
Few-Shot In-Context Imitation Learning
via Implicit Graph Alignment

–Supplementary Material–

Anonymous Author(s)
Affiliation
Address
email

1 Local Encoder Network1

The representation of object alignment A(OA, OB) as a heterogeneous graph is a crucial step in2

effectively capturing the relationship between the two objects. To achieve this, we begin by encoding3

the segmented point clouds of the objects as sets of feature and position pairs. The underlying4

assumption is that each feature vector can effectively represent the local geometry of a specific part5

of the object. By treating these feature vectors as nodes in a graph and connecting them with edges6

that represent their relative positions, we create a graph representation that enables the network7

to focus on the specific parts of the objects. By adopting this graph-based approach, we are able to8

shift the network’s attention towards local information and individual parts of the objects, rather than9

relying solely on the global geometry of the entire objects. This localised representation facilitates10

more precise and targeted reasoning about the alignment between the objects, leading to improved11

performance in capturing the complex relationships and relative positions between the object parts.12

To construct the local features, we follow a step-by-step process. Firstly, we utilise the Furthest13

Point Sampling (FPS) algorithm to sample K points on the surface of the point cloud (8 in our im-14

plementation). These sampled points serve as the centre positions pi for the subsequent calculation15

of local embeddings. Next, we group all the points in the original point cloud according to their16

closest centroid and re-centre them around their respective centroids. This grouping process results17

in K different point clouds, each representing a distinct part of the object. To encode these local18

point clouds, we employ a shared PointNet model. This model takes each local point cloud as input19

and generates a feature vector Fi that describes the local neighbourhood around each centroid. Our20

PointNet model consists of an eight-layer MLP (Multi-Layer Perceptron) with skip connections,21

serving as the backbone for our local encoder. To introduce SO(3)-equivariance to the features, we22

incorporate Vector Neurons [1] into the linear layer of our network. This approach, as described in23

the Vector Neurons paper, helps ensure that the features maintain equivariance with respect to rota-24

tions in three-dimensional space. Additionally, we include the mean distance to neighbouring points25

as an additional feature for each point, which helps break the linear dependence between the points.26

Overall, the local encoder comprises approximately 1.7 million trainable parameters, allowing it to27

capture and encode the relevant local information from the point clouds.28

To enforce, that the local embeddings indeed encode the local geometry, we pre-train them as an29

implicit occupancy network [2], where a decoder is given a query point and a local feature embed-30

ding and is asked to determine whether a query point lies on the surface of the encoded part of the31

object Dθ(F i, q) → [0, 1]. Decoder is implemented as a PointNet Model [3] with GeLU activation32

functions [4] (without Vector Neurons).33

We utilise positional encoding [5] and express edge features as q =34

(sin(20πpq), cos(2
0πpq), ..., sin(2

L−1πpq), cos(2
L−1πpq)), where pq is the position of the35

query point, and L is the number of frequencies used. In our experiments, we set L = 10.36

To train the occupancy network as an auto-encoder (as presented in Figure 1), a synthetic dataset37

is generated, consisting of point clouds for randomly sampled ShapeNet objects and corresponding38

labelled query points obtained using the PySDF library. This dataset comprises a total of 100,00039

Submitted to the 7th Conference on Robot Learning (CoRL 2023). Do not distribute.



E
ncoder D

ec
od

er

E
ncoder D

ec
od

er

Initial Point Cloud Set of Local Embeddings Reconstructed Point Cloud

a)

b)

Figure 1: Examples of of our trained auto-encoder when reconstructing a pan (a), and a bowl (b).
Blue point clouds represent initial point cloud observations, yellow points represent sampled cen-
troids, and red and green points represent network prediction made for that point, occupied (red) and
not occupied (green).

samples. During the training process, two NVIDIA RTX 2080ti GPUs were utilised for compu-40

tational acceleration. The training duration spanned a period of approximately 3 days. We used41

AdamW [6] optimiser and scheduler our learning rate using the Cosine Annealing scheduler.42

2 Energy Based Model43

To learn our proposed alignment distribution pθ(Attest|Atdemo), we employ an energy-based ap-44

proach and model the distributions as:45

pθ(Atest|Ademo) =
Eθ(Atest,Ademo))
Z(Atest, θ)

(1)

Here Z is a normalising constant. In practice, we approximate this, otherwise intractable constant46

using counter-examples and minimise the negative log-likelihood of47

p̂θ

(
Atest|Ademo, {Âjtest}

Nneg

j

)
=

exp(−Eθ(Atest,Ademo)))
exp(−Eθ(Atest,Ademo)) +

∑Nneg

j exp(−Eθ(Âjtest,Ademo))
(2)

2.1 Architecture48

We are using heterogeneous graphs constructed using features described in Section 1 to represent the49

alignment between two objects G({F iA, piA}Ki , {F iB , piB}Ki ). Edges in the graph in the alignment50

are represented as relative positions between nodes expressed using positional encoding as:51

eij = (sin(20π(pj −pi)), cos(20π(pj −pi)), ..., sin(2L−1π(pj −pi)), cos(2L−1π(pj −pi))) (3)

In our base model, we use L = 6. Nodes in the demonstration and test alignment graphs are52

connected with direction edges equipped with learnable embeddings, effectively propagating infor-53

mation about the demonstration alignments to the test alignment graph. Note, that we are using54

2



heterogeneous graphs, meaning different edges (connecting nodes from the same object, target and55

grasped objects, and connecting demonstration and test graphs) have different types and will be56

processed with separate learnable parameters. Finally, to make predictions based on the connected57

graphs, we add an additional type of node to the graph, which aggregates the information from the58

test alignment graph. This Node can be seen as a Class token, and each is considered alignment in59

a batch (number of counter-examples + 1) is connected to a separate Class token.60

Having the designed graph structure, we use graph transformer convolutions, which can be viewed61

as a collection of cross-attention modules. These modules facilitate message passing between nodes62

in the graph, taking into account the specific types of nodes and edges in our heterogeneous graph63

representation. For a specific type of nodes and edges in the graph, the message passing and attention64

mechanism can be expressed as:65

F ′i =W1Fi +
∑

j∈N (i)

αi,j (W2Fj +W6eij) ; αi,j = softmax

(
(W3Fi)T (W4Fj +W6eij)√

d

)
(4)

Embedding from the Energy node (or Class token) is then processed with a small MLP to produce66

the predicted energy.67

Our base model is comprised of 4 graph transformer convolutions with 4 multi-head attention heads,68

each with a dimension of 64. Final MLP is composed of 2 layers (with dimensions 256) and GeLU69

activation functions [4]. The full model contains around 5.7M trainable parameters.70

2.2 Training71

To train our proposed energy model, we first need to create alignments of test objects used as72

counter-examples {Âjtest}
Nneg

j . We do so by creating copies of Gtest({F iA, piA}Ki , {F iB , piB}Ki ),73

and applying SE(3) to the nodes in the graph describing the grasped object. Note that demonstra-74

tion alignment graphs do not need to be copied, as they are connected to the test alignment graph75

with directional edges, propagating information one way.76

To actually transform the nodes in the graph corresponding to the grasped object, both, the position77

and the feature vectors need to be transformed. Given a transformation Tnoise, and it’s corresponding78

rotation matrix Rnoise we update the graph nodes as:79

[p̂A, 1] = Tnoise × [pA, 1]
T F̂A = Rnoise ×FA (5)

Note that this is possible because of the use of SE(3)-equivariant embeddings described in Section 1.80

During training, we create 256 different Âtest alignments per batch to approximate Z , each created81

using a unique Tnoise. All the counter-examples as alternative graph alignments are created directly82

on a GPU, facilitating an efficient training phase.83

To calculate a set of transformations Tnoise we use a combination of Langevin Dynamics (described84

in Section 2.3) and uniform sampling at different scales. We start the training with uniform sam-85

pling in ranges of [−0.8, 0.8] metres for translation and [−π, π] radians for rotation. AfterN number86

of optimisation steps (10K in our implementation), we incorporate Langevin Dynamics sampling87

which we perform every 5 optimisation steps. During this phase, we also reduce the uniform sam-88

pling range to [−0.1, 0.1] metres for translation and [−π/4, π/4] radians for rotation. Although89

creating negative samples using only Langevin Dynamics is sufficient, in practice, we found that90

our described sampling strategy leads to faster convergence and more sable training for this specific91

application of energy-based models.92

All models were trained on a single NVIDIA GeForce 3080Ti GPU for approximately 1 day.93

During the training of the proposed energy model, several important tricks were employed to ensure94

stability, efficiency, and smoothness of the energy landscapes for effective gradient-based optimi-95

sation. These tricks contribute to the overall training process and facilitate the convergence of the96

model. The following tricks were identified as particularly significant: L2 Regularisation: To pre-97

vent the logits from diverging towards positive or negative infinity, a small L2 regularisation term98

3



is added to the loss function. This regularisation term helps to control the magnitude of the logits99

and maintain stability during training. Spectral Normalisation: Spectral normalisation is applied100

to all layers of the network. In our case, energy landscapes that were learnt without using spectral101

norms were unusable for gradient-based optimisation. L2 Gradient Penalties: Gradient penalties102

are applied to the feature vectors of edges connecting grasped and target objects. This technique103

imposes an L2 regularisation on the gradients, penalising large changes in the input space. By do-104

ing so, the energy landscape becomes smoother and more amenable to gradient-based optimisation.105

Pre-training on a Subset of the Data: When dealing with a large and diverse dataset, it is beneficial106

to initialise the network by pre-training it on a smaller subset of the training data. This pre-training107

process allows the gradients to flow in regions of the loss-function landscape that would otherwise108

be relatively flat. As a result, the network can start from a better initialisation point, accelerating the109

training process. In the specific case mentioned, pre-training on approximately 1,000 samples saved110

approximately 70% of the total training time.111

2.3 Inference Optimisation112

Assuming a learnt previously described energy-based model, our goal at inference is to use it to113

sample from the conditional distribution pθ(Atest|Ademo). We can not directly sample alignments114

of objects Atest but we can compute SE(3) transformation T , that when applied to the grasped115

object would result in an alignment between the objects that are within the distribution pθ(.).116

T = argmin
T ∈SE(3)

Eθ(Atest(T ×OA, OB),Ademo) (6)

To solve Equation 6, we utilise an iterative gradient-based approach (Langevin Dynamics sampling).117

Each iteration step k in the optimisation process updates the nodes of the graph alignment represen-118

tation corresponding to the grasped object as:119

[pk+1
A , 1] =

λ

2
T kupdate × Tnoise(εk)× [pkA, 1]

T , F̂k+1
A = Rkupdate ×Rnoise(εk)×FkA (7)

Here, εk ∼ N (0, σ2
k) ∈ R6 and Tnoise is calculated using exponential mapping to project it to120

SE(3) as Tnoise(ε) = Expmap(ε). In practice, To calculate Tupdate ∈ SE(3) (and Rupdate ∈121

SO(3)), we first transform the appropriate nodes in the graph using an identity transformation Tk ∈122

SE(3) and calculate its gradient using back-propagation as∇Tk
Eθ(Atest(TI×OA, OB),Ademo) ∈123

R6. Finally, Tupdate is calculated by taking an exponential mapping of ∇Tk
Eθ(·) as T kupdate =124

Expmap(∇Tk
Eθ(·)).125

3 Experiments126

3.1 Task Definitions127

We evaluate our approach on six different tasks: 1) Grasping. The goal is to grasp different pans by128

the handle, where success means the pan is lifted by the gripper. 2) Stacking. The goal is to stack129

two bowls, where success means one bowl remains inside the other bowl. 3) Sweeping. The goal is130

to sweep marbles into a dustpan with a brush, where success means that 2 out of the 3 marbles end131

up in the dustpan. 4) Hanging. The goal is to hang a cap onto a deformable stand, where success132

means the cap rests on the stand. 5) Inserting. The goal is to insert a bottle into a shoe, where133

success means the bottle stays upright in the shoe. 6) Pouring. The goal is to pour a marble into a134

mug, where success means the marble ends up in the mug.135

4



3.2 Exploring Demonstration Diversity136

Lo
w

 D
iv

er
si

ty
M

ed
iu

m
D

iv
er

si
ty

H
ig

h
 D

iv
er

si
ty

Context Test

Figure 2: Random samples from the 3 different datasets used for the data diversity experiment.
Green point cloud represent object A, while red point cloud represent object B.

1 2 5 10 15
Number of Demonstrations

5

10

15

20

25

30

Er
ro

r, 
de

g

Low Diversity
Medium Diversity
High Diversity

Figure 3: Rotational error based on the number of demonstrations for 3 different sets of diversities.

5



References137

[1] C. Deng, O. Litany, Y. Duan, A. Poulenard, A. Tagliasacchi, and L. J. Guibas. Vector neu-138

rons: A general framework for so (3)-equivariant networks. In Proceedings of the IEEE/CVF139

International Conference on Computer Vision, pages 12200–12209, 2021.140

[2] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks:141

Learning 3d reconstruction in function space. In Proceedings of the IEEE/CVF conference on142

computer vision and pattern recognition, pages 4460–4470, 2019.143

[3] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classifica-144

tion and segmentation. In Proceedings of the IEEE conference on computer vision and pattern145

recognition, pages 652–660, 2017.146

[4] D. Hendrycks and K. Gimpel. Gaussian error linear units (gelus). arXiv preprint147

arXiv:1606.08415, 2016.148

[5] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf:149

Representing scenes as neural radiance fields for view synthesis. Communications of the ACM,150

65(1):99–106, 2021.151

[6] I. Loshchilov and F. Hutter. Decoupled weight decay regularization. arXiv preprint152

arXiv:1711.05101, 2017.153

6


	Local Encoder Network
	Energy Based Model
	Architecture
	Training
	Inference Optimisation

	Experiments
	Task Definitions
	Exploring Demonstration Diversity


