vector in Rn.

3.1 Notation

We use the notation x
(t)
i ∈ Rd, y(t)

i ∈ Rd to denote the iterates and the tracking sequence, respectively,
on node i at time step t. For vectors zi ∈ Rd (zi could for instance be x

(t)
i or y

(t)
i ) defined for i ∈ [n]

we denote by z̄ = 1
n

∑n
i=1 zi.

We use both vector and matrix notation whenever it is more convenient. For vectors zi ∈ Rd defined
for i ∈ [n] we denote by a capital letter the matrix with columns zi, formally

Z := [z1, . . . , zn] ∈ Rd×n , Z̄ := [z̄, . . . , z̄] ≡ Z 1
n11> , ∆Z := Z − Z̄ . (2)

We extend this definition to gradients of (1), with∇F (X(t), ξ(t)),∇f(X(t)) ∈ Rd×n:

∇F (X(t), ξ(t)) :=
[
∇F1(x

(t)
1 , ξ

(t)
1 ), . . . ,∇Fn(x(t)

n , ξ(t)
n )
]
,

∇f(X(t)) :=
[
∇f(x

(t)
1 ), . . . ,∇f(x(t)

n )
]
.

3.2 Algorithm

The Gradient Tracking algorithm (or NEXT, DIGing) can be written as(
X(t+1)

γY (t+1)

)>
=

(
X(t)

γY (t)

)>(
W 0
−W W

)
+ γ

(
0

∇F (X(t+1), ξ(t+1))−∇F (X(t), ξ(t))

)>
(GT)

in matrix notation. Here and X(t) ∈ Rd×n denotes the iterates, Y (t) ∈ Rd×n, with Y (0) =
∇F (X(t), ξ(t)) the sequence of tracking variables, and γ > 0 denotes the stepsize. This update is
summarized in Algorithm 1.

Algorithm 1 GRADIENT TRACKING

input Initial values x
(0)
i ∈ Rd on each node i ∈ [n], communication graph G = ([n], E) and mixing

matrix W , stepsize γ, initialize y
(0)
i = ∇Fi(x(0)

i , ξ
(0)
i ), g

(0)
i = y

(0)
i in parallel for i ∈ [n].

1: in parallel on all workers i ∈ [n], for t = 0, . . . , T − 1 do
2: each node i sends

(
x

(t)
i ,y

(t)
i

)
to is neighbors

3: x
(t+1)
i =

∑
j:{i,j}∈E wij

(
x

(t)
j − γy

(t)
j

)
. update model parameters

4: Sample ξ(t+1)
i , compute gradient g

(t+1)
i = ∇Fi

(
x

(t+1)
i , ξ

(t+1)
i

)
5: y

(t+1)
i =

∑
j:{i,j}∈E wijy

(t)
j +

(
g

(t+1)
i − g

(t)
i

)
. update tracking variable

6: end parallel for

Each node i stores and updates two variables, the model parameter x
(t)
i and the tracking variable y

(t)
i .

The model parameters are updated on line 3 with a decentralized SGD update but using y
(t)
i instead of

a gradient. Variable y
(t)
i tracks the average of all local gradients on line 5. Intuitively, the algorithm

is agnostic to the functions heterogeneity because y
(t)
i is ‘close’ to the full gradient of f(x) (suppose

we would replace line 5 with exact averaging in every timestep, then y
(t+1)
i = 1

n

∑n
i=1 g

(t+1)
i . For

further discussion of the tracking mechanism refer to [26, 34, 39].
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graph/topology 1/p c

ring O(n2) 8/9
2d-torus O(n) ≥ 4/5
fully connected O(1) 1

Table 3: Parameters p and c for some common network topologies on n nodes for uniformly averaging W , i.e.
wij = 1

deg(i)
= 1

deg(j)
for {i, j} ∈ E, see e.g. [36].

3.3 Assumptions

We first state an assumption on the mixing matrix.
Assumption 1 (Mixing Matrix). Let λi(W ), i ∈ [n], denote the eigenvalues of the mixing matrix
W with 1 = λ1(W ) > λ2(W ) ≥ · · · ≥ λn(W ) > −1. With this, we can define the spectral gap
δ = 1−max{|λ2(W )|, |λn(W )|}, and the mixing parameters

p = 1−max{|λ2(W )|, |λn(W )|}2 , c = 1−min{λn(W ), 0}2 . (3)

We assume that p > 0 (and consequently c > 0).

The assumption p > 0 ensures that the network topology is connected, and that the consensus distance
decreases linearly after each averaging step, i.e.

∥∥XW − X̄∥∥2

F
≤ (1−p)

∥∥X − X̄∥∥2

F
,∀X ∈ Rd×n.

The parameter p is closely related to the spectral gap δ as it holds p = 2δ − δ2. From this we can
conclude that δ ≤ p ≤ 2δ and, asymptotically for δ → 0, p→ 2δ. Assuming a lower bound on p (or
equivalently δ) is a standard assumption in the literature.

The parameter c is related to the most negative eigenvalue. From the definition (3) it follows that the
auxiliary mixing parameter c ≥ p for all mixing matrices W . The parameters p and c are only equal
when |λn(W )| ≥ |λ2(W )| and λn(W ) ≤ 0. Moreover, if the diagonal entries wii (self-weights) of
the mixing matrix are all strictly positive, then c has to be strictly positive.
Remark 1 (Lower bound on c.). Let W be a mixing matrix with diagonal entries (self-weights)
wii ≥ ρ > 0, for a parameter ρ. Then λn(W ) ≥ 2ρ− 1 and c ≥ min{2ρ, 1}.

This follows from Gershgorin’s circle theorem [7] that guarantees λn(W ) ≥ 2ρ − 1, and hence
c ≥ 1−min{2ρ− 1, 0}2 ≥ min{2ρ, 1}.
For many choices of W considered in practice, most notably when the graph G has constant node-
degree and the weights wij are chosen by the popular Metropolis-Hastings rule, i.e. wij = wji =
min

{
1

deg(i)+1 ,
1

deg(j)+1

}
for (i, j) ∈ E, wii = 1−

∑n
j=1 wij ≥

1
maxj∈[n] deg(j) , see also [53, 4]. In

this case, the parameter c can be bounded by a constant depending on the maximal degree. Moreover,
for any given W , considering 1

2 (W + In) instead (i.e. increasing the self-weights), ensures that c = 1.
However, in contrast to e.g. the analysis in [55] we do not need to pose an explicit bound on c as an
assumption. In practice, for many graphs, the parameter c is bounded by a constant (see Table 3).

We further use the following standard assumptions:
Assumption 2 (L-smoothness). Each function fi : Rd → R, i ∈ [n] is differentiable and there exists
a constant L ≥ 0 such that for each x,y ∈ Rd:

‖∇fi(y)−∇fi(x)‖ ≤ L ‖x− y‖ . (4)

Sometimes we will in addition assume that the functions are (strongly) convex.
Assumption 3 (µ-strong convexity). Each function fi : Rd → R, i ∈ [n] is µ-strongly convex for
constant µ ≥ 0, i.e. for all x,y ∈ Rd:

fi(x)− fi(y) + µ
2 ‖x− y‖22 ≤ 〈∇fi(x),x− y〉 . (5)

Assumption 4 (Bounded noise). We assume that there exists constant σ s.t. ∀x1, . . .xn ∈ Rd

1
n

∑n
i=1 Eξi ‖∇Fi(xi, ξi)−∇fi(xi)‖

2
2 ≤ σ2 . (6)

We discuss possible relaxations of these assumptions in Section 4.1 below.

5



4 Convergence results

We now present our novel convergence results for GT in Section 4.1 and Section 4.2 below. We
provide a proof sketch to explain the key difficulties and technical novelty compared to prior results
later in the next Section 6.

4.1 Main theorem—GT convergence in the general case

Theorem 2. Let x
(t)
i , i ∈ [n], T > 2

p log
(

50
p (1 + log 1

p )
)

denote the iterates of the GT Algorithm 1
with a mixing matrix as in Definition 1. If Assumptions 1, 2 and 4 hold, then there exists a stepsize γ
such that the optimization error is bounded as follows:
Non-convex: Let F0 = f(x̄(0))− f? for f? ≤ minx∈Rd f(x). Then it holds

1
T+1

∑T
t=0

∥∥∇f(x̄(t))
∥∥2

2
≤ ε , after Õ

(
σ2

nε
+

σ

(
√
pc+ p

√
n)ε3/2

+
1 + LR̃2

0F
−1
0

pcε

)
·LF0 iterations.

Strongly-convex: Under the additional Assumption 3 with µ > 0 and weights wt ≥ 0, WT =∑T
t=0 wt, specified in the proof, it holds for R2

T+1 =
∥∥x̄(T+1) − x?

∥∥2
:

∑T
t=0

wt
WT

[
E f(x̄(t))− f?

]
+ µ

2RT+1 ≤ ε , after Õ

(
σ2

µnε
+

√
Lσ

µ
√
pc
√
ε

+
L

µpc
log

1

ε

)
iterations.

General convex: Under the additional Assumption 3 with µ ≥ 0, it holds for R2
0 =

∥∥x̄(0) − x?
∥∥2

:

1
T+1

∑T
t=0

[
E f(x̄(t))− f?

]
≤ ε , after Õ

(
σ2

nε2
+

√
Lσ

√
pcε3/2

+
L(1 + R̃2

0R
−2
0 )

pcε

)
·R2

0 iterations,

where R̃2
0 = 1

n

∑n
i=1 ‖x

(0)
i − x̄(0)‖2 + 1

nL2

∑n
i=1 ‖y

(0)
i − ȳ(0)‖2.

From these results we see that the leading term in the convergence rate (assuming σ > 0) is not
affected by the graph parameters. Moreover, in this term we see a linear speedup in n, the number of
workers. The leading terms of all three results match with the convergence estimates for all-reduce
mini-batch SGD [5, 43] and is optimal [37]. This means, that after a sufficiently long transient time,
GT achieves a linear speedup in n. This transient time depends on the graph parameters p and c, but
not on the data-dissimilarity. We will discuss the dependency of the convergence rate on the graph
parameters c, p more carefully below in Sections 5 and 7, and compare the convergence rate to the
convergence rates of D-SGD and D2.

Possible Relaxations of the Assumptions. Before moving on to the proofs, we mention briefly
a few possible relaxations of the assumptions that are possible with only slight adaptions of the
proof framework. These extensions can be addressed with known techniques and are omitted for
conciseness. We give here the necessary references for completeness.

• Bounded Gradient Assumption I. The uniform bound on the stochastic noise in Assumption 4
could be relaxed by allowing the noise to grow with the gradient norm [16, Assumption 3b].

• Bounded Gradient Assumption II. In the convex setting it has been observed that σ2 can be
replaced with σ2

? := 1
n

∑n
i=1 Eξi ‖∇Fi(x?, ξi)−∇fi(x?)‖

2
2, the noise at the optimum. However,

this requires smoothness of each Fi(x, ξ), ξ ∈ Di, which is stronger than our Assumption 2. For
the technique see e.g. [38].

• Different mixing for X and Y . In Algorithm 1, both the x and y iterates are averaged on the
same communication topology (the same mixing matrix). This can be relaxed by allowing for two
separate matrices. This follows from inspecting our proof below.

• Local Steps. It is possible to extend Algorithm 1 and our analysis in Theorem 2 to allow for local
computation steps. Mixing matrix would alternate between identity matrix I (no communication,
local steps) and W (communication steps).
However, it is non trivial to extend our analysis to the general time-varying graphs, as the product
of two arbitrary mixing matrices W1W2 might be non symmetric.
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4.2 Faster convergence on consensus functions

We now state an additional result, which improves Theorem 2 on the consensus problem, defined as

min

[
f(x) =

1

n

n∑
i=1

[
fi(x) := 1

2 ‖x− µi‖2
]]

, (7)

for vectors µi ∈ Rd, i ∈ [n] and optimal solution x? = 1
n

∑n
i=1 µi. Note that this is a special case

of the general problem (1) without stochastic noise (σ = 0). For this function, we can improve the
complexity estimate that would follow from Theorem 2 by proving a convergence rate that does not
depend on c.
Theorem 3. Let f be as in (7) let Assumption 1 hold. Then there exists a stepsize γ ≤ p such that it
holds 1

n

∑n
i=1

∥∥x(T )
i −x?

∥∥2 ≤ ε, for the iterates GT 1 and any ε > 0, after at most T = Õ
(
p log 1

ε

)
iterations.

5 Discussion

We now provide a discussion of these results.

5.1 Parameter c

The convergence rate in Theorem 2 depends on the parameter c, that in the worst case could be as
small as p. In this case our theoretical result does not improve over existing results for the strongly
convex case. However, for many graphs in practice parameter c is bounded by a constant (see Table 3
and discussion below Assumption 1).

While we show in Theorem 3 that it is possible to remove the dependency on c entirely from the
convergence rate in special cases, it is still an open question if the parameter c in Theorem 2 is tight
in general.

5.2 Comparison to prior GT literature

Tables 1 and 2 compare our theoretical convergence rates in strongly convex and non convex settings.
Our result tightens all existing prior work.

5.3 Comparison to other methods.

We now compare our complexity estimate of GT to D-SGD and D2 in the strongly convex case.
Analogous observations hold for the other cases too.

Comparison to D-SGD. A popular algorithm for decentralized optimization is D-SGD [24] that
converges as [16]:

Õ

(
σ2

µnε
+

√
L
(
ζ +
√
pσ
)

µp
√
ε

+
L

µp
log

1

ε

)
. (D-SGD)

While GT is agnostic to data-heterogenity, here the convergence estimate depends on the data-
heterogenity, measured by a constant ζ2 that satisfies:

1
n

∑n
i=1 ‖∇fi(x?)−∇f(x?)‖22 ≤ ζ2 . (8)

Comparing with Theorem 2, GT completely removes dependence on data heterogeneity level ζ.
Moreover, even in the homogeneous case when ζ = 0, GT enjoys the same rate as D-SGD for many
practical graphs when c is bounded by a constant.

Comparison to D2. Similarly to GT, D2 also removes the dependence on functions heterogeneity.
The convergence rate of D2 holds under assumption that λmin (W ) > − 1

3 and it is equal to [55]:

O

(
σ2

µnε
+

√
Lσ

µ
√
p
√
ε

+
L

µp
log

1

ε

)
. (D2)

Under the assumption λmin (W ) > − 1
3 the parameter c is a constant, and the GT rate estimated in

Theorem 2 matches (D2).
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6 Proof sketch of the main theorem

Here we give a proof sketch for Theorem 2, for the special case of strongly convex objectives. We give
all proof details in the appendix and highlight the main technical difficulties and novel techniques.

Key Lemma. It is very common—and useful—to write the iterates in the form X(t) = X̄(t) +
(X(t)−X̄(t)), where X̄(t) denotes the matrix with the average over the nodes. We can then separately
analyze X̄(t) and the consensus difference ∆X(t) := (X(t) − X̄(t)) (and ∆Y (t) := (Y (t) − Ȳ (t))).
Define W̃ = W − 11>

n . From the update equation (GT) we see that(
∆X(t+1)

γ∆Y (t+1)

)>
=

(
∆X(t)

γ∆Y (t)

)>
︸ ︷︷ ︸

=:Ψt

(
W̃ 0
−W̃ W̃

)
︸ ︷︷ ︸

=:J

+γ

(
0(

∇F (Xt+1, ξt+1)−∇F (Xt, ξt)
)

(I − 11>

n )

)>
︸ ︷︷ ︸

=:Et

,

in short, by using the notation Ψt, J , and Et as introduced above,

Ψt+1 = ΨtJ + γEt . (9)

We could immediately adapt the proof technique from [16] if it would hold that the spectral radius of
J is smaller than one. However, this is not the case, and in general ‖J‖ > 1.

Note that for any integer i ≥ 0:

J i =

(
W̃ i 0
−iW̃ i W̃ i

)
‖J i‖2 = ‖W̃ i‖2 + i2‖W̃ i‖2 ≤ (1− p)i + i2(1− p)i , (10)

by Assumption 1. With this observation we can now formulate a key lemma:

Lemma 4 (Contraction). For any integer τ ≥ 2
p log

(
50
p (1 + log 1

p )
)

it holds that ‖Jτ‖2 ≤ 1
2 .

While the constants in this lemma are chosen to ease the presentation, most important for us is that
after τ = Θ̃

(
1
p

)
communication rounds, old parameter values (from τ steps ago) get discounted and

averaged by a constant factor. We can alternatively write the statement of Lemma 4 as∥∥ZJτ − Z̄∥∥2

F
≤ 1

2

∥∥Z − Z̄∥∥2

F
, ∀Z ∈ R2d×n .

This resembles [16, Assumption 4] and the proof now follows the same pattern. A few crucial
differences remain, as the result in [16] depends on a data-dissimilarity parameter which we can
avoid by carefully estimating the tracking errors. For completeness, we sketch the outline and give
all details in the appendix.

Average Sequence. First, we consider the average sequences X̄(t) and Ȳ (t). As all columns of these
matrices are equal, we can equivalently consider a single column only: x̄(t) and ȳ(t).

Lemma 5 (Average). It holds that

ȳ(t) =
1

n

n∑
i=1

∇Fi
(
x

(t)
i , ξ

(t)
i

)
, x̄(t+1) = x̄(t) − γ 1

n

n∑
i=1

∇Fi
(
x

(t)
i , ξ

(t)
i

)
. (11)

This follows directly from the update (GT) and the fact that X̄ = X̄W for doubly stochastic mixing
matrices. The update of x̄(t) in (11) is almost identical to one step of mini-batch SGD (on a complete
graph). The average sequence behaves almost as a SGD sequence:

Lemma 6 (Descent lemma, [16, Lemma 8]). Under the Assumptions of Theorem 2 for the convex
functions, the averages x̄(t) := 1

n

∑n
i=1 x

(t)
i of the iterates of Algorithm 1 with the stepsize γ ≤ 1

12L
satisfy

E
∥∥x̄(t+1) − x?

∥∥2 ≤
(

1− γµ

2

)
E
∥∥x̄(t) − x?

∥∥2
+
γ2σ2

n
− γet +

3γL

n

n∑
i=1

E
∥∥x̄(t) − x

(t)
i

∥∥2
, (12)

where et = E f(x̄(t))− f?, for f? = minx∈Rd f(x).
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Consensus Distance. The main difficulty comes from estimating the consensus distance ‖Ψt‖2, in
the notation introduced in (9). Note that

‖Ψt‖2 =
1

n

n∑
i=1

∥∥x(t)
i − x̄(t)

∥∥2

2
+
γ2

n

n∑
i=1

∥∥y(t)
i − ȳ(t)

∥∥2

2
.

By unrolling (9) for τ ≤ k ≤ 2τ , τ = 2
p log

(
50
p (1 + log 1

p )
)

+ 1 steps,

Ψt+k = ΨtJ
k + γ

k−1∑
j=1

Et+j−1J
k−j . (13)

By taking the Frobenius norm, and carefully estimating the norm of the error term∥∥∑τ−1
j=1 Et+j−1J

τ−j
∥∥2

F
, and using Lemma 4 we can derive a recursion for the consensus distance.

Lemma 7 (Consensus distance recursion). There exists absolute constants B1, B2, B3 > 0 such that
for a stepsize γ < c

B3Lτ

E ‖Ψt+k‖2F ≤
7

8
E ‖Ψt‖2F +

1

128τ

k−1∑
j=0

‖Ψt+j‖2F +
B1τLγ

2

c2

k−1∑
j=0

net+j +
B2τγ

2

c2
nσ2. (14)

This lemma allows to replace p with c in the final convergence rate. This is achieved by grouping
same gradients in the sum

∥∥∑k−1
j=1 Et+j−1J

k−j
∥∥2

F
and estimating the norm with Lemma 13.

An additional technical difficulty comes when unrolling consensus recursion (14). As iteration matrix
J is not contractive, i.e. ‖J‖ > 1, then ‖Ψt+j‖2F for j < τ can be larger than ‖Ψt‖2F (up to ≈ 1

p2

times as
∥∥J i∥∥2 ≤ O

(
1
p2

)
∀i). We introduce an additional term in the recursion that is provably

non-increasing

Φt+τ :=
1

τ

τ−1∑
j=0

‖Ψt+j‖2F .

With this we unroll consensus recursion.
Lemma 8 (Unrolling recursion). For γ < c√

7B1Lτ
≤ 1

2Lτ it holds,

E ‖Ψt‖2F ≤
(

1− 1

64τ

)t
A0 +

22B1τLγ
2

c2

t−1∑
j=0

(
1− 1

64τ

)t−j
nej +

20B2τγ
2

c2
nσ2 (15)

where ej = E[f(x̄(j))− f(x?)], A0 = 16‖∆X(0)‖2F + 24γ2

p2 ‖∆Y
(0)‖2F .

It remains to combine (14) and (15) using technique from [16]. �

Proof sketch of Theorem 3. Using the matrix notation introduced above, the iterations of GT on
problem (7) can be written in a simple form:(

∆X(t+1)

γ∆Y (t+1)

)>
=

(
∆X(t)

γ∆Y (t)

)>(
W̃ γ (W − I)
−W̃ (1− γ)W̃

)
︸ ︷︷ ︸

J′

.

Similar as above, also the matrix J ′ is not a contraction operator, but in contrast to J it is diago-
nalizable: J ′ = QΛQ−1 for some Q and diagonal Λ. It follows that ‖(J ′)t‖2 =

∥∥QΛtQ−1
∥∥2

is
decreasing as (1− p)t ‖Q‖2

∥∥Q−1
∥∥2

. With this observation, the proof simplifies. �

7 Experiments

In this section we investigate the tightness of parameters c and p in our theoretical result.

Setup. We consider simple quadratic functions defined as fi(x) = ‖x‖2, and x(0) is randomly
initialized from a normal distribution N (0, 1). We add artificially stochastic noise to gradients as

9



∇Fi(x, ξ) = ∇fi(x) + ξ, where ξ ∼ N (0, σ
2

d I) so that Assumption 4 is satisfied. We elaborate the
details as well as results under other problem setups in Appendix C.

We verify the dependence on graph parameters p and c for the stochastic noise term. We fix the
stepsize γ to be constant, vary p and c and measure the value of f(x̄(t))− f? that GT reaches after
a large number of steps. According to the theory, GT converges to the level O

(
γσ2

n + γ2σ2

pc2

)
in a

linear number of steps (to reach higher accuracy, smaller stepsizes must be used). To decouple the
second term we need to ensure that the first term is small enough. For that, we take the number of
nodes n to be large. In all experiments we ensure that the first term is at least by order of magnitude
smaller than the second by comparing the noise level with GT on a fully-connected topology.

The effect of p. First, in Figure 1 we verify the expected O
(

1
p

)
dependence when c is a constant. For

a fixed n = 300 number of nodes with d = 100 we vary the value of a parameter p by interpolating
the ring topology (with uniform weights) with the fully-connected graph. The loss value f(x(∞))
scales linearly in 1

p as can be observed in Figure 1 and the dependency on p can thus not further be
improved.
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Figure 1: Impact of p on convergence with the stochastic noise σ2 = 1, when c and γ are kept constant. We see
a linear scaling in 1

p
that verifies the O

(
1
p

)
, dependence rather than prior predicted O

(
1
p2

)
.

The effect of c. In Figure 2 we aim to examine the dependence of the term O
(

1
pc2

)
on the parameter

c, in terms of 1/(pc2) and 1/(cp). We take the ring topology on a fixed number of n = 300 nodes
and reduce the self-weights to achieve different values of c (see appendix for details). Otherwise the
setup is as above. The current numerical results may suggest the existence of a potentially better
theoretical dependence of the term c (as discussed in Section 4.2); we leave the study for future work.
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Figure 2: Impact of c on the convergence with the stochastic noise σ2 = 1, when p and γ are kept constant. We
see a near linear scaling in O

(
1
pc

)
while the estimate O

(
1

pc2

)
appears to be too conservative on this problem.

8 Conclusion

We have derived improved complexity bounds for the GT method, that improve over all previous
results. We verify the tightness of the second term in the convergence rate in numerical experiments.
Our analysis identifies that the smallest eigenvalue of the mixing matrix has a strong impact on the
performance of GT, however the smallest eigenvalue can often be controlled in practice by choosing
large enough self-weights (wii) on the nodes.

Our proof technique might be of independent interest in the community and might lead to improved
analyses for other gossip based methods where the mixing matrix is not contracting (for e.g. in
directed graphs, or using row- or column-stochastic matrices).
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A Proof of Theorem 3 — Consensus Functions

We consider functions fi(x) = 1
2 ‖x− µi‖2, where x,µi ∈ Rd. Then ∇fi(x) = x− µi. In matrix

notation, the GT algorithm in this special case is equivalent to

(
X(t+1)

γY (t+1)

)>
=

(
X(t)

γY (t)

)>(
W −W
0 W

)
+ γ

(
0

X(t+1) −X(t)

)>
=

(
X(t)

γY (t)

)>(
W −W

γ(W − I) (1− γ)W

)
.

The optimal point x? = µ̄ = 1
n

∑n
i=1 µi. Denote X? = [x?, . . . ,x?] ∈ Rd×n. We decompose the

error as ∥∥∥X(t) −X?
∥∥∥2

F
=
∥∥∥X(t) − X̄(t)

∥∥∥2

F︸ ︷︷ ︸
consensus error

+
∥∥∥X̄(t) −X?

∥∥∥2

︸ ︷︷ ︸
optimization error

.

For the optimization part, notice that Ȳ (t) = X̄(t) −X?. That is because

Ȳ (0) = ∇f(X(0))
1

n
11> = X̄(0) −X?, Ȳ (t+1) = Ȳ (t) + X̄(t+1) − X̄(t) .

Therefore, the optimization error is equal to∥∥X̄t −X?
∥∥2

F
=
∥∥∥X̄(t−1) − γȲ (t−1) −X?

∥∥∥2

F
=
∥∥∥(1− γ)

(
X̄(t−1) −X?

)∥∥∥2

F

= (1− γ)2t
∥∥∥X̄(0) −X?

∥∥∥2

F
.

For the consensus part, denoting, W̃ = W − 11>

n , ∆X(t) = X(t)− X̄(t), ∆Y (t) = Y (t)− Ȳ (t),(
∆X(t)

γ∆Y (t)

)>
=

(
∆X(0)

γ∆Y (0)

)>(
W̃ −W̃

γ(W − I) (1− γ)W̃

)t
︸ ︷︷ ︸

J′

.

Taking the norm,∥∥∥∆X(t)
∥∥∥2

F
+ γ2

∥∥∥∆Y (t)
∥∥∥2

F
≤
∥∥J ′t∥∥2

2

(∥∥∥∆X(0)
∥∥∥2

F
+ γ2

∥∥∥∆Y (0)
∥∥∥2

F

)
.

Lets analyze spectral properties of matrix J ′t. Let the eigenvalue decomposition of W be W =
UΛU>, the eigenvalue decomposition of W̃ is W̃ = U Λ̃U> for diagonal Λ̃.

We can decompose

J ′ =

(
U 0
0 U

)(
Λ̃ −Λ̃

γ (Λ− I) (1− γ)Λ̃

)
︸ ︷︷ ︸

=:M

(
U> 0
0 U>

)
.

And,

∥∥J ′t∥∥2

2
=

∥∥∥∥∥
(
U 0
0 U

)(
Λ̃ −Λ̃

γ (Λ− I) (1− γ)Λ̃

)t(
U> 0
0 U>

)∥∥∥∥∥
2

2

=

∥∥∥∥∥
(

Λ̃ −Λ̃
γ (Λ− I) (1− γ)Λ̃

)t∥∥∥∥∥
2

2

,

where the last equality is due to unitary property of U .

Lemma 9. To diagonalize a block-diagonal matrix(
A B
C D

)
,
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where A = diag(a0, . . . an) ∈ Rn×n, B = diag(b0, . . . , bn), C = diag(c0, . . . , cn), D =
diag(d0, . . . , dn). Assume that each of the 2× 2 matrices(

ai bi
ci di

)
are diagonalizable with(

ai bi
ci di

)
=

(
q

(1)
i q

(2)
i

q
(3)
i q

(4)
i

)
·

(
d

(1)
i 0

0 d
(2)
i

)
·

(
q

(−1)
i q

(−2)
i

q
(−3)
i q

(−4)
i

)

Then the original matrix is diagonalizable and its diagonalization is equal to(
A B
C D

)
=

(
Q1 Q2

Q3 Q4

)
·
(
D1 0
0 D2

)
·
(
Q−1 Q−2

Q−3 Q−4

)
,

where each Ql = diag
(
q

(l)
1 , . . . , q

(l)
n

)
, Dl = diag

(
d

(l)
1 , . . . d

(l)
n

)
.

We need to show that the following 2× 2 matrices are diagonalizable.

Mi :=

(
λi −λi

γ (λi − 1) (1− γ)λi

)
,

where the λi are eigenvalues of the matrix W̃ . The eigenvalues of Mi are

λ(Mi) =

{
λi −

γλi
2
− 1

2

√
γλi
√

4 + (γ − 4)λi, λi −
γλi
2

+
1

2

√
γλi
√

4 + (γ − 4)λi

}
,

which are distinct for γ > 0, therefore the matrix is diagonalizble (over C).

If λi is positive, then by choosing γ ≤ 1− λi,

|λ(Mi)| ≤
1

3
λi +

2

3
.

If λi is negative, then, then by choosing γ ≤ 1− |λi|,

|λ(Mi)| ≤
1

3
|λi|+

2

3
.

We do not give the full formal prove of these two bounds. First we note that |(Mi)| is monotone in γ,
i.e. the absolute value increases in γ. Therefore it is enough to check that it holds |λ(Mi)| ≤ 1

3 |λi|+
2
3

for γ = 1− |λi|. We visualize these upper bounds with Mathematica [9] in Figure 3.

Out[ ]=

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Eigenvalues

Upper bound

Figure 3: The upper bound 1
3
|λi|+ 2

3
(yellow) vs. the true |λ(Mi)| for the choice γ = 1− |λi|.

This concludes the proof.
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B Proof of Theorem 2 — General Case

We first re-state theorem 2 in terms of number of iterations T

Theorem 10. For GT algorithm 1 with a mixing matrix as in Definition 1, under Assumptions 1, 2, 4,
after T iterations, if T > 2

p log
(

50
p (1 + log 1

p )
)

, there exists a constant stepsize γt = γ such that
the error is bounded as
Non-convex:

1

T + 1

T∑
t=0

∥∥∥∇f(x̄(t))
∥∥∥2

2
≤ Õ

(√
LF0σ2

nT
+

(
σLF0

(
√
pc+ p

√
n)T

)2/3

+
L(F0 + LR̃2

0)

pcT

)
,

Strongly-convex: Under additional Assumption 3 with µ > 0, it holds

T∑
t=0

wt
WT

[
E f(x̄(t))− f?

]
+
µ

2
RT+1 ≤ Õ

(
σ2

µnT
+

Lσ2

µ2pc2T 2
+
L(R2

0 + L
µ R̃

2
0)

pc
exp

[
−µpcT

L

])
,

Weakly-convex: Under Assumptions 3 with µ ≥ 0, it holds

1

T + 1

T∑
t=0

[
E f(x̄(t))− f?

]
≤ Õ

√R2
0σ

2

nT
+

(
σ
√
LR2

0√
pcT

)2/3

+
L(R2

0 + R̃2
0)

pcT

 ,

where F0 = f(x̄(0)) − f?, Rt =
∥∥x(t) − x?

∥∥, t ∈ {0, T + 1}, R̃2
0 = 1

n

∑n
i=1

∥∥∥x(0)
i − x̄(0)

∥∥∥2

+

1
n

∑n
i=1

∥∥∥y(0)
i − ȳ(0)

∥∥∥2

.

B.1 Useful Inequalities

Proof of Lemma 4. By monotonicity, it suffices to check the inequality for i = τ . By using (1−p)i ≤
e−ip and plugging τ into (10) it follows:

∥∥J i∥∥2 ≤ e−τp(1 + τ2) ≤ p2

502(1 + log 1
p )2

(
1 +

(2(log(50) + log( 1
p (1 + log 1

p )))2

p2

)

≤ 1

502
+

1

10
+

1

4

with log( 1
p (1 + log 1

p ) ≤ log 1
p + log log 1

p ≤ 2 log 1
p , then (log(4) + 2 log 1

p )2 ≤ 2 log 4 + 8 log 1
p ,

and (4 log 50 + 16 log 1
p ))2 ≤ (128 + 512 log 1

p ).

Lemma 11. Let λ ∈ (−1, 1) with |λ| = 1− α, for 0 < α < 1. Then
∣∣iλi∣∣ ≤ 1

α for all i ≥ 0.

Proof.
∣∣iλi∣∣ ≤ i(1− α)i ≤

i∑
j=1

(1− α)j ≤ 1− α
α

.

Lemma 12 (fact). Let W be a symmetric matrix with eigenvalues λ1(W ) ≥ . . . λn(W ). Then
‖W‖2 = maxi λ

2
i (W ).

Lemma 13. It holds
∥∥∥(i+ 1)W̃ i+1 − iW̃ i

∥∥∥2

≤ 4
α2 ≤ 16

c2 for all i ≥ 0, where α = 1 − |λn(W )|
and c as defined in (3).

Proof. The eigenvalues of (i + 1)W̃ i+1 − iW̃ i have the form (i + 1)λi+1 − iλi, for λ ∈ Λ :=

{λ1(W̃ ), . . . , λn(W̃ )}, the eigenvalues of W̃ . By Lemma 12, it holds∥∥∥(i+ 1)W̃ i+1 − iW̃ i
∥∥∥2

= max
λ∈Λ

((i+ 1)λi+1 − iλi)2 .
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If the maximum is attained for a positive λ > 0, we conclude
((i+ 1)λi+1 − iλi)2 = (λi+1 − iλi(1− λ))2

≤ 2(λi+1)2 + 2(1− λ)2(iλi)2

≤ 2(λi+1)2 + 2
(1− λ)2

(1− λ)2

≤ 4

with Lemma 11 for the first estimate and using λ ≤ 1 on the last line. If the maximum is attained for
a negative λ < 0 with λ = −1 + β, for β > 0, then

((i+ 1)λi+1 − iλi)2 ≤ 2((i+ 1)λi+1)2 + 2(iλi)2

≤ 2

β2
+

2

β2
≤ 4

α2

with Lemma 11 and α ≤ β.

Note that c = 1− (1− α)2 = 2α− α2 ≥ α, since α(1− α) ≥ 0 and that c ≤ 2α.

Lemma 14. It holds
∥∥∥iW̃ i

∥∥∥2

≤ 1
α2 ≤ 4

p2 .

Proof.
∥∥∥iW̃ i

∥∥∥2

=
(
i
∥∥∥W̃ i

∥∥∥)2

, and the proof follows with Lemma 11 and 12 from above.

Lemma 15. It holds
∥∥Ψ0J t

∥∥2

F
≤ 2

∥∥∆X(0)
∥∥2

F
+ 3γ2

p2

∥∥∆Y (0)
∥∥2

F
for all t ≥ 0, where p is defined

in (3).

Proof. Starting from (10) and using Lemma 11 with δ = 1− λ2∥∥Ψ0J i
∥∥2

F
=

∥∥∥∥∥
(

∆X(0)W̃ i − iγ∆Y (0)W̃ i

γ∆Y (0)W̃ i

)>∥∥∥∥∥
2

F

≤ 2
∥∥∥∆X(0)

∥∥∥2

F
+

3γ2

p2

∥∥∥∆Y (0)
∥∥∥2

F
.

Lemma 16. For arbitrary set of n vectors {ai}ni=1, ai ∈ Rd∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥
2

≤ n
n∑
i=1

‖ai‖2 . (16)

Lemma 17. For given two vectors a,b ∈ Rd

2 〈a,b〉 ≤ γ ‖a‖2 + γ−1 ‖b‖2 , ∀γ > 0 . (17)

Lemma 18. For given two vectors a,b ∈ Rd

‖a + b‖2 ≤ (1 + α) ‖a‖2 + (1 + α−1) ‖b‖2 , ∀α > 0 . (18)

This inequality also holds for the sum of two matrices A,B ∈ Rn×d in Frobenius norm.
Lemma 19. For A ∈ Rd×n, B ∈ Rn×n

‖AB‖F ≤ ‖A‖F ‖B‖2 . (19)

B.2 Convex Cases

Proof of Lemma 7 We first state auxiliary lemma about consensus recursion.
Lemma 20. There exists absolute constants C1 = 440, C2 = 380 such that iterates of Algorithm 1
satisfy,

E ‖Ψt+k‖2F ≤
3

4
E ‖Ψt‖2F + γ2C1τ

c2

k−1∑
j=0

E
∥∥∇f(Xt+j)−∇f(X?)

∥∥2

F
+ γ2C2τ

c2
nσ2 . (20)

where τ ≤ k ≤ 2τ , τ = 2
p log

(
50
p (1 + log 1

p )
)

+ 1, p and c are defined in (3), Ψt =(
∆X(t), γ∆Y (t)

)
and is defined in (9).
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Proof. We start from the recursion (13) given in the main text

Ψt+k = ΨtJ
k + γ

k∑
j=1

Et+j−1J
k−j .

Taking the norm,

‖Ψt+k‖2F
(18),α= 1

4 ,(19)
≤

(
1 +

1

4

)∥∥Jk∥∥2

2
‖Ψt‖2F + 5γ2

∥∥∥∥∥∥
k∑
j=1

Et+j−1J
k−j

∥∥∥∥∥∥
2

F

Using the key Lemma 4, the first term can be estimated as(
1 +

1

4

)∥∥Jk∥∥2

2
‖Ψt‖2F ≤

3

4
‖Ψt‖2F .

Lets estimate separately the second term. Denoting G(t) = ∇F (X(t), ξ(t)),∥∥∥∥∥∥
k∑
j=1

Et+j−1J
k−j

∥∥∥∥∥∥
2

F

=

∥∥∥∥∥
(
−
∑k
j=1

(
G(t+j) −G(t+j−1)

)
(k − j)W̃ k−j(I − 11>

n )∑k
j=1

(
G(t+j) −G(t+j−1)

)
W̃ k−j(I − 11>

n )

)∥∥∥∥∥
2

F

(19)
≤

∥∥∥∥∥∥
k∑
j=1

(
G(t+j) −G(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F︸ ︷︷ ︸
=:T1

+

∥∥∥∥∥∥
k∑
j=1

(
G(t+j) −G(t+j−1)

)
W̃ k−j

∥∥∥∥∥∥
2

F︸ ︷︷ ︸
=:T2

,

where we used the definition of the Frobenius norm and
∥∥∥I − 11>

n

∥∥∥ ≤ 1. We now give upper bounds
for T1 and T2.

The second term T2. We firstly separate the stochastic noise by adding and subtracting the full
gradient,

T2

(18)
≤ 3

∥∥∥∥∥∥
k∑
j=1

(
∇f(X(t+j))−∇f(X(t+j−1))

)
W̃ k−j

∥∥∥∥∥∥
2

F

+ 3

∥∥∥∥∥∥
k∑
j=1

(
G(t+j) −∇f(X(t+j))

)
W̃ k−j

∥∥∥∥∥∥
2

F

+ 3

∥∥∥∥∥∥
k∑
j=1

(
G(t+j−1) −∇f(X(t+j−1))

)
W̃ k−j

∥∥∥∥∥∥
2

F

.

Note that

E

∥∥∥∥∥∥
k∑
j=1

(
G(t+j) −∇f(X(t+j))

)
W̃ k−j

∥∥∥∥∥∥
2

F

=

k∑
j=1

E
∥∥∥(G(t+j) −∇f(X(t+j))

)
W̃ k−j

∥∥∥2

F

‖W̃‖≤1

≤
k∑
j=1

E
∥∥∥G(t+j) −∇f(X(t+j))

∥∥∥2

F
,

where we used the martingale property Ej
[
G(j) −∇f(X(j)) | X(j)

]
= 0 for all j ≤ t. It follows

E[T2]
(6)
≤ 3E

∥∥∥∥∥∥
k∑
j=1

(
∇f(X(t+j))−∇f(X(t+j−1))

)
W̃ k−j

∥∥∥∥∥∥
2

F

+ 6knσ2 .
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We expand further by adding and subtracting ∇f(X?) to the first norm, and bounding stochastic
noise by (6) in the other terms

E[T2]
(18),(6)
≤ 6E

∥∥∥∥∥∥
k∑
j=1

(∇f(X(t+j))−∇f(X?))W̃ k−j

∥∥∥∥∥∥
2

F

+ 6E

∥∥∥∥∥∥
k∑
j=1

(∇f(X(t+j−1))−∇f(X?))W̃ k−j

∥∥∥∥∥∥
2

F

+ 6knσ2

(16),(19)
≤ 12k

k∑
j=0

E
∥∥∥∇f(X(t+j))−∇f(X?)

∥∥∥2

F
+ 6knσ2 .

The first term T1. First, we separate the stochastic noise similarly as above. Defining Z(t) =
G(t) −∇f(X(t)),

T1

(18)
≤ 2

∥∥∥∥∥∥
k∑
j=1

[
∇f(X(t+j))−∇f(X(t+j−1))

]
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥
k∑
j=1

(
Z(t+j) − Z(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

.

Next, we add and subtract ∇f(X?) in the first term k − 1 times and temporarily denote D(j) =
∇f(X(j))−∇f(X?)

T1 ≤ 2

∥∥∥∥∥∥
k∑
j=1

(
D(t+j) −D(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥
k∑
j=1

(
Z(t+j) − Z(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

.

Next, we re-group the sums by the gradient index.

T1 ≤ 2

∥∥∥∥∥∥D(t+k−1)W̃ − (k − 1)D(t)W̃ k−1 +

k−2∑
j=1

D(t+j)
[
(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

]∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥Z(t+k−1)W̃ − (k − 1)Z(t)W̃ k−1 +

k−2∑
j=1

Z(t+j)
[
(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

]∥∥∥∥∥∥
2

F

(16),(19)
≤ 2k

∥∥∥D(t+k−1)
∥∥∥2

F
+
∥∥∥D(t)(k − 1)W̃ k−1

∥∥∥2

F
+

k−2∑
j=1

∥∥∥D(t+j)
[
(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

]∥∥∥2

F


+ 2

∥∥∥Z(t+k−1)
∥∥∥2

F
+
∥∥∥Z(t)(k − 1)W̃ k−1

∥∥∥2

F
+

k−2∑
j=1

∥∥∥Z(t+j)
[
(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

]∥∥∥2

F


where for splitting Z we used martingale property Ej

[
G(j) −∇f(X(j)) | X(j)

]
= 0 for all j ≤ t.

Next, we use Lemma 13 to estimate the norm
∥∥∥(k − j)W̃ k−j − (k − j − 1)W̃ k−j−1

∥∥∥2

2
≤ 16

c2 ; and

using (10) we estimate
∥∥∥(k − 1)W̃ k−1

∥∥∥2

2
≤
∥∥Jk−1

∥∥2 ≤ 1
2 due to our choice of k ≥ τ and a key

Lemma 4

T1

(19)
≤ 32k

c2

k−1∑
j=0

∥∥∥D(t+j)
∥∥∥2

F
+

32

c2

k−1∑
j=0

∥∥∥Z(t+j)
∥∥∥2

F

Taking expectation over the stochastic noise,

E[T1]
(6)
≤ 32k

c2

k−1∑
j=0

∥∥∥D(t+j)
∥∥∥2

F
+

32knσ2

c2

Summing up T1 and T2 and estimating k ≤ 2τ we conclude the proof

E ‖Ψt+k‖2F ≤
3

4
E ‖Ψt‖2F + γ2 440τ

c2

k∑
j=0

E
∥∥∥∇f(X(t+j))−∇f(X?)

∥∥∥2

F
+ γ2 380τ

c2
nσ2 .
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We will proof Lemma 7 with B1 = 28C1, B2 = 4C2, B3 =
√

515 · 2C1, where C1 = 220 and
C2 = 190 are constants from Lemma 20.

Proof of Lemma 7. Observe, for any t,∥∥∥∇f(X(t))−∇f(X?)
∥∥∥2

F

(18)
≤ 2

∥∥∥∇f(X(t))−∇f(X̄(t))
∥∥∥2

F
+ 2

∥∥∥∇f(X̄(t))−∇f(X?)
∥∥∥2

F

(4)
≤ 2L2

∥∥∥X(t) − X̄(t)
∥∥∥2

F︸ ︷︷ ︸
≤‖Ψt‖2F

+2
∥∥∥∇f(X̄(t))−∇f(X?)

∥∥∥2

F

With Lemma 20

E ‖Ψt+k‖2F
(20)
≤ 3

4
E ‖Ψt‖2F + γ2 τC1

c2

k∑
j=0

E
∥∥∥∇f(X(t+j))−∇f(X?)

∥∥∥2

F
+ γ2 τC2

c2
nσ2

≤ 3

4
E ‖Ψt‖2F + γ2 2C1τL

2

c2

k∑
j=0

E ‖Ψt+j‖2F + γ2 2C1τ

c2

k∑
j=0

E
∥∥∥∇f(X̄(t+j))−∇f(X?)

∥∥∥2

F
+ γ2 τC2

c2
nσ2

γ< c√
512·2C1Lτ

≤ 3

4
E ‖Ψt‖2F +

1

512τ

k∑
j=0

‖Ψt+j‖2F + γ2 2C1τ

c2

k∑
j=0

E
∥∥∥∇f(X̄(t+j))−∇f(X?)

∥∥∥2

F
+ γ2 τC2

c2
nσ2

Next, we estimate the third term by smoothness for j < k∥∥∥∇f(X̄(t+j))−∇f(X?)
∥∥∥2

F
≤ 2Ln

(
f(x̄(t+j))− f(x?)

)
.

And for j = k, the index is t+ k and it should appear only in LHS. Thus we estimate∥∥∥∇f(X̄(t+k))−∇f(X?)
∥∥∥2

F

(18)
≤ 2

∥∥∥∇f(X̄(t+k))−∇f(X̄(t+k−1))
∥∥∥2

F
+ 2

∥∥∥∇f(X̄(t+k−1))−∇f(X?)
∥∥∥2

F

(4)
≤ 2L2

∥∥∥X̄(t+k) − X̄(t+k−1)
∥∥∥2

F
+ 4Ln

(
f(x̄(t+k−1))− f(x?)

)
Next we use (11), that is equivalent to X̄(t+k) = X̄(t+k−1)−γ∇F (X(t+k−1), ξ(t+k−1))11>

n . Taking
expectation

E
∥∥∥X̄(t+k) − X̄(t+k−1)

∥∥∥2

F

(11),(6)
≤ γ2

∥∥∥∇f(X(t+k−1))11>

n

∥∥∥2

F
+ γ2σ2

≤ 2γ2
∥∥∥∇f(X(t+k−1))11>

n −∇f̄(X̄(t+k−1))
∥∥∥2

F
+ 2γ2

∥∥∥∇f̄(X̄(t+k−1))−∇f̄(X?)
∥∥∥2

F
+ γ2σ2

(18),(4)
≤ 2γ2L2

∥∥∥X(t+k−1) − X̄(t+k−1)
∥∥∥2

F
+ 4γ2Ln

(
f(x̄(t+k−1))− f(x?)

)
+ γ2σ2

where on the second line we used ∇f(X̄)11>

n = ∇f̄(X̄), and ∇f̄(X?) = 0. As γ ≤ c√
512·2C1Lτ∥∥∥∇f(X̄(t+k))−∇f(X?)

∥∥∥2

F
≤ L2 ‖Ψt+k−1‖2F + 5Ln

(
f(x̄(t+k−1))− f(x?)

)
Coming back to recursion for ‖Ψt+k‖2F and using that 2C1L

2τ
c2 γ2 ≤ 1

512τ by our choice of γ,

E ‖Ψt+k‖2F ≤
3

4
E ‖Ψt‖2F +

1

256τ

k∑
j=0

‖Ψt+j‖2F + γ2C1τ

c2
14Ln

k−1∑
j=0

E
(
f(x̄(t+j))− f(x?)

)
+ γ2 2C2τ

c2
nσ2

It is only left to get rid of ‖Ψt+k‖2F from RHS. For that we move the term with ‖Ψt+k‖2F to LHS and
divide the whole equation by (1− 1

256τ ). We use that
(
1− 1

256τ

)−1 ≤ 1 + 1
128τ ≤ 1 + 1

256 < 2, and
that

(
1− 1

4

)
(1 + 1

128τ ) ≤
(
1− 1

4

)
(1 + 1

128 ) ≤ (1− 1
8 ). We thus arrive to the Lemma’s statement

E ‖Ψt+k‖2F ≤
7

8
‖Ψt‖2F +

1

128τ

k−1∑
j=0

E ‖Ψt+j‖2F + γ2 28C1τ

c2
Ln

k−1∑
j=0

E
(
f(x̄(t+j))− f(x?)

)
+ γ2 4C2τ

c2
nσ2
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Proof of Lemma 8.

Proof. Define α = 28C1
τ
c2Ln, β = 4C2

τ
c2σ

2n for simplicity. Then inequality (14) takes the form

E ‖Ψt+k‖2F ≤
(

1− 1

8

)
E ‖Ψt‖2F +

1

128τ

k−1∑
j=0

E ‖Ψt+j‖2F + αγ2
k−1∑
j=0

E et+j + βγ2 (21)

A new quantity. We define a new quantity that has non-increasing properties even for k < τ in
contrast to E ‖Ψt+k‖2F . For t ≥ 0 we define

Φt+τ :=
1

τ

τ−1∑
j=0

E ‖Ψt+j‖2F Et+τ := α

τ−1∑
j=0

E et+j

Non-increasing property for k < τ (but t+ k ≥ τ ).

Φt+k =
1

τ

(
τ−1∑
i=k

E ‖Ψt−τ+i‖2F +

k−1∑
i=0

E ‖Ψt+i‖2F

)
Applying (21) to the second sum,

Φt+k ≤
1

τ

τ−1∑
i=k

E ‖Ψt−τ+i‖2F +
1

τ

k−1∑
i=0

[(
1− 1

8

)
E ‖Ψt−τ+i‖2F +

1

128
Φt+i + γ2Et+i + βγ2

]

Φt+k ≤ Φt +
1

128τ

k−1∑
i=0

Φt+i +
1

τ
γ2

k−1∑
i=0

Et+i +
k

τ
βγ2, (22)

where we used that Θt ≥ 0 ∀t and that τ ≥ k.

Contraction property for τ ≤ k ≤ 2τ . Using (21) and a definition of Φt+k,

Φt+k =
1

τ

k−1∑
j=k−τ

E ‖Ψt+j‖2F ≤
(

1− 1

8

)
1

τ

k−1∑
j=k−τ

E ‖Ψt+j−τ‖2F︸ ︷︷ ︸
Φt+k−τ

+
1

128τ

k−1∑
j=k−τ

Φt+j + γ2 1

τ

k−1∑
i=k−τ

Et+i + βγ2

Combining with (22) we get contraction for Φt+k

Φt+k
(22)
≤
(

1− 1

8

)
Φt +

1

128τ

k−1∑
j=0

Φt+j + γ2 1

τ

k−1∑
i=0

Et+i + 2βγ2 (23)

Simplifying contraction property. First, we substitute (22) into the second term of (23)

Φt+k ≤
(

1− 1

8

)
Φt +

1

128τ

k−2∑
i=0

Φt+i +
1

128τ

[
Φt +

1

128τ

k−2∑
i=0

Φt+i + γ2 1

τ

k−2∑
i=0

Et+i + 2βγ2

]
+ γ2 1

τ

k−1∑
i=0

Et+i + 2βγ2

≤
(

1− 1

8

)(
1 +

1

64τ

)
Φt +

(
1 +

1

128τ

)[
1

128τ

k−2∑
i=0

Φt+i + γ2 1

τ

k−2∑
i=0

Et+i + 2βγ2

]
+ γ2 1

τ
Et+k−1

where we used that 1
128τ =

(
1− 1

2

)
1

64τ ≤
(
1− 1

8

)
1

64τ . Similarly applying (22) to the rest of Φt+i,

Φt+k ≤
(

1− 1

8

)(
1 +

1

64τ

)k
Φt + γ2 1

τ

k−1∑
i=0

(
1 +

1

128τ

)t+k−1−i

Et+i +

(
1 +

1

128τ

)k
2βγ2

We further use
(
1 + 1

64τ

)k ≤ (
1 + 1

64τ

)2τ ≤ exp( 1
32 ) ≤ 1 + 1

16 and
(
1− 1

8

) (
1 + 1

64τ

)k ≤(
1− 1

16

)
; and that

(
1 + 1

128τ

)k ≤ 1 + 1
32 ≤ 2. Therefore,

Φt+k ≤
(

1− 1

16

)
Φt + 2γ2 1

τ

k−1∑
i=0

Et+i + 4βγ2 (24)
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Simplifying non-increasing property (22). Similarly as above we substitute recursively (22) into the
second term of (22), for 0 < k < τ

Φt+k ≤
(

1 +
1

128τ

)
Φt +

(
1 +

1

128τ

)[
1

128τ

k−2∑
i=0

Φt+i + γ2 1

τ

k−2∑
i=0

Et+i + βγ2

]
+ γ2 1

τ
Et+τ−1

≤
(

1 +
1

128τ

)τ
Φt + γ2 1

τ

τ−1∑
i=0

(
1 +

1

128τ

)t+τ−1−i

Et+i +

(
1 +

1

128τ

)τ
βγ2

Using now that
(
1 + 1

128τ

)τ ≤ 2 we get

Φt+k ≤ 2Φt + 2γ2 1

τ

τ−1∑
i=0

Et+i + 2βγ2 (25)

Obtaining recursion for E ‖Ψt‖2F + Φt. As our final goal is to obtain inequality for E ‖Ψt‖2F , we
start modifying (21), for τ ≤ k ≤ 2τ

E ‖Ψt+k‖2F ≤
(

1− 1

8

)
E ‖Ψt‖2F +

1

128
(Φt+k + Φt+τ ) + αγ2

k−1∑
j=0

et+j + βγ2

(25)
≤
(

1− 1

8

)
E ‖Ψt‖2F +

1

128

4Φt + 4γ2 1

τ

k−1∑
j=0

Et+j

+ αγ2
k−1∑
j=0

et+j + 2βγ2

≤
(

1− 1

8

)
E ‖Ψt‖2F +

1

32
Φt +

γ2

32

1

τ

k−1∑
j=0

Et+j + αγ2
k−1∑
j=0

et+j + 2βγ2

Summing up the last inequality and (24) we get

E ‖Ψt+k‖2F + Φt+k ≤
(

1− 1

32

)[
E ‖Ψt‖2F + Φt

]
+ 3γ2 1

τ

k−1∑
j=0

Et+j + γ2α

k−1∑
j=0

et+j + 6βγ2

Unrolling recursion up to τ . For a given t ≥ τ , lets define m = bt/τc − 1. Then

E ‖Ψt‖2F + Φt ≤
(

1− 1

32

)[
E ‖Ψmτ‖2F + Φmτ

]
+ 3γ2 1

τ

t−1∑
j=mτ

Ej + γ2α

t−1∑
j=mτ

ej + 6βγ2

Unrolling this recursively up to τ we get,

E ‖Ψt‖2F + Φt ≤
(

1− 1

32

)m [
E ‖Ψτ‖2F + Φτ

]
+ γ2

t−1∑
j=τ

(
1− 1

32

)b(t−j)/τc [
3

1

τ
Ej + αej

]
+ 6βγ2

m−1∑
j=0

(
1− 1

32

)j
(26)

Initial conditions. Inequality above work for t ≥ τ . Here, we focus on t < τ . Using similar
calculations as in Lemma 7 replacing estimation of

∥∥Ψ0J t
∥∥2

F
by Lemma 15, we get that

E ‖Ψt‖2F ≤ 2
∥∥∥∆X(0)

∥∥∥2

F
+

3γ2

p2

∥∥∥∆Y (0)
∥∥∥2

F︸ ︷︷ ︸
:=Θ̃0

+
1

128τ

t−1∑
j=0

E ‖Ψj‖2F + αγ2
t−1∑
j=0

ej + βγ2 (27)

Recursively applying (27) to the second term of (27), similarly as above, we get

E ‖Ψt‖2F ≤ 2Θ̃0 + 2αγ2 1

τ

t−1∑
j=0

ej + 2βγ2 (28)

And therefore,

Φτ =
1

τ

τ−1∑
j=0

E ‖Ψj‖2F ≤ 2Θ̃0 + 2αγ2 1

τ

τ−1∑
j=0

ej + 2βγ2 (29)
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Final recursion. Finally we apply (28), (29) to the first term of (26)

E ‖Ψt‖2F + Φt ≤
(

1− 1

32

)m
4Θ̃0 + γ2

t−1∑
j=τ

(
1− 1

32

)b(t−j)/τc [
3

1

τ
Ej + 5αej

]
+ 10βγ2

m−1∑
j=0

(
1− 1

32

)j

• For the last term we estimate
∑m−1
j=0

(
1− 1

32

)j ≤ 2.

• For the terms with ej and Ej we estimate, similar to [16],

(
1− 1

32

)1/τ

≤ exp(− 1

32τ
) ≤ 1− 1

64τ
and thus(

1− 1

32

)b(t−j)/τc
≤
(

1− 1

64τ

)τb(t−j)/τc
≤
(

1− 1

64τ

)t−j (
1− 1

64τ

)−τ
≤ 2

(
1− 1

64τ

)t−j
where as 1

64τ ≤
1
2 we estimated

(
1− 1

64τ

)−τ ≤ ( 1
1− 1

64τ

)τ
≤ (1 + 1

32τ )τ ≤ exp( 1
32 ) < 2.

• Similarly, for Θ̃0 term we estimate(
1− 1

32

)m
=
(
1− 1

32

)b t−ττ c ≤ (1− 1
64τ

)t (
1− 1

64τ

)−2τ ≤ 2
(
1− 1

64τ

)t
.

• For the terms with Ej we additionally estimate

2

(
1− 1

64τ

)t−j
Ej = 2

(
1− 1

64τ

)t−j j−1∑
i=j−τ

ei = 2

j−1∑
i=j−τ

(
1− 1

64τ

)t−i(
1− 1

64τ

)i−j
ei

Further, −τ < i− j < −1, and thus
(
1− 1

64τ

)i−j ≤ 2 for all such −τ < i− j < −1.

Therefore we obtain

E ‖Ψt‖2F + Φt ≤
(

1− 1

64τ

)t
8Θ̃0 + 22γ2α

t−1∑
j=0

(
1− 1

64τ

)t−j
ej + 20βγ2

This brings us to the statement of the lemma.

The rest of the proof follows closely [16].

B.2.1 τ -slow Sequences

Definition 2 (τ -slow sequences [44]). The sequence {at}t≥0 of positive values is τ -slow decreasing
for parameter τ > 0 if

at+1 ≤ at, ∀t ≥ 0 and, at+1

(
1 +

1

2τ

)
≥ at, ∀t ≥ 0 .

The sequence {at}t≥0 is τ -slow increasing if {a−1
t }t≥0 is τ -slow decreasing.

Proposition 21 (Examples).

1. The sequence {η2
t }t≥0 with ηt = a

b+t , b ≥ 32τ is 4τ -slow decreasing.

2. The sequence of constant stepsizes {η2
t }t≥0 with ηt = η is τ -slow decreasing for any τ .

3. The sequence {wt}t≥0 with wt = (b+ t)2, b ≥ 84τ is 8τ -slow increasing.

4. The sequence of constant weights {wt}t≥0 with wt = 1 is τ -slow increasing for any τ .
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B.2.2 The Main Recursion

Lemma 22 (The main recursion). Let {wt}t≥0 be 64τ -slow increasing sequence, Wt =
1

T+1

∑T
t=0 wt, with γ ≤ c

582C1τL
it holds that

T∑
t=0

wt E ‖Ψt‖2F ≤
T∑
t=0

wt

(
1− 1

64τ

)t
8Θ̃0 +

n

6L

T∑
t=0

etwt + 40C2
τ

c2
σ2nγ2WT , (30)

where et = f(x̄(t))− f?, Θ̃0 = 2
∥∥∆X(0)

∥∥2

F
+ 3γ2

p2

∥∥∆Y (0)
∥∥2

F
, C1 = 440, C2 = 380.

Proof. We start by averaging (15) with weights wt. Define WT =
∑T
t=0 wt, α = 28C1

τ
c2Ln,

β = 4C2
τ
c2σ

2n,

T∑
t=0

wt E ‖Ψt‖2F ≤
T∑
t=0

wt

(
1− 1

64τ

)t
8Θ̃0 + 22γ2α

T∑
t=0

wt

t−1∑
j=0

(
1− 1

64τ

)t−j
ej︸ ︷︷ ︸

:=T1

+20βγ2WT

For the middle term T1 we use that wt are 64τ -slow increasing sequences, i.e. wt ≤
wj
(
1 + 1

128τ

)t−j
, we get

T1 =

T∑
t=0

t−1∑
j=0

(
1− 1

64τ

)t−j (
1 +

1

128τ

)t−j
ejwj ≤

T∑
t=0

t−1∑
j=0

(
1− 1

128τ

)t−j
ejwj

≤
T∑
j=0

ejwj

T∑
t=j+1

(
1− 1

128τ

)t−j
≤

T∑
j=0

ejwj

∞∑
t=0

(
1− 1

128τ

)t−j
≤ 128τ

T∑
t=0

etwt

Therefore,
T∑
t=0

wtΘt ≤
T∑
t=0

wt

(
1− 1

64τ

)t
8Θ̃0 + 2816γ2ατ

T∑
t=0

etwt + 20βγ2WT

Now using that γ ≤ c
582C1τL

and that α = 20C1
τ
c2Ln, β = 2C2

τ
c2σ

2n.

T∑
t=0

wtΘt ≤
T∑
t=0

wt

(
1− 1

64τ

)t
8Θ̃0 +

n

6L

T∑
t=0

etwt + 40C2
τ

c2
σ2nγ2WT

B.2.3 Combining with the Descent Lemma 6

Lemma 23. Define D = σ2

n , a = µ
2 , A = 24L 1

n Θ̃0, Θ̃0 = 2
∥∥∆X(0)

∥∥2

F
+ 3γ2

p2

∥∥∆Y (0)
∥∥2

F
,

B = 120C2L
τ
c2σ

2, C1 = 440, C2 = 380. Then with γ ≤ c
582C1τL

it holds that

1

2WT

T∑
t=0

wtet ≤
1

WT

T∑
t=0

(
(1− γa)

γ
wtrt −

wt
γ
rt+1

)
+Dγ +

A

WT

T∑
t=0

wt

(
1− 1

64τ

)t
+Bγ2

(31)

Proof. First, define WT =
∑T
t=0 wt, rt =

∥∥x̄(t) − x?
∥∥2

, Θt =
∑n
i=1 E

∥∥x̄(t) − x
(t)
i

∥∥2
. In this

notation, (12) writes as

rt+1 ≤
(

1− γµ

2

)
rt +

γ2σ2

n
− γet + γ

3L

n
Θt,

We rearrange (12) by multiplying by wt and dividing by γ

wtet ≤
(
1− γµ

2

)
γ

wtrt −
wt
γ
rt+1 +

σ2

n
wtγ +

3L

n
wtΘt,
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Now summing up, dividing by WT , using that Θt ≤ E ‖Ψt‖2F , and using (30)

1

WT

T∑
t=0

wtet ≤
1

WT

T∑
t=0

((
1− γµ

2

)
γ

wtrt −
wt
γ
rt+1

)
+
σ2

n
γ +

1

WT

T∑
t=0

wt24L

(
1− 1

64τ

)t
1

n
Θ̃0

+
1

2

1

WT

T∑
t=0

etwt + 120C2L
τ

c2
σ2γ2

Putting the fourth term to LHS we get the statement of the lemma.

Now similar to [16, Lemma 15] we obtain the rates of Theorem 2 for the strongly convex case, and
similar to [16, Lemma 16] for the weakly convex case.

B.2.4 Strongly Convex Case

Lemma 24. If non-negative sequences {rt}t≥0, {et}t≥0 satisfy (31) for some constants
a > 0, D,A,B ≥ 0, then there exists a constant stepsize γ < 1

b with b ≥ 128aτ such
that for weights wt = (1− aγ)−(t+1) and WT :=

∑T
t=0 wt it holds:

1

2WT

T∑
t=0

etwt + arT+1 ≤ Õ
(

(r0 + A/2a)b exp

[
−a(T + 1)

b

]
+

D

aT
+

B

a2T 2

)
,

where Õ hides polylogarithmic factors.

Proof. Starting from (31) and using that that wt(1−aγ)
γ = wt−1

γ we obtain a telescoping sum,

1

2WT

T∑
t=0

wtet ≤
1

WT γ
((1− aγ)w0r0 − wT rT+1) +Dγ +Bγ2 +

A

WT

T∑
t=0

wt

(
1− 1

64τ

)t
,

And hence,

1

2WT

T∑
t=0

wtet +
wT rT+1

WT γ
≤ r0

WT γ
+Dγ +Bγ2 +

A

WT

T∑
t=0

wt

(
1− 1

64τ

)t
,

Now we estimate the last term. We use that 2γa ≤ 1
64τ and thus

(
1− 1

64τ

)t ≤ (1− aγ)2t

1

WT

T∑
t=0

(1− aγ)−(t+1)

(
1− 1

64τ

)t
≤ 1

WT

T∑
t=0

(1− aγ)t−1 ≤ 1

WT

1

2aγ

where we used that 1
1−aγ ≤

1
2 . Thus,

1

2WT

T∑
t=0

wtet +
wT rT+1

WT γ
≤ 1

WT γ

(
r0 +

A

2a

)
+Dγ +Bγ2 ,

Using that WT ≤ wT
aγ and WT ≥ wT = (1− aγ)−(T+1) we can simplify

1

2WT

T∑
t=0

wtet + arT+1 ≤ (1− aγ)T+1 1

γ

(
r0 +

A

2a

)
+Dγ +Bγ2 ≤ 1

γ

(
r0 +

A

2a

)
exp [−aγ(T + 1)] +Dγ +Bγ2 ,

Now lemma follows by tuning γ the same way as in [43].

• If 1
b ≥

ln(max{2,a2(r0+ A
2a )T 2/D})

aT then we choose η =
ln(max{2,a2(r0+ A

2a )T 2/D})
aT and get

that

Õ
(
a(r0 + A/2a)T exp

[
− ln(max{2, a2(r0 + A/2a)T 2/D})

])
+ Õ

(
D

aT

)
+ Õ

(
B

a2T 2

)
= Õ

(
D

aT

)
+ Õ

(
B

a2T 2

)
,
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• Otherwise 1
b ≤

ln(max{2,a2(r0+ A
2a )T 2/D})

aT we pick η = 1
b and get that

Õ
(

(r0 + A/2a)b exp

[
−a(T + 1)

b

]
+
D

b
+
B

b2

)
≤ Õ

(
(r0 + A/2a)b exp

[
−a(T + 1)

b

]
+

D

aT
+

B

a2T 2

)
.

B.3 Weakly Convex and Non Convex Cases

Lemma 25. If non-negative sequences {rt}t≥0, {et}t≥0 satisfy (31) with a = 0, D,A,B ≥ 0,
then there exists a constant stepsize γ < 1

b with b ≥ 128aτ such that for weights {wt = 1}t≥0 it
holds that:

1

(T + 1)

T∑
t=0

et ≤ O

(
2

(
cr0

T + 1

) 1
2

+ 2B1/3

(
r0

T + 1

) 2
3

+
br0 +Aτ

T + 1

)
.

Proof. With a = 0, constant stepsizes ηt = η and weights {wt = 1}t≥0 (31) is equivalent to

1

2(T + 1)

T∑
t=0

et ≤
1

(T + 1)γ

T∑
t=0

(rt − rt+1) +Dγ +Bγ2 +
A

T + 1

T∑
t=0

(
1− 1

64τ

)t
≤ r0

(T + 1)γ
+Dγ +Bγ2 +

64Aτ

T + 1
.

To conclude the proof we tune the stepsize for the first three terms using Lemma 26.

Lemma 26 (Tuning the stepsize). For any parameters r0 ≥ 0, b ≥ 0, e ≥ 0, d ≥ 0 there exists
constant stepsize η ≤ 1

b such that

ΨT :=
r0

γ(T + 1)
+Dη +Bη2 ≤ 2

(
Dr0

T + 1

) 1
2

+ 2B1/3

(
r0

T + 1

) 2
3

+
br0

T + 1

Proof. Choosing η = min

{(
r0

D(T+1)

) 1
2

,
(

r0
B(T+1)

) 1
3

, 1
b

}
≤ 1

b we have three cases

• η = 1
b and is smaller than both

(
r0

D(T+1)

) 1
2

and
(

r0
B(T+1)

) 1
3

, then

ΨT ≤
br0

T + 1
+
D

b
+
B

b2
≤
(
Dr0

T + 1

) 1
2

+
br0

T + 1
+B1/3

(
r0

T + 1

) 2
3

• η =
(

r0
D(T+1)

) 1
2

<
(

r0
B(T+1)

) 1
3

, then

ΨT ≤ 2

(
r0D

T + 1

) 1
2

+B

(
r0

D(T + 1)

)
≤ 2

(
r0D

T + 1

) 1
2

+B
1
3

(
r0

(T + 1)

) 2
3

,

• The last case, η =
(

r0
B(T+1)

) 1
3

<
(

r0
D(T+1)

) 1
2

ΨT ≤ 2B
1
3

(
r0

(T + 1)

) 2
3

+D

(
r0

B(T + 1)

) 1
3

≤ 2B
1
3

(
r0

(T + 1)

) 2
3

+

(
Dr0

T + 1

) 1
2

.
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B.4 Non-convex Case

First, we state the descent Lemma for non-convex cases. Due to Lemma 5, it holds that
Lemma 27 (Descent lemma for non-convex case, Lemma 11 from [16]). Under Assumptions as in
Theorem 2, the averages x̄(t) := 1

n

∑n
i=1 x

(t)
i of the iterates of Algorithm 1 with the constant stepsize

γ < 1
4L(M+1) satisfy

Et+1 f(x̄(t+1)) ≤ f(x̄(t))− γ

4

∥∥∥∇f(x̄(t))
∥∥∥2

2
+
γL2

n

n∑
i=1

∥∥∥x̄(t) − x
(t)
i

∥∥∥2

2
+
L

n
γ2σ2. (32)

Similarly as for the convex cases we prove the following recursion
Lemma 28 (Consensus distance recursion). There are exists absolute constants C1, C2 > 0 such
that

E ‖Ψt+k‖2F ≤
3

4
‖Ψt‖2F +

1

128τ

k−1∑
j=0

E ‖Ψt+j‖2F + C1γ
2τn

k−1∑
j=0

et+j + C2γ
2
(τn
c2

+ τ2
)
σ2

(33)

where ej =
∥∥∇f(x̄(j))

∥∥2
, τ ≤ k ≤ 2τ , τ = 2

p log
(

50
p (1 + log 1

p )
)

+ 1, p and c are defined in (3),

Ψt =
(
∆X(t), γ∆Y (t)

)
and is defined in (9).

Proof. The proof starts exactly the same as in the convex cases, Lemma 20. The difference comes
when estimating terms T1 and T2.

The second term T2. After splitting the stochastic noise,

E[T2] ≤ 3E

∥∥∥∥∥∥
k∑
j=1

(
∇f(X(t+j))−∇f(X(t+j−1))

)
W̃ τ−j

∥∥∥∥∥∥
2

F

+ 6knσ2

(16)
≤ 3k

k∑
j=1

E
∥∥∥∇f(X(t+j))−∇f(X(t+j−1))

∥∥∥2

F
+ 6knσ2

Estimating separately

E
∥∥∥∇f(X(t+j))−∇f(X(t+j−1))

∥∥∥2

F

(16)
≤ 3E

∥∥∥∇f(X(t+j))−∇f(X̄(t+j))
∥∥∥2

F
+ 3

∥∥∥∇f(X̄(t+j−1))−∇f(X(t+j−1))
∥∥∥2

F

+ 3
∥∥∥∇f(X̄(t+j))−∇f(X̄(t+j−1))

∥∥∥2

F

(4)
≤ 3L2 E

∥∥∥X(t+j) − X̄(t+j)
∥∥∥2

F
+ 3L2

∥∥∥X̄(t+j−1) −X(t+j−1)
∥∥∥2

F

+ 3L2
∥∥∥X̄(t+j) − X̄(t+j−1)

∥∥∥2

F

And for the last term we estimate

E
∥∥∥x̄(t+j) − x̄(t+j−1)

∥∥∥2

2
≤ γ2

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t+j−1)
i )

∥∥∥∥∥
2

2

+ γ2σ
2

n

≤ 2γ2

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(x(t+j−1)
i )− 1

n

n∑
i=1

∇fi(x̄(t+j−1))

∥∥∥∥∥
2

2

+ 2γ2
∥∥∥∇f(x̄(t+j−1))

∥∥∥2

+ γ2σ
2

n

≤ 2γ2L2 1

n

n∑
i=1

∥∥∥x(t+j−1)
i − x̄(t+j−1)

∥∥∥2

+ 2γ2
∥∥∥∇f(x̄(t+j−1))

∥∥∥2

+ γ2σ
2

n

Thus, using that γ < 1
24Lτ , k ≤ 2τ

E[T2] ≤ τ
k−1∑
j=0

nE
∥∥∥∇f(x̄(t+j))

∥∥∥2

+ 21L2τ

k−1∑
j=0

E
∥∥∥X(t+j) − X̄(t+j)

∥∥∥2

F
+ 7τnσ2 .
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Term T1. Similarly, after separating the stochastic noise with Z(t) = G(t) −∇f(X(t)),

T1

(18)
≤ 2

∥∥∥∥∥∥
k∑
j=1

[
∇f(X(t+j))−∇f(X(t+j−1))

]
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥
k∑
j=1

(
Z(t+j) − Z(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

.

We add and subtract ∇f(X̄t+j),∇f(X̄t+j−1) in the first term and denote D(j) = ∇f(X(j)) −
∇f(X̄(j)).

T1 ≤ 4

∥∥∥∥∥∥
k∑
j=1

(
D(t+j) −D(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 4

∥∥∥∥∥∥
k∑
j=1

[
∇f(X̄t+j)−∇f(X̄t+j−1)

]
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

+ 2

∥∥∥∥∥∥
k∑
j=1

(
Z(t+j) − Z(t+j−1)

)
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F

.

Terms with D and Z we estimate exactly the same as in the convex case, thus getting

E[T1]
(6)
≤ 64k

c2

k−1∑
j=0

∥∥∥D(t+j)
∥∥∥2

F
+

32knσ2

c2
+ 4

∥∥∥∥∥∥
k∑
j=1

[
∇f(X̄t+j)−∇f(X̄t+j−1)

]
(k − j)W̃ k−j

∥∥∥∥∥∥
2

F︸ ︷︷ ︸
T3

It is only left to estimate the last term. For that we use Lemma 14, and 1
p ≤ τ due to our choice of τ ,

T3

(16)
≤ k

k∑
j=1

∥∥∥[∇f(X̄t+j)−∇f(X̄t+j−1)
]

(k − j)W̃ k−j
∥∥∥2

F

L. 14
≤ 4kτ2

k∑
j=1

∥∥∇f(X̄t+j)−∇f(X̄t+j−1)
∥∥2

F

≤ 4kτ2γ2
k∑
j=1

[
2L2

∥∥∥X(t+j−1) − X̄(t+j−1)
∥∥∥2

F
+ 2n

∥∥∥∇f(x̄(t+j−1))
∥∥∥2

+ σ2

]
Where the last inequality was obtained while estimating Term T2. Using that k ≤ 2τ , γ ≤ 1

24Lτ and

that
∥∥D(t+j)

∥∥2

F
≤ L2

∥∥X(t+j) − X̄(t+j)
∥∥2

F
by smoothness

E[T1]
(6)
≤ 129τ

c2
L2

k−1∑
j=0

∥∥∥X(t+j) − X̄(t+j)
∥∥∥2

F
+ τ

k−1∑
j=0

n
∥∥∥∇f(x̄(t+j))

∥∥∥2

+

(
64τn

c2
+ τ2

)
σ2

Summing T1 and T2 together, and using that γ ≤ c
310τL

E ‖Ψt+k‖2F ≤
3

4
‖Ψt‖2F +

1

128τ

k−1∑
j=0

E ‖Ψt+j‖2F + γ210τn

k−1∑
j=0

∥∥∥∇f(x̄(t+j))
∥∥∥2

+ 5γ2

(
64τn

c2
+ τ2

)
σ2

Next, we unroll this recursion with Lemma 8.

For γ < c√
7B1Lτ

≤ 1
2Lτ , and with some positive absolute constants B1, B2 > 0 it holds,

E ‖Ψt‖2F ≤
(

1− 1

64τ

)t
A0 +B1τγ

2
t−1∑
j=0

(
1− 1

64τ

)t−j
nej +B2γ

2
(τn
c2

+ τ2
)
σ2 (34)

where ej =
∥∥∇f(x̄(j))

∥∥2
, A0 = 16‖∆X(0)‖2F + 24γ2

p2 ‖∆Y
(0)‖2F .

The rest of proof consists of combining (34) with the descent lemma for non-convex case (32) in
similar fashion as in Lemmas 22, 23; and further using Lemma 25 to obtain the final rate.
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C Experimental Setup and Additional Plots

We illustrate the dependence of the convergence rate on the parameters c and p.

In these experiments, we vary p and c (by changing the mixing matrix) and measure the value of
f(x̄(t))−f? that GT reaches after a large number of steps t, when using a constant stepsize γ (chosen
small enough so that none of the runs diverges). According to our theoretical results, GT converges
to the level O

(
γσ2

n + γ2σ2

pc2

)
in a linear number of steps (to reach higher accuracy, smaller stepsizes

must be used). Thus, for n large enough, this term is dominated by O
(
γ2σ2

pc2

)
, which we aim to

measure. In all experiments we ensure that the first term is at least by order of magnitude smaller
than the second by comparing the noise level with GT on a fully-connected topology.

C.1 Problem Instances

We used n = 300, d = 100.

Setup A (Gaussian Noise). We consider quadratic functions defined as fi(x) = ‖x‖2, and x(0)

is randomly initialized from a normal distribution N (0, 1). We add artificially stochastic noise to
gradients as ∇Fi(x, ξ) = ∇fi(x) + ξ, where ξ ∼ N (0, σ

2

d I).

Setup B (Structured Noise). We consider quadratic functions defined as fi(x) = ‖x‖2, and x(0)

is randomly initialized from a normal distribution N (0, 1). We add artificially stochastic noise to
gradients as∇F (X, ξ) = ∇f(X) + diag(ξ)V , where ξ ∼ N (0, σ

2

d I) is a d-dimensional Gaussian
noise vector, diag(ξ) a matrix with ξ on the diagonal, and V ∈ Rd×n is a matrix with half of the rows
equal to v ∈ Rn, and half of the rows equal to u ∈ Rn, where v,u are eigenvectors of the mixing
matrix, Wv = λn(W )v, i.e. corresponding to the smallest eigenvalue of W , and Wu = λ2(W )u,
i.e. corresponding to the second largest eigenvalue of W .

This is motivated by the observations in Lemma 13, where we noted that components in the eigenspace
corresponding to the smallest eigenvalue of W get amplified the most.

C.2 Graph Topologies and Mixing Matrices

Interpolated Ring (between uniform weights and interpolate with a fully-connected topology).
We consider the ring topology Wring on n nodes, where each node i has self weight wii = 1

3 and
wi,1+(i mod n) = wi,(i−2 mod n)+1 = 1

3 for its neighbors. We interpolate this uniform weight ring
topology with a fully-connected topology, Wcomplete = 1

n11>, that is, Wα := αWring + (1 −
α)Wcomplete. The eigenvalues of Wring are λ(Wring) ∈

[
− 1

3 , 1
]
, and λ(Wcomplete) ∈ [0, 1], and

therefore c of Wα is also a constant.

Ring with smaller self weight. We consider the ring topology Ww on n nodes, where each node i
has self weight wii = w ≤ 1

3 and wi,1+(i mod n) = wi,1+(i−2 mod n) = 1−w
2 for its neighbors. The

eigenvalues of Ww are λ(Ww) ∈ [2w − 1, 1], and therefore c can become small by choosing w (note
that the λn(Ww), while decreasing for smaller w, is not equal to 2w − 1 in general, expect when
w = 1

3 ). We measure the exact value λn(Ww) when reporting c below.
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C.3 Additional Plots for Setup A
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(b) constant c.
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Figure 4: Impact of c and p on the convergence with the Gaussian stochastic noise σ2 = 1. The first four
subfigures illustrate the impact of p on convergence when c is kept constant; showing a linear scaling of the
loss compared to 1

p
. The last subfigure varies c in the graph while keeping p as a constant, and we see a linear

scaling compared to 1
c2

.

C.4 Additional Plots for Setup B
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(d) constant c.

2 4 6 8
1/(pc2)

1e9

0.0050

0.0075

0.0100

0.0125

0.0150

Tr
ai

ni
ng

 lo
ss

(e) constant p.

2.0 2.5 3.0 3.5 4.0 4.5
1/cp

1e6

0.0050

0.0075

0.0100

0.0125

0.0150

Tr
ai

ni
ng

 lo
ss

(f) constant p.
Figure 5: Impact of c and p on convergence with the structured stochastic noise σ2 = 1. The first four subfigures
illustrate the impact of p on convergence when c is kept constant; showing a linear scaling of the loss compared
to 1

p
. The last subfigure varies c in the graph while keeping p as a constant, and we can see a linear scaling

compared to 1
c2

.

In Figures 4 and 5 we study the impact of c and p on the convergence. These findings support the
O
(
γ2σ2

pc2

)
scaling predicted by theory—however, cannot replace a formal proof. We leave this for

future work.
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