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Abstract

Weak supervision (WS) is a rich set of techniques that produce pseudolabels by
aggregating easily obtained but potentially noisy label estimates from a variety of
sources. WS is theoretically well understood for binary classification, where simple
approaches enable consistent estimation of pseudolabel noise rates. Using this
result, it has been shown that downstream models trained on the pseudolabels have
generalization guarantees nearly identical to those trained on clean labels. While
this is exciting, users often wish to use WS for structured prediction, where the
output space consists of more than a binary or multi-class label set: e.g. rankings,
graphs, manifolds, and more. Do the favorable theoretical properties of WS for
binary classification lift to this setting? We answer this question in the affirmative
for a wide range of scenarios. For labels taking values in a finite metric space,
we introduce techniques new to weak supervision based on pseudo-Euclidean
embeddings and tensor decompositions, providing a nearly-consistent noise rate
estimator. For labels in constant-curvature Riemannian manifolds, we introduce
new invariants that also yield consistent noise rate estimation. In both cases, when
using the resulting pseudolabels in concert with a flexible downstream model, we
obtain generalization guarantees nearly identical to those for models trained on
clean data. Several of our results, which can be viewed as robustness guarantees in
structured prediction with noisy labels, may be of independent interest. Empirical
evaluation validates our claims and shows the merits of the proposed method1.

1 Introduction

Weak supervision (WS) is an array of methods used to construct pseudolabels for training supervised
models in label-constrained settings. The standard workflow [RSW+16, RBE+18, FCS+20] is to
assemble a set of cheaply-acquired labeling functions—simple heuristics, small programs, pretrained
models, knowledge base lookups—that produce multiple noisy estimates of what the true label
is for each unlabeled point in a training set. These noisy outputs are modeled and aggregated
into a single higher-quality pseudolabel. Any conventional supervised end model can be trained
on these pseudolabels. This pattern has been used to deliver excellent performance in a range of
domains in both research and industry settings [DRS+20, RNGS20, SLB20], bypassing the need to
invest in large-scale manual labeling. Importantly, these successes are usually found in binary or
small-cardinality classification settings.

While exciting, users often wish to use weak supervision in structured prediction (SP) settings, where
the output space consists of more than a binary or multiclass label set [BHS+07, KL15]. In such
cases, there exists meaningful algebraic or geometric structure to exploit. Structured prediction
includes, for example, learning rankings used for recommendation systems [KAG18], regression in
metric spaces [PM19], learning on manifolds [RCMR18], graph-based learning [GS19], and more.

1https://github.com/SprocketLab/WS-Struct-Pred
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An important advantage of WS in the standard setting of binary classification is that it sometimes
yields models with nearly the same generalization guarantees as their fully-supervised counterparts.
Indeed, the penalty for using pseudolabels instead of clean labels is only a multiplicative constant.
This is a highly favorable tradeoff since acquiring more unlabeled data is easy. This property leads us
to ask the key question for this work: does weak supervision for structured prediction preserve
generalization guarantees? We answer this question in the affirmative, justifying the application of
WS to settings far from its current use.

Generalization results in WS rely on two steps [RHD+19, FCS+20]: (i) showing that the estimator
used to learn the model of the labeling functions is consistent, thus recovering the noise rates for these
noisy voters, and (ii) using a noise-aware loss to de-bias end-model training [NDRT13]. Lifting these
two results to structured prediction is challenging. The only available weak supervision technique
suitable for SP is that of [SLV+22]. It suffers from several limitations. First, it relies on the availability
of isometric embeddings of metric spaces into Rd—but does not explain how to find these. Second, it
does not tackle downstream generalization at all. We resolve these two challenges.

We introduce results for a wide variety of structured prediction problems, requiring only that the
labels live in some metric space. We consider both finite and continuous (manifold-valued) settings.
For finite spaces, we apply two tools that are new to weak supervision. The approach we propose
combines isometric pseudo-Euclidean embeddings with tensor decompositions—resulting in a nearly-
consistent noise rate estimator. In the continuous case, we introduce a label model suitable for the
so-called model spaces—Riemannian manifolds of constant curvature—along with extensions to
even more general spaces. In both cases, we show generalization results when using the resulting
pseudolabels in concert with a flexible end model from [CRR16, RCMR18].

Contributions:

• New techniques for performing weak supervision in finite metric spaces based on isometric
pseudo-Euclidean embeddings and tensor decomposition algorithms,

• Generalizations to manifold-valued regression in constant-curvature manifolds,
• Finite-sample error bounds for noise rate estimation in each scenario,
• Generalization error guarantees for training downstream models on pseudolabels,
• Experiments confirming the theoretical results and showing improvements over [SLV+22].

2 Background and Problem Setup

Our goal is to theoretically characterize how well learning with pseudolabels (built with weak
supervision techniques) performs in structured prediction. We seek to understand the interplay
between the noise in WS sources and the generalization performance of the downstream structured
prediction model. We provide brief background and introduce our problem and some useful notation.

2.1 Structured Prediction

Structured prediction (SP) involves predicting labels in spaces with rich structure. Denote the label
space by Y . Conventionally Y is a set, e.g., Y = {−1,+1} for binary classification. In the SP setting,
Y has some additional algebraic or geometric structure. In this work we assume that Y is a metric
space with metric (distance) dY . This covers many types of problems, including

• Rankings, where Y = Sρ, the symmetric group on {1, . . . , ρ}, i.e., labels are permutations,
• Graphs, where Y = Gρ, the space of graphs with vertex set V = {1, . . . , ρ},
• Riemannian manifolds, including Y = Sd, the sphere, or Hd, the hyperboloid.

Learning and Generalization in Structured Prediction In conventional supervised learning we
have a dataset {(x1, y1), . . . , (xn, yn)} of i.i.d. samples drawn from distribution ρ over X × Y .
As usual, we seek to learn a model that generalizes well to points not seen during training. Let
F = {f : X 7→ Y} be a family of functions from X to Y . Define the risk R(f) for f ∈ F and f∗ as

R(f) =

∫
X×Y

d2Y(f(x), y)dρ(x, y) f∗ ∈ argmin
f∈F

R(f). (1)
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For a large class of settings (including all of those we consider in this paper), [CRR16, RCMR18]
have shown that the estimator f̂ is consistent:

f̂(x) = argmin
y∈Y

F (x, y) F (x, y) :=
1

n

n∑
i=1

αi(x)d
2
Y(y, yi), (2)

where α(x) = (K+ νI)−1Kx. Here, K is the kernel matrix for a p.d. kernel k : X × X → R, so
that Ki,j = k(xi, xj), (Kx)i = k(x, xi), and ν is a regularization parameter. The procedure here is
to first compute the weights α and then to perform the optimization in (2) to make a prediction.

An exciting contribution of [CRR16, RCMR18] is the generalization bound

R(f̂) ≤ R(f∗) +O(n− 1
4 ),

that holds with high probability, as long as there is no label noise. The key question we tackle is does
the use of pseudolabels instead of true labels yi affect the generalization rate?

2.2 Weak Supervision

In WS, we cannot access any of the ground-truth labels yi. Instead we observe for each xi the noisy
votes λ1,i, . . . , λm,i. These are m weak supervision outputs provided by labeling functions (LFs) sa,
where sa : X → Y and λa,i = sa(xi). A two step process is used to construct pseudolabels. First,
we learn a noise model (also called a label model) that determines how reliable each source sa is. That
is, we must learn θ for Pθ(λ1, λ2, . . . , λm|y)—without having access to any samples of y. Second,
the noise model is used to infer a distribution (or its mode) for each point: Pθ(yi|λ1,i, . . . , λm,i).

We adopt the noise model from [SLV+22], which is suitable for our SP setting:

Pθ(λ1, . . . , λm|Y = y) =
1

Z
exp

− m∑
a=1

θad
2
Y(λa, y)−

∑
(a,b)∈E

θa,bd
2
Y(λa, λb)

 . (3)

Z is the normalizing partition function, θ = [θ1, . . . , θm]T > 0 are canonical parameters, and E
is a set of correlations. The model can be described in terms of the mean parameters E[d2Y(λa, y)].
Intuitively, if θa is large, the typical distance from λa to y is small and the LF is reliable; if θa is
small, the LF is unreliable. This model is appropriate for several reasons. It is an exponential family
model with useful theoretical properties. It subsumes popular special cases of noise, including, for
regression, zero-mean multivariate Gaussian noise; for permutations, a generalization of the popular
Mallows model; for the binary case, it produces a close relative of the Ising model.

Our goal is to form estimates θ̂ in order to construct pseudolabels. One way to build such pseudolabels
is to compute ỹ = argminz∈Y 1/m

∑m
a=1 θ̂ad

2
Y(z, λa). Observe how the estimated parameters θ̂a

are used to weight the labeling functions, ensuring that more reliable votes receive a larger weight.

We are now in a position to state the main research question for this work:

Do there exist estimation approaches yielding θ̂ that produce pseudolabels ỹ that maintain the
same generalization error rate O(n−1/4) when used in (2), or a modified version of (2)?

3 Noise Rate Recovery in Finite Metric Spaces

In the next two sections we handle finite metric spaces. Afterwards we tackle continuous (manifold-
valued) spaces. We first discuss learning the noise parameters θ, then the use of pseudolabels.

Roadmap For finite metric spaces with |Y| = r, we apply two tools new to weak supervision.
First, we embed Y into a pseudo-Euclidean space [Gol85]. These spaces generalize Euclidean space,
enabling isometric (distance-preserving) embeddings for any metric. Using pseudo-Euclidean spaces
make our analysis slightly more complex, but we gain the isometry property, which is critical.

Second, we form three-way tensors from embeddings of observed labeling functions. Applying tensor
product decomposition algorithms [AGH+14], we can recover estimates of the mean parameters
Ê[d2Y(λa, y)] and ultimately θ̂a. Finally, we reweight the model (2) to preserve generalization.
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Figure 1: Illustration of our weak supervision pipeline for the finite label space setting.

The intuition behind this approach is the following. First, we need a technique that can provide
consistent or nearly-consistent estimates of the parameters in the noise model. Second, we need
to handle any finite metric space. Techniques like the one introduced in [FCS+20] handle the
first—but do not work for generic finite metric spaces, only binary labels and certain sequences.
Techniques like the one in [SLV+22] handle any metric space—but only have consistency guarantees
in highly restrictive settings (e.g., it requires an isometric embedding, that the distribution over the
resulting embeddings is isomorphic to certain distributions, the true label only takes on two values).
Pseudo-Euclidean embeddings used with tensor decomposition algorithms meet both requirements

3.1 Pseudo-Euclidean Embeddings

Our first task is to embed the metric space into a continuous space—enabling easier computation and
potential dimensionality reduction. A standard approach is multi-dimensional scaling (MDS) [KW78],
which embeds Y into Rd. A downside of MDS is that not all metric spaces embed (isometrically)
into Euclidean space, as the square distance matrix D must be positive semi-definite.

A simple and elegant way to overcome this difficulty is to instead use pseudo-Euclidean spaces
for embeddings. These pseudo-spaces do not require a p.s.d. inner product. As an outcome, any
finite metric space can be embedded into a pseudo-Euclidean space with no distortion [Gol85]—so
that distances are exactly preserved. Such spaces have been applied to similarity-based learning
methods [PPD01, LRBM06, PHD+06]. A vector u in a pseudo-Euclidean space Rd+,d−

has two
parts: u+ ∈ Rd+

and u− ∈ Rd−
. The dot product and the squared distance between any two vectors

u,v are ⟨u,v⟩ϕ = ⟨u+,v+⟩ − ⟨u−,v−⟩ and d2ϕ(u,v) = ||u+ − v+||22 − ||u− − v−||22. These
properties enable isometric embeddings: the distance can be decomposed into two components that
are individually induced from p.s.d. inner products—and can thus be embedded via MDS. Indeed,
pseudo-Euclidean embeddings effectively run MDS for each component (see Algorithm 1 steps 4-9).
To recover the original distance, we obtain ||u+ − v+||22 and ||u− − v−||22 and subtract.

Example: To see why such embeddings are advantageous, we compare with a one-hot vector
representation (whose dimension is |Y|). Consider a tree with a root node and three branches, each of
which is a path with t nodes. Let Y be the nodes in the tree with the shortest-hops distance as the
metric. The pseudo-Euclidean embedding dimension is just d = 3; see Appendix for more details.
The one-hot embedding dimension is d = |Y| = 3t+ 1—arbitrarily larger!

Now we are ready to apply these embeddings to our problem. Abusing notation, we write λa and y
for the pseudo-Euclidean embeddings of λa, y, respectively. We have that d2Y(λa, y) = d2ϕ(λa,y),
so that there is no loss of information from working with these spaces. In addition, we write the
mean as µa,y = E[λa|y] and the covariance as Σa,y. Our goal is to obtain an accurate estimate
µ̂a,y = Ê[λa|y], which we will use to estimate the mean parameters E[d2Y(λa, y)]. If we could
observe y, it would be easy to empirically estimate µa,y—but we do not have access to it. Our
approach will be to apply tensor decomposition for multi-view mixtures [AGJ14].

3.2 Multi-View Mixtures and Tensor Decompositions

In a multi-view mixture model, multiple views {λa}ma=1 of a latent variable Y are observed. These
views are independent when conditioned on Y . We treat the positive and negative components
λ+
a ∈ Rd+

and λ−
a ∈ Rd−

of our pseudo-Euclidean embedding as separate multi-view mixtures:

λ+
a |y ∼ µ+

a,y + σ
√
d+ · ϵ+a and λ−

a |y ∼ µ−
a,y + σ

√
d− · ϵ−a ∀a ∈ [m], (4)

where µ+
a,y = E[λ+

a |y], µ−
a,y = E[λ−

a |y] and ϵ+a , ϵ
−
a are mean zero random vectors with covariances

1
d+ Id+ , 1

d− Id− respectively. Here σ2 is a proxy variance whose use is described in Assumption 3.
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Algorithm 1 Algorithm for Pseudolabel Construction
Input: Labeling function outputs L = {(λ1,i, . . . , λm,i)}ni=1, Label Space Y = {y0, . . . , yr−1}
Output: Pseudolabels for each data point Z = {z̃i}ni=1

▷ Step 1: Compute pseudo-Euclidean Embeddings
1: Construct matrices D ∈ Rr×r, Dij = d2Y(yi, yj) and M ∈ Rr×r, Mij =

1
2 (D

2
0i +D2

0j −D2
ij)

2: Compute eigendecomposition of M and let M = UCUT

3: Set l+, l− be indices of positive and negative eigenvalues sorted by their magnitude
4: Let d+ = |l+|, d− = |l−| i.e. the sizes of lists l+ and l− respectively.
5: Construct permutation matrix Iperm ∈ Rr×(d++d−) by concatenating l+, l− in order
6: C̄ = CIperm, Ū = UIperm
7: Y = ŪT C̄

1
2 ∈ Rr×(d++d−) and let this define the mapping g : Y 7→ Y

▷ Step 2: Parameter Estimation Using Tensor Decomposition
8: for a← 1 to m− 3 do
9: Obtain embeddings λa,i = g(λa,i),λb,i = g(λb,i),λc,i = g(λc,i) ∀i ∈ [n] where a, b, c

are uncorrelated
10: Construct tensors T̂+ and T̂− as defined in (5) for triplet (a, b, c)
11: µ̂+

a,y, µ̂
+
b,y, µ̂

+
c,y = TensorDecomposition(T̂+)

12: µ̂−
a,y, µ̂

−
b,y, µ̂

−
c,y = TensorDecomposition(T̂−)

13: s+a,y = minz∈{−1,+1} ϕ(z · µ̂+
a,y,y

+) and similarly s+b,y, s
+
c,y, s

−
a,y, s

−
b,y, s

−
c,y

14: µ̂+
a,y = s+a,y · µ̂+

a,y and similarly correct signs of µ̂+
b,y, µ̂

+
c,y, µ̂

−
a,y, µ̂

−
b,y, µ̂

−
c,y

15: end for

▷ Step 3: Infer Pseudo-Labels
16: Z̃(i) = z̃i ∼ Y |λa = λ

(i)
a , . . . λm = λ

(i)
m ; θ̂

17: return {z̃i}ni=1

We cannot directly estimate these parameters from observations of λa, due to the fact that y is not
observed. However, we can observe various moments of the outputs of the LFs such as tensors of
outer products of LF triplets. We require that for each a such a triplet exists. Then,

T+ := E[λ+
a ⊗λ+

b ⊗λ+
c ] =

∑
y∈Ys

wyµ
+
a,y⊗µ+

b,y⊗µ+
c,y and T̂+ :=

1

n

n∑
i=1

λ+
a,i⊗λ+

b,i⊗λ+
c,i. (5)

Here wy are the mixture probabilities (prior probabilities of Y ) and Ys = {y : wy > 0}. We similarly
define T− and T̂−. We then obtain estimates µ̂+

a,y, µ̂
−
a,y using an algorithm from [AGH+14] with

minor modifications to handle pseudo-Euclidean rather than Euclidean space. The overall approach
is shown in Algorithm 1. We have three key assumptions for our analysis,

Assumption 1. The support of PY , i.e., k = |{y : wy > 0}| and the label space Y is such that
min(d+, d−) ≥ k, ||µ+

a,y||2 = 1, ||µ−
a,y||2 = 1 for a ∈ [m], y ∈ Y .

Assumption 2. (Bounded angle between µ and y) Let ϕ(u,v) denote the angle between any two
vectors u,v in a Euclidean space. We assume that ϕ(µ+

a,y,y
+) ∈ [0, π/2 − c), ϕ(µ−

a,y,y
−) ∈

[0, π/2 − c) ∀a ∈ [m], and y ∈ Ys, for some sufficiently small c ∈ (0, π/4] such that sin(c) ≥
max(ϵ0(d

+), ϵ0(d
−)), where ϵ0(d) is defined for some n > n0 samples in (6).

Assumption 3. σ is such that the recovery error with model (4) is at least as large as with (3) .

These enable providing guarantees on recovering the mean vector magnitudes (1) and signs (2) and
simplify the analysis (1), (3); all three can be relaxed at the expense of a more complex analysis.

Our first theoretical result shows that we have near-consistency in estimating the mean parameters in
(3). We use standard notation Õ ignoring logarithmic factors.
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Theorem 1. Let µ̂+
a,y, µ̂

−
a,y be the estimates of µ+

a,y,µ
−
a,y returned by Algorithm 1 with input T̂+, T̂−

constructed using isometric pseudo-Euclidean embeddings (in Rd+,d−
). Suppose Assumptions 1 and

2 are met, a sufficiently large number of samples n are drawn from the model in (3), and k = |Ys|.
Then there exists a constant C0 > 0 such that with high probability ∀a ∈ [m] and y ∈ Ys,

|θa − θ̂a| ≤ C0

∣∣∣E[d2Y(λa, y)]− Ê[d2Y(λa, y)]
∣∣∣ ≤ ϵ(d+) + ϵ(d−),

where

ϵ(d) :=

Õ
(
k
√

d
n

)
+ Õ

(√
k
d

)
if σ2 = Θ(1),

Õ
(√

k
n

)
+ Õ

(√
k
d

)
if σ2 = Θ( 1d ).

(6)

We interpret Theorem 1. It is a nearly direct application of [AGJ14]. There are two noise cases for σ.
In the high-noise case, σ is independent of dimension d (and thus |Y|). Intuitively, this means the
average distance balls around each LF begin to overlap as the number of points grows—explaining
the multiplicative k term. If the noise scales down as we add more embedded points, this problem
is removed, as in the low-noise case. In both cases, the second error term comes from using the
algorithm of [AGH+14] and is independent of the sampling error. Since k = Θ(d), this term goes
down with d. The first error term is due to sampling noise and goes to zero in the number of samples
n. Note the tradeoffs of using the embeddings. If we used one-hot encoding, d = |Y|, and in the
high-noise case, we would pay a very heavy cost for

√
d/n. However, while sampling error is

minimized when using a very small d, we pay a cost in the second error term. This leads to a tradeoff
in selecting the appropriate embedding dimension.

4 Generalization Error for Structured Prediction in Finite Metric Spaces

We have access to labeling function outputs λa,i, . . . , λm,i for points xi and noise rate estimates
θ̂a, . . . , θ̂m. How can we use these to infer unobserved labels y in (2)? Our approach is based on
[NDRT13, vRW18],where the underlying loss function is modified to deal with noise. Analogously,
we modify (2) in such a way that the generalization guarantee is nearly preserved.

4.1 Prediction with Pseudolabels

First, we construct the posterior distribution Pθ̂(Y = y|λ). We use our estimated noise model
Pθ̂(λ|Y ) and the prior P (Y = y). We create pseudo-labels for each data point by drawing a
random sample from the posterior distribution conditioned on the output of labeling functions:
Z̃(i) = z̃i ∼ Y |λa = λ

(i)
a , . . . , λm = λ

(i)
m ; θ̂. We thus observe (x1, z̃1), . . . , (xn, z̃n) where z̃i is

sampled as above. To overcome the effect of noise we create a perturbed version of the distance
function using the noise rates, generalizing [NDRT13]. This requires us to characterize the noise
distribution induced by our inference procedure. In particular we seek the probability that Z̃ = yj
when the true label is yj . This can be expressed as follows. Let Ym denote the m-fold Cartesian
product of Y and let Λu = (λ

(u)
1 , . . . , λ

(u)
m ) denote its uth entry. We write

Pij = Pθ(Z̃ = yj |Y = yi) =

|Ym|∑
u=1

Pθ(Y = yj |Λ = Λ(u)) · Pθ(Λ = Λ(u)|Y = yi). (7)

We define Qij = Pθ̂(Z̃ = yj |Y = yi) using θ̂. P is the noise distribution induced by the true
parameters θ and Q is an approximation obtained from inference with the estimated parameters
θ̂. With this terminology, we can define the perturbed version of the distance function and a
corresponding replacement of (2):

d̃q(T, Ỹ = yj) :=

k∑
i=1

(Q−1)jid
2
Y(T, Y = yi) ∀yj ∈ Y, (8)

F̃q(x, y) :=
1

n

n∑
i=1

αi(x)d̃q(y, z̃i) f̂q(x) = argmin
y∈Y

F̃q(x, y). (9)
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We similarly define d̃p, F̃p, f̂p using the true noise distribution P. The perturbed distance d̃p is an
unbiased estimator of the true distance. However we do not know the true noise distribution P
hence we cannot use it for prediction. Instead we use d̃q. Note that d̃q is no longer an unbiased
estimator—its bias can be expressed as function of the parameter recovery error bound in Theorem 1.

4.2 Bounding the Generalization Error

What can we say about the excess risk R(f̂q)−R(f∗)? Note that compared to the prediction based
on clean labels, there are two additional sources of error. One is the noise in the labels (i.e., even
if we know the true P, the quality of the pseudolabels is imperfect). The other is our estimation
procedure for the noise distribution. We must address both sources of error.

Our analysis uses the following assumptions on the minimum and maximum singular values σmin(P)
, σmax(P) and the condition number κ(P) of true noise matrix P and the function F . Additional
detail is provided in the Appendix.

Assumption 4. (Noise model is not arbitrary) The true parameters θ are such that σmin(P) > 0,
and the condition number κ(P) is sufficiently small.

Assumption 5. (Normalized features) |α(x)| ≤ 1, for all x ∈ X .

Assumption 6. (Proxy strong convexity) The function F in (2) satisfies the following property with
some β > 0. As we move away from the minimizer of F , the function increases and the rate of
increase is proportional to the distance between the points:

F
(
x, f(x)

)
≥ F

(
x, f̂(x)

)
+ β · d2Y

(
f(x), f̂(x)

)
∀x ∈ X ,∀f ∈ F . (10)

With these assumptions, we provide a generalization result for prediction with pseudolabels,

Theorem 2. (Generalization Error ) Let f̂ be the minimizer as defined in (2) over the clean labels
and let f̂q (defined in (9)) be the minimizer over the noisy labels obtained from inference in Algorithm

1. Suppose Assumptions 4,5,6 hold. Then for ϵ2 = k5/2 · Õ(ϵ(d+) + ϵ(d−)) ·
(
1 + κ(P)

σmin(P)

)
and

c1 = 1 +
√
k

σmin(P) , with high probability,

R(f̂q) ≤ R(f∗) +O(n− 1
4 ) + Õ

(c1
β
n− 1

2

)
+ Õ

(3ϵ2
β

n− 1
2

)
. (11)

Implications and Tradeoffs: We interpret each term in the bound. The first term is present even
with access to the clean labels and hence unavoidable. The second term is the additional error we
incur if we learn with the knowledge of the true noise distribution. The third term is due to the use
of the estimated noise model. It is dominated by the noise rate recovery result in Theorem 1. If the
third term goes to 0 (perfect recovery) then we obtain the rate O(n−1/4), the same as in the case of
access to clean labels. The third term is introduced by our noise rate recovery algorithm and has two
terms: one dominated by Õ(n−1/2) and the other on Õ(

√
k/d) (see discussion of Theorem 1). Thus

we only pay an extra additive factor O(
√
k/d) in the excess risk when using pseudolabels.

5 Manifold-Valued Label Spaces: Noise Recovery and Generalization

We introduce a simple recovery method for weak supervision in constant-curvature Riemannian
manifolds. First we briefly introduce some background notation on these spaces, then provide our
estimator and consistency result, then the downstream generalization result. Finally, we discuss
extensions to symmetric Riemannian manifolds, an even more general class of spaces.

Background on Riemannian manifolds The following is necessarily a very abridged background;
more detail can be found in [Lee00, Tu11]. A smooth manifold M is a space where each point is
located in a neighborhood diffeomorphic to Rd. Attached to each point p ∈ M is a tangent space
TpM ; each such tangent space is a d-dimensional vector space enabling the use of calculus.
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A Riemannian manifold equips a smooth manifold with a Riemannian metric: a smoothly-varying
inner product ⟨·, ·⟩p at each point p. This tool allows us to compute angles, lengths, and ultimately,
distances dM(p, q) between points on the manifold as shortest-path distances. These shortest paths
are called geodesics and can be parametrized as curves γ(t), where γ(0) = p, or by tangent vectors
v ∈ TpM . The exponential map operation exp : TpM 7→M takes tangent vectors to manifold points.
It enables switching between these tangent vectors: expp(v) = q implies that dM(p, q) = ∥v∥. The
logarithmic map operation log : M 7→ TpM takes manifold points to tangent vectors. Further,
expp(v) = q is equivalent to logp(q) = v.

Invariant Our first contribution is a simple invariant that enables us to recover the error parameters.
Note that we cannot rely on the finite metric-space technique, since the manifolds we consider have an
infinite number of points. Nor do we need an embedding—we have a continuous representation as-is.
Instead, we propose a simple idea based on the law of cosines. Essentially, on average, the geodesic
triangle formed by the latent variable y ∈M and two observed LFs λa, λb, is a right triangle. This
means it can be characterized by the (Riemannian) version of the Pythagorean theorem:
Lemma 1. For Y =M, a hyperbolic manifold, y ∼ P for some distribution P onM and labeling
functions λa, λb drawn from (3), E cosh dY(λa, λb) = E cosh dY(λb, y)E cosh dY(λb, y), while for
Y =M a spherical manifold, E cos dY(λa, λb) = E cos dY(λb, y)E cos dY(λb, y).

These invariants enable us to easily learn by forming a triplet system. Suppose we construct the
equation in Lemma 1 for three pairs of labeling functions. The resulting system can be solved to ex-
press E[cosh(dY(λa, y))] in terms of E cosh(dY(λa, λb)),E cosh(dY(λa, λc)),E cosh(dY(λb, λc)).
Specifically,

E cosh(dY(λa, y)) =

√
E cosh dY(λa, λb)E cosh dY(λa, λc)

(E cosh(dY(λb, λc))2
.

Note that we can estimate Ê via the empirical versions of terms on the right , as these are based
on observable quantities. This is a generalization of the binary case in [FCS+20] and the Gaussian
(Euclidean) case in [SLV+22] to hyperbolic manifolds. A similar estimator can be obtained for
spherical manifolds by replacing cosh with cos.

Using this tool, we can obtain a consistent estimator for θa for each of a = 1, . . . ,m. Let C0

satisfy E|Ê cosh(dY(λa, λb))− E cosh(dY(λa, λb))| ≥ C0E|Êd2Y(λa, λb))− Ed2Y(λa, λb)|; that is,
C0 reflects the preservation of concentration when moving from distribution cosh(d) to d2. Then,
Theorem 3. Let M be a hyperbolic manifold. Fix 0 < δ < 1 and let ∆(δ) =

minρ Pr
(
∀i, dY(λa,i, λb,i) ≤ ρ

)
≥ 1 − δ. Then, there exists a constant C1 so that with proba-

bility at least 1− δ, E|Êd2Y(λa, y))− Ed2Y(λa, y)| ≤ C1 cosh(∆(δ))3/2/C0

√
2n.

As we hoped, our estimator is consistent. Note that we pay a price for a tighter bound: ∆(δ) is
large for smaller probability δ. It is possible to estimate the size of ∆(δ) (more generally, it is a
function of the curvature). In addition, it is possible to replace the ∆(δ) term by applying a version
of McDiarmid’s inequality for unbounded spaces as in [Kon14].

Next, we adapt the downstream model predictor (2) in the following way. Let µ̂2
a = Ê[d2Y(λa, y)].

Let β = [β1, . . . , βm]T be such that
∑

a βa = 1 and β minimizes
∑

a β
2
aµ̂

2
a. Then, we set

f̃(x) = argmin
y∈Y

1

n

n∑
i=1

αi(x)

m∑
a=1

β2
ad

2
Y(y, λa,i).

We simply replace each of the true labels with a combination of the labeling functions. With this, we
can state our final result. First, we introduce our assumptions.

Let q = argminz∈Y E[α(x)(y)d2Y(z, y)], where the expectation is taken over the population level
distribution and α(x)(y) denotes the kernel at y.
Assumption 7. (Bounded Hugging Function c.f. [Str20]) Let q be defined as above. For all a, b ∈M,
the hugging function at q is given by kbq(a) = 1− (∥ logq(a)− logq(b)∥2 − d2Y(a, b))/d

2
Y(q, b). We

assume that kbq(a) is lower bounded by kmin.
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Figure 2: Finite metric space case. Parameter estimation improves with samples n in learning
to rank—showing nearly-consistent behavior. Our tensor decomposition estimator outperforms
[SLV+22]. In particular, (top left) as the number of samples increases, our estimates of the positive
and negative components of T improve. (Top right) the improvements in T recovery with more
samples translates to significantly improved performance over [SLV+22], which is close to constant
across n. (Bottom) this improved parameter estimation further translates to improvements in label
model accuracy (using only the noisy estimates for prediction, without training an end model) and
end model generalization. For the top two plots, we use θ = [6, 3, 8], and in the bottom plot, we use
θ = [0, 0, 1]. In all plots, we report medians along with upper and lower quartiles across 10 trials.

Assumption 8. (Kernel Symmetry) We assume that for all x and all v ∈ TqM, α(x)(expq(v)) =
α(x)(expq(−v)).

The first condition provides control on how geodesic triangles behave; it relates to the curvature.
We provide more details on this in the Appendix. The second assumption restricts us to kernels
symmetric about the minimizers of the objective F . Finally, suppose we draw (x, y) and (x′, y′)
independently from PXY . Set σ2

o = α(x)(y)Ed2Y(y, y′).
Theorem 4. LetM be a complete manifold and suppose the assumptions above hold. Then, there
exist constants C3, C4 such that,

E[d2Y(f̂(x), f̃(x))] ≤
C3σ

2
o + C4

∑m
a=1 β

2
a(µ̂

2
a + σ2

o)

n(1− kmin)2
.

Note that as n grows, as long as our worst-quality LF has bounded variance, our estimator of the
true predictor is consistent. Moreover, we also have favorable dependence on the noise rate. This
is because the only error we incur is in computing suboptimal β coefficients. We comment on this
suboptimality in the Appendix.

A simple corollary of Theorem 5 provides the generalization guarantees we sought,

Corollary 1. LetM be a complete manifold and suppose the assumptions above hold. Then, with
high probability, R(f̃) ≤ R(f∗) +O(n− 1

4 ).

Extensions to Other Manifolds First, we note that all of our approaches almost immediately lift to
products of constant-curvature spaces. For example, we have thatM1 ×M2 has metric d2Y(p, q) =

d2M1
(p1, q1) + d2M2

(p2, q2), where pi, qi are the projections of p, q onto the ith component.
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Figure 3: Continuous case. Parameter estimation improves with more samples in the hyperbolic
regression problem. Our estimator outperforms [SLV+22]. Here, we use different randomly sampled
values of θ for each run. We report medians along with upper and lower quartiles across 10 trials.

We can go beyond products of constant-curvature spaces as well. To do so, we can build generaliza-
tions of the law of cosines (as needed for the invariance in Lemma 1). For example, it is possible to
do so for symmetric Riemannian manifolds using the tools in [AH91].

6 Experiments

Finally, we validate our theoretical claims with experimental results demonstrating improved parame-
ter recovery and end model generalization using our techniques over that of prior work [SLV+22].
We illustrate both the finite metric space and continuous space cases by targeting rankings (i.e.,
permutations) and hyperbolic spaces. In the case of rankings we show that our pseudo-Euclidean
embeddings with tensor decomposition estimator yields stronger parameter recovery and downstream
generalization than [SLV+22]. In the case of hyperbolic regression (an example of a Riemannian
manifold), we show that our estimator yields improved parameter recovery over [SLV+22].

Finite metric spaces: Learning to rank To experimentally evaluate our tensor decomposition
estimator for finite metric spaces, we consider the problem of learning to rank. We construct a
synthetic dataset whose ground truth comprises n samples of two distinct rankings among the finite
metric space of all length-four permutations. We construct three labeling functions by sampling
rankings according to a Mallows model, for which we obtain pseudo-Euclidean embeddings to use
with our tensor decomposition estimator.

In Figure 2 (top left), we show that as we increase the number of samples, we can obtain an
increasingly accurate estimate of T—exhibiting the nearly-consistent behavior predicted by our
theoretical claims. This leads to downstream improvements in parameter estimates, which also
become more accurate as n increases. In contrast, we find that the estimates of the same parameters
given by [SLV+22] do not improve substantially as n increases, and are ultimately worse (see
Figure 2, top right). Finally, this leads to improvements in the label model accuracy as compared
to that of [SLV+22], and translates to improved accuracy of an end model trained using synthetic
samples (see Figure 2, bottom).

Riemannian manifolds: Hyperbolic regression We similarly evaluate our estimator using syn-
thetic labels from a hyperbolic manifold, matching the setting of Section 5. As shown in Figure 3, we
find that our estimator consistently outperforms that of [SLV+22], often by an order of magnitude.

7 Conclusion

We studied the theoretical properties of weak supervision applied to structured prediction in two
general scenarios: label spaces that are finite metric spaces or constant-curvature manifolds. We
introduced ways to estimate the noise rates of labeling functions, achieving consistency or near-
consistency. Using these tools, we established that with suitable modifications downstream structured
prediction models maintain generalization guarantees. Future directions include extending these
results to even more general manifolds and removing some of the assumptions needed in our analysis.
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[PPD01] Elżbieta Pękalska, Pavel Paclik, and Robert P.W. Duin. A generalized kernel approach
to dissimilarity-based classification. Journal of Machine Learning Research, 2:175–211,
2001.

[RBE+18] Alexander Ratner, Stephen H. Bach, Henry Ehrenberg, Jason Fries, Sen Wu, and Christo-
pher Ré. Snorkel: Rapid training data creation with weak supervision. In Proceedings
of the 44th International Conference on Very Large Data Bases (VLDB), Rio de Janeiro,
Brazil, 2018.

[RCMR18] Alessandro Rudi, Carlo Ciliberto, GianMaria Marconi, and Lorenzo Rosasco. Mani-
fold structured prediction. In Advances in Neural Information Processing Systems 32
(NeurIPS 2018), volume 32, 2018.

[RHD+19] A. J. Ratner, B. Hancock, J. Dunnmon, F. Sala, S. Pandey, and C. Ré. Training complex
models with multi-task weak supervision. In Proceedings of the AAAI Conference on
Artificial Intelligence, Honolulu, Hawaii, 2019.

[RNGS20] Christopher Ré, Feng Niu, Pallavi Gudipati, and Charles Srisuwananukorn. Overton: A
data system for monitoring and improving machine-learned products. In Proceedings of
the 10th Annual Conference on Innovative Data Systems Research, 2020.

[RSW+16] A. J. Ratner, Christopher M. De Sa, Sen Wu, Daniel Selsam, and C. Ré. Data program-
ming: Creating large training sets, quickly. In Proceedings of the 29th Conference on
Neural Information Processing Systems (NIPS 2016), Barcelona, Spain, 2016.

[SLB20] Esteban Safranchik, Shiying Luo, and Stephen Bach. Weakly supervised sequence tag-
ging from noisy rules. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pages 5570–5578, Apr. 2020.

[SLV+22] Changho Shin, Winfred Li, Harit Vishwakarma, Nicholas Carl Roberts, and Frederic
Sala. Universalizing weak supervision. In International Conference on Learning
Representations, 2022.

[Str20] Austin J. Stromme. Wasserstein Barycenters: Statistics and Optimization. MIT, 2020.

[Tu11] Loring W. Tu. An Introduction to Manifolds. Springer, 2011.

[vRW18] Brendan van Rooyen and Robert C. Williamson. A theory of learning with corrupted
labels. Journal of Machine Learning Research, 18(228):1–50, 2018.

[ZS16] Hongyi Zhang and Suvrit Sra. First-order methods for geodesically convex optimization.
In Conference on Learning Theory, COLT 2016, 2016.

12



Checklist

1. Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

2. Did you describe the limitations of your work? [Yes]
3. Did you discuss any potential negative societal impacts of your work? [N/A]
4. Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
5. Did you state the full set of assumptions of all theoretical results? [Yes]
6. Did you include complete proofs of all theoretical results? [Yes] See appendix

13



Appendix

The Appendix is organized as follows. First, we provide a glossary that summarizes the notation we
use throughout the paper. Afterwards, we provide the proofs for the finite-valued metric space cases.
We continue with the proofs and additional discussion for the manifold-valued label spaces. Finally,
we give some additional explanations for pseudo-Euclidean spaces.

A Glossary

The glossary is given in Table 1 below.

Symbol Definition

X feature space
Y label metric space
Ys support of prior distribution on true labels
dY label metric (distance) function
x1, x2, . . . , xn unlabeled datapoints from X
y1, y2, . . . , yn latent (unobserved) labels from Y
s1, s2, . . . , sm labeling functions / sources
λ1, λ2, . . . , λm output of labeling functions (LFs)
λ1,λ2, . . . ,λm pseudo-Euclidean embeddings of LFs outputs
λa,i output of ath LF on ith data point xi

λa,i pseudo-Euclidean embedding of output of ath LF on ith data point xi

n number of data points
m number of LFs
k size of the support of prior on Y i.e. k = |SY |
r size of Y for the finite case
θa, θ̂a true and estimated canonical parameters of model in (3)
θ, θ̂ true and estimated canonical parameters arranged as vectors
E[d2Y(λa, y)] mean parameters in (3)
g pseudo-Euclidean embedding mapping
P true noise model Pij = Pθ(Ỹ = yi|Y = yj) with true parameters θ
Q estimated noise model with parameters θ̂, Qij = Pθ̂(Ỹ = yi|Y = yj)
Λ a random element in Ym the m-fold Cartesian product of Y
Λ(u) uth element in Ym

µ+
a,y,µ

−
a,y means of distributions in (4) corresponding to Rd+

,Rd−

ϵ(d+), ϵ(d−) error in recovering the mean parameters (6)
σ proxy noise variance in (4)
F (x, y) the score function in (2) with true labels
F̃p(x, y), F̃q(x, y) the score function in (9) with noisy labels from distributions P and Q

f̂ minimizer of F defined in (2)
f̂p, f̂q minimizers of F̃p, F̃q as defined in (2)
σmax(P) maximum singular value of P
σmin(P) minimum singular value of P
κ(P) the condition number of matrix P
ϕ(u,v) angle between vectors u,v ∈ Rd

Table 1: Glossary of variables and symbols used in this paper.
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B Proofs for Parameter Estimation Error in Discrete Spaces

We introduce results leading to the proofs of the theorems for the finite-valued metric space case.

Lemma 2. ([AGJ14]) Let T̂+, T̂− be the third order observed moments for mutually independent
labeling functions triplet, as defined in (5) using a sufficiently large number n of i.i.d observations
drawn from models in equation (4). Suppose there are sufficiently many such triplets to cover all
labeling functions. Let µ̂+

a,y, µ̂
−
a,y be the estimated parameters returned by the algorithm 1 for all

a ∈ [m]. Let ϵ(d) be defined as above in equation (6), then the following holds with high probability
for all labeling functions,

||µ+
a,y − µ̂+

a,y||2 ≤ O(ϵ(d+)) and ||µ−
a,y − µ̂−

a,y||2 ≤ O(ϵ(d−)) ∀a ∈ [m] ∀y ∈ Ys (12)

Proof. The result follows by first showing that our setting and assumptions imply that the conditions
of Theorems 1 and 5 in [AGJ14] are satisfied, which allows us to adopt their results. We then translate
the result in order to state it in terms of the ℓ2 distance.

The tensor concentration result in Theorem 1 in [AGJ14] relies heavily on the noise matrices satisfying
the Restricted Isometry Property (RIP) property. The authors make an explicit assumption that the
noise model satisfies this condition. In our setting, we have a specific form of the noise model that
allows us to show that this assumption is satisfied. The RIP condition is satisfied for sub-Gaussian
noise matrices [BDDH14]. Our noise matrices are supported on a discrete space and have bounded
entries, and so are sub-Gaussian.

The other required conditions on the norms of factor matrices and the number of latent factors are
implied by Assumption 1. Thus, we can adopt the results on recovery of parameters µa,y and the
prior weights wy from [AGJ14]. The result gives us for all a ∈ [m], y ∈ Ys,

dist(µ+
a,y, µ̂

+
a,y) ≤ O

(
ϵ(d+)

)
, dist(µ−

a,y, µ̂
−
a,y) ≤ O

(
ϵ(d−)

)
,

and
|wy − ŵy| ≤ O

(
max

(
ϵ(d+), ϵ(d−)

)
/k
)
,

where dist(u,v) is defined as follows. For any u,v ∈ Rd,

dist(u,v) = sup
z⊥u

⟨z,v⟩
||z||2||v||2

= sup
z⊥v

⟨z,u⟩
||z||2||u||2

.

Next, we translate the result to the Euclidean distance. For u,v ∈ Rd with ||u||, ||v|| = 1, it is easy
to see that

min
z∈{−1,+1}

||zu− v||2 ≤
√
2 dist(u,v).

This notion of distance is oblivious to sign recovery. However, when sign recovery is possible then
the Euclidean distance can be bounded as follows,

||u− v||2 ≤
√
2 dist(u,v).

Next we make use of Assumption 2 to recover the signs of µ+,µ−. The assumption bounds the
angle between true µ+

a,y and y+ between [0, π/2− c) for some sufficiently small c ∈ (0, π/4] such
that sin(c) > max(ϵ0(d

+), ϵ0(d
−)), where ϵ0(d) is defined for some n0 < n samples in equation

(6). We measure ϕ(µ̂+
a,y,y

+) and ϕ(−µ̂+
a,y,y

+) and claim that whichever makes an acute angle
with y+ has the correct sign.

We have that ϕ(µ̂+
a,y,y

+) ≤ ϕ(µ̂+
a,y,µ

+
a,y) + ϕ(µ+

a,y,y
+). Let s ∈ {−1,+1} be the correct sign,

then,

ϕ(sµ̂+
a,y,y

+) ≤ ϕ(sµ̂+
a,y,µ

+
a,y) + ϕ(sµ+

a,y,y
+)

≤ sin−1(ϵ(d+)) + π/2− c

< π/2− (sin−1(max(ϵ0(d
+), ϵ0(d

−)))− sin−1(ϵ(d+)))

< π/2 since sin−1 is an increasing function in the domain under consideration.
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With the correct sign sin−1(ϵ(d+)) < π/2 and so is ϕ(sµ̂+
a,y,y

+). Thus with incorrect sign
ϕ(−sµ̂+

a,y,y
+) > π/2.

Hence, after disambiguating the signs we have,
||µ+

a,y − µ̂+
a,y||2 ≤ O(dist(µ+

a,y,µ
−
a,y)) ≤ O(ϵ(d+))

and similarly for µ−
a,y . Next with n, d sufficiently large such that ϵ(d+), ϵ(d−) ≤ 1, the result holds

for squared distances.

Theorem 1. Let µ̂+
a,y, µ̂

−
a,y be the estimates of µ+

a,y,µ
−
a,y returned by Algorithm 1 with input T̂+, T̂−

constructed using isometric pseudo-Euclidean embeddings (in Rd+,d−
). Suppose Assumptions 1 and

2 are met, a sufficiently large number of samples n are drawn from the model in (3), and k = |Ys|.
Then there exists a constant C0 > 0 such that with high probability ∀a ∈ [m] and y ∈ Ys,

|θa − θ̂a| ≤ C0

∣∣∣E[d2Y(λa, y)]− Ê[d2Y(λa, y)]
∣∣∣ ≤ ϵ(d+) + ϵ(d−),

where

ϵ(d) :=

Õ
(
k
√

d
n

)
+ Õ

(√
k
d

)
if σ2 = Θ(1),

Õ
(√

k
n

)
+ Õ

(√
k
d

)
if σ2 = Θ( 1d ).

(6)

Proof. We prove this by using the bounds on errors in the estimates of µ+
a,y and µ−

a,y from Lemma 2.
We proceed by bounding the errors in two parts for E[d2ϕ(λ+

a ,y
+)] and E[d2ϕ(λ−

a ,y
−)] separately

and then combine them to get the bound on overall parameter estimation error.

We first bound the error for E[d2ϕ(λ+
a ,y

+)]. The true mean parameter (i.e., the true expected squared
distance) can be expanded as follows:

E[d2ϕ(λ+
a ,y

+)] = E
[
||λ+

a ||22 + ||y+||22 − 2⟨λ+
a ,y

+⟩
]
,

= Eλ[||λ+
a ||22] + Ey[||y+||22]− 2Ey[⟨µ+

a,y,y
+⟩].

The estimate Êλ[||λ+
a ||22] is computed empirically. The first term is estimated observed LF outputs, i.e.

Êλ[||λ+
a ||22] = 1

n

∑n
i=1 ||λ

(i),+
a ||22. The second term is computed by using the estimated prior on the

labels and for the last term we plug in the estimate of µ+
a,y computed using the tensor-decomposition

algorithm. Putting them all together we have the following estimator:

Ê[d2ϕ(λ+
a ,y

+)] = Êλ[||λ+
a ||22] + Êy[||y+||22]− 2Êy⟨µ̂+

a,y,y
+⟩.

We want to bound the error of our estimator i.e. the difference |E[d2ϕ(λ+
a ,y)]− Ê[d2ϕ(λ+

a ,y)]|. For
this first consider the following,

|Ey⟨µ+
a,y,y

+⟩ − Êy⟨µ̂+
a,y,y

+⟩| =
∑
y

∣∣∣〈(wyµ
+
a,y − ŵyµ̂

+
a,y

)
,y+

〉∣∣∣
≤
∑
y

|w
y
⟨
(
µ+

a,y − µ̂+
a,y

)
,y
〉
|+
∑
y

O(ϵ(d+)/k)|⟨µ̂+
a,y,y⟩|

≤
∑
y

|w
y
⟨
(
µ+

a,y − µ̂+
a,y

)
,y
〉
|+O(ϵ(d+))

≤
∑
y

w
y
||µ+

a,y − µ̂+
a,y||2||y||2 +O(ϵ(d+))

≤ O(ϵ(d+)).

Here we used ||µ+
a,y − µ̂+

a,y||2 ≤ O(ϵ(d+)) and ||µ+
a,y||2, ||µ̂+

a,y||2 = 1, ||y+||2 ≤ 1, ||λ+
a ||22 ≤ 1

and |wy − ŵy| ≤ O(d+)/k. Hence the parameter estimator error,∣∣∣E[d2ϕ(λ+
a ,y)]− Ê[d2ϕ(λ+

a ,y)]
∣∣∣ ≤ ∣∣∣Eλ[||λ+

a ||22 − Êλ[||λ+
a ||22]

∣∣∣+ 2|Ey⟨µ+
a,y,y

+⟩ − Êy⟨µ̂+
a,y,y

+⟩|

≤ O(1/
√
n) +O(ϵ(d+))

≤ O(ϵ(d+)).
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In the second step, we bound the first term by O(1/
√
n) via standard concentration inequalities.

Doing the same calculations for λ−
a , we obtain∣∣∣E[d2ϕ(λ−
a ,y)]− Ê[d2ϕ(λ−

a ,y)]
∣∣∣ ≤ O(ϵ(d−)).

The overall error in mean parameters is then∣∣∣E[d2ϕ(λa,y)]− Ê[d2ϕ(λa,y)]
∣∣∣ ≤ ∣∣∣E[d2ϕ(λ+

a ,y)]− Ê[d2ϕ(λ+
a ,y)]

∣∣∣+∣∣∣E[d2ϕ(λ−
a ,y)]− Ê[d2ϕ(λ−

a ,y)]
∣∣∣,

≤ O(ϵ(d+)) +O(ϵ(d−)).

Next, we use a known relation between the mean and the canonical parameters of the exponential
model to get the result in terms of the canonical parameters:

|θa − θ̂a| ≤
1

emin(Aa(θ))

∣∣E[d2Y(λa, y)− Ê[d2Y(λa, y)]
∣∣.

where Aa(θ) is the log partition function of the label model in (3) and emin(Aa) = infθ∈Θ
d2

dθ2Aa(θ)
over the parameter space Θ. For more details see Lemma 8 from [FCS+20] and Theorem 4.3 in
[SLV+22]. Letting C0 = maxa∈[m] emin(Aa) concludes the proof.

C Proofs for Generalization Error in Discrete Space

In this section we give the proof for the generalization error bound in the discrete label spaces. We
first show that the perturbed (noise-aware) distance function d̃p is an unbiased estimator of the true
distance. Using this we show that the noise aware score function F̃p is a good uniform approximation
of the score function F . Then we show that the minimizer f̂p of F̃p is close to the minimizer f̂ and
that this closeness depends on how well F̃p approximates F . Next, showing that F̃q is a good uniform
approximation of F̃p using the results from previous section on parameter recovery leads to the result
on generalization error of f̂q .

Lemma 3. Let the distribution Ỹ |Y be given by P a k × k transition probability matrix with
Pij = P(Ỹ = yj |Y = yi) and suppose P is invertible. Let the pseudo-distance d̃p be defined as in
(8) then,

EỸ |Y=yi

[
d̃p(T, Ỹ )

]
= d2Y(T, yi). (13)

Proof. Set d̃p ∈ Rk with ith entry d̃p[i] given by d̃p(T, Ỹ = yi) and similarly define d with
d[i] = d2Y(T, yi). Then we note that d̃p satisfies the following,

d̃p = (P)−1d =⇒ EỸ |Y [d̃p] = P(P)−1d = d,

and we are done.

Next, we show that the noisy score function F̃p concentrates around the true score function F for all
x and y with high probability.

Lemma 4. Let F and F̃p be defined as in (9) and (2) over n i.i.d. samples. Then the following holds
for any x ∈ X , y ∈ Y with high probability,

|F (x, y)− F̃p(x, y)| ≤ Õ
((

1 +

√
k

σmin(P)

)√ 1

n

)
∀x ∈ X ,∀y ∈ Ys, (14)

where σmin(P) is the minimum singular value of P.
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Proof. Let {yi}ni=1 be the true labels of points {xi}ni=1 and let the pseudo-label for ith point drawn
from the true noise model P be ỹi. Recall the definitions of the score functions F and F̃p for any
x ∈ X and y in Y ,

F (x, y) :=
1

n

n∑
i=1

αi(x)d
2
Y(y, yi), F̃p(x, y) :=

1

n

n∑
i=1

αi(x)d̃p(y, ỹi).

Taking their difference,

F̃p(x, y)− F (x, y) =
1

n

n∑
i=1

αi(x)
(
d̃p(y, ỹi)− d2Y(y, yi)

)
,

=
1

n

n∑
i=1

αi(x)ξ(y, yi, ỹi).

Here y, yi are fixed and the randomness is over ỹi, thus we can think of ỹi as random variable Ỹi and
take the expectation of ξ over the distribution P. From Lemma 3 we have EỸ |Y=yi

[ξ(y, yi, Ỹ )] = 0

and this implies E[F̃p(x, y)− F (x, y)] = 0.

Moreover, αi(x) · ξ(y, yi, Ỹi) are independent random variables and αi(x) ≤ 1. The ξ are bounded
as follows as long as the spectral decomposition of P is not arbitrary,

max
z∈Ys

d̃p(y, z) = ||d̃p||∞ = ||P−1d||∞ ≤ ||P−1||∞||d||∞.

Now using the fact that ||d||∞ ≤ 1 and properties of matrix norms we get,

||P−1||∞||d||∞ ≤ ||P−1||∞ ≤
√
k||P−1||2 ≤

√
k

σmin(P)
.

Moreover, ∀y, z ∈ Ys, d2Y(y, z) ≤ 1 which gives us the magnitude of random variables ξ(y, z, z̃) is
upper bounded by c1 := 1 +

√
k

σmin(P) ∀y, z, z̃ ∈ Ys. Thus using Hoeffding’s inequality and union
bound over all y ∈ Ys we get,

|F̃p(x, y)− F (x, y)| ≤ Õ
(
c1

√
1

n

)
∀y ∈ Ys, x ∈ X .

Note that, the statement holds for x ∈ X without requiring an explicit union bound over x. It is
because the above concentration depends only on the labels and the events that the above inequality
does not hold for any distinct x1, x2 ∈ X are the same.

Now, we show that the distance between minimizer of F̃p and F is bounded.

Lemma 5. Let f̂ be the minimizer as defined in (2) over the clean labels and let f̂p (defined in eq.
(9)) be the minimizer over the noisy labels obtained from conditional distribution Ỹ |Y i.e. P such
that lemma 3, 4 hold, and let the risk function be defined as in (1), then with high probability,

d2Y
(
f̂p(x), f̂(x)

)
≤ Õ

(c1
β

√
1

n

)
∀x ∈ X . (15)

Proof. Recall the definitions,

f̂(x) = argmin
y∈Y

F (x, y) f̂p(x) = argmin
y∈Y

F̃p(x, y)

Let d2Y(f1, f2) = supx∈X d2Y
(
f1(x), f2(x)

)
and let B(f̂ , r) = {f : d2Y(f̂ , f) ≤ r} denote the ball

of radius r around f̂ .
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From Lemma 4 we know for t = Õ
(
c1

√
1
n

)
,

F
(
x, f(x)

)
− t ≤ F̃p

(
x, f(x)

)
≤ F

(
x, f(x)

)
+ t ∀f : X 7→ Ys.

From Assumption 6 we have,

F
(
x, f(x)

)
≥ F

(
x, f̂(x)

)
+ β · d2Y(f(x), f̂(x)).

Combining the two we get a lower bound on F̃p,

F̃p(x, f(x)) ≥ F
(
x, f̂(x)

)
+ β · d2Y(f(x), f̂(x))− t.

We want to find a sufficiently large ball around f̂ such that the minimizer of F̃p does not lie outside
this ball. To see this let LB and UB denote the above mentioned lower and upper bounds on F̃p,

LB(F̃p, f, x) := F
(
x, f̂(x)

)
+ β · d2Y(f(x), f̂(x))− t.

UB(F̃p, f, x) := F
(
x, f(x)

)
+ t.

For f ∈ B(f̂ , 2t
β ) and some f ′ such that

UB(F̃p, f, x) ≤ LB(F̃p, f
′, x) ∀x,

F
(
x, f(x)

)
+ t ≤ F

(
x, f̂(x)

)
+ β · d2Y(f ′(x), f̂(x))− t,

F
(
x, f(x)

)
− F

(
x, f̂(x)

)
+ t ≤ β · d2Y(f ′(x), f̂(x))− t,

βd2Y(f(x), f̂(x)) + t ≤ β · d2Y(f ′(x), f̂(x))− t,

d2Y(f
′(x), f̂(x)) ≥ 2t/β + d2Y(f(x), f̂(x)).

Thus considering the greatest lower bound, any f ′ with d2Y(f
′(x), f̂(x)) ≥ 4t

β cannot be the minimizer

of F̃p, since there exists some other f with smaller distance from f̂ that has smaller value compared
to f ′.

Next we show that a good estimate of true noise matrix P by Q leads to F̃q being uniformly close to
F̃p.

Lemma 6. Let Q, P be the distributions defined in equation (7), and d̃q(T, Ỹ ) be the distance
function as in (8), if maxij |Pij −Qij | = ϵ,∣∣d̃q(y, z̃i)− d̃p(y, z̃i)

∣∣ ≤ O(k2(σmax(P) +
κ(P)

σmin(P)

)
· ϵ
)

∀y ∈ Ys. (16)

Proof. Let d̃q ∈ Rk be a vector such that its ith entry is given as d̃q[i] = d̃q(T, Z̃ = yi), and
similarly, let d̃p ∈ Rk with d̃p[i] = d̃p(T, Ỹ = yi), and d ∈ Rk with d[i] = d2Y(T, Y = yi). It is
easy to see that d̃q = Q−1d and d̃p = P−1d. Now consider the following expectation w.r.t P,

d̃q − d̃p = Q−1d−P−1d =
(
Q−1 −P−1

)
d.

Let ∆P = P−Q, and using standard matrix inversion results for small perturbations, [Dem92], and
||d||∞ ≤ 1 we get the following. As maxij(∆P)ij ≤ ϵ, we have ||∆P||2 ≤ ||∆P||F ≤ ϵk

||d̃p − d̃q||∞ ≤ ||(P+∆P)−1 −P−1||∞||d||∞,

≤
√
k||(P+∆P)−1 −P−1||2||d||∞,

=
√
k
(
κ(P)||P−1||2||∆P||2

)
+
√
kO(||∆P||22),

≤
√
k · κ(P)||P−1||2 · ϵk +O(ϵ2k5/2),

≤ O
(
k5/2

(
1 +

κ(P)

σmin(P)

)
· ϵ
)
=: c2.
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Lemma 7. For F̃p and F̃q defined in (9) w.r.t. noise distributions P and Q respectively, and let
maxij |Pij −Qij | ≤ ϵ then we have w.h.p.

|F̃p(x, y)− F̃q(x, y)| ≤ Õ
(
(2c1 + c2)

√
1

n

)
∀y ∈ Ys,∀x ∈ X . (17)

with c2 = k5/2 · ϵ ·
(
1 + κ(P)

σmin(P)

)
and c1 = 1 +

√
k

σmin(P) ,

Proof. Recall, random variables Ỹ ,Z̃ denote the noisy labels drawn from true and estimated noise
distributions P,Q respectively and ỹi, z̃i denote their draw for data point xi. Note that we do not
know P and ỹi in practice and we only know Q, z̃i. Here we are using P and ỹi to compare our
actual estimates using samples z̃i against the estimates one could have obtained from ỹi.

Recall the definitions,

F̃p(x, y) :=
1

n

n∑
i=1

αi(x)d̃p(y, ỹi), F̃q(x, y) :=
1

n

n∑
i=1

αi(x)d̃q(y, z̃i).

Then,

F̃p(x, y)− F̃q(x, y) =
1

n

n∑
i=1

αi(x)
(
d̃p(y, ỹi)− d̃q(y, z̃i)

)
=

1

n

n∑
i=1

αi(x)ξ(y, ỹi, z̃i).

Thus,

EỸ ,Z̃|Y=yi

[
d̃p(y, Ỹ )− d̃q(y, Z̃)

]
= EZ̃|Y=yi

[d̃q(y, Ỹ )
]
− EZ̃|Y=yi

[d̃q(y, Z̃)
]

= d2Y(y, yi)− d2Y(y, yi) = 0

Finally EỸ ,Z̃ [ξ(y, Ỹ , Z̃)] = 0.

Next,

d̃p(y, ỹi)− d̃q(y, z̃i) ≤ |d̃p(y, ỹi)− d̃q(y, z̃i)|
≤ |d̃p(y, ỹi)− d̃p(y, z̃i) + d̃p(y, z̃i)− d̃q(y, z̃i)|
≤ |d̃p(y, ỹi)− d2Y(y, z̃i) + d2Y(y, z̃i)− d̃p(y, z̃i) + d̃p(y, z̃i)− d̃q(y, z̃i)|
≤ |d̃p(y, ỹi)− d2Y(y, z̃i)|+ |d2Y(y, z̃i)− d̃p(y, z̃i)|+ |d̃p(y, z̃i)− d̃q(y, z̃i)|
≤ 2c1 + |d̃p(y, z̃i)− d̃q(y, z̃i)|
≤ 2c1 + c2.

The first two terms are upper bounded as in Lemma 4 and the last term is bounded using Lemma 6.
Since αi(x) ≤ 1 and |ξ(y, ỹi, z̃i)| are upper bounded by 2c1 + c2 as shown above, we have that
|αi(x) · ξ(y, ỹi, z̃i)| ≤ 2c1 + c2.

Lemma 8. Let f̂p be the minimizer as defined in (9) over the noisy labels drawn from P, and let f̂q
(defined in eq. (9)) be the minimizer over the noisy labels obtained from conditional distribution Q.
Then with high probability,

d2Y
(
f̂q(x), f̂(x)

)
≤ Õ

( 1
β

(
3c1 + c2

)√ 1

n

)
∀x ∈ X . (18)

Proof. Let t1 = Õ
(
c1

√
1
n

))
and t2 = Õ

(
(2c1 + c2)

√
1
n

))
, then combining Lemma 7 and 4 we

have,

F
(
x, f(x)

)
− t1 − t2 ≤ F̃q

(
x, f(x)

)
≤ F

(
x, f(x)

)
+ t1 + t2.

Then following same argument as in Lemma 5, we get the result.
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The following lemmas bound the estimation error between noise matrices P and Q using the
estimation error in the canonical parameters.
Lemma 9. The posterior distribution function Pθ(Y = y|Λ = Λu) is (2, ℓ∞)−Lipshcitz continuous
in θ for any y ∈ Y and Λu ∈ Ym.

|Pθ1
(Y = y|Λ = Λu)− Pθ2

(Y = y|Λ = Λu)| ≤ 2||θ1 − θ2||∞ ∀θ1,θ2 ∈ Rm.

Proof. Recall the definition of the posterior distribution,

Pθ(Y = y|Λ = Λu) =
p(Y = yi)Pθ(Λ = Λu|Y = yi)∑

yj∈Y p(Y = yj)Pθ(Λ = Λu|Y = yj)
.

For convenience let d(u,i) ∈ Rm be such that its ath entry d
(u,i)
a = d2Y(Λ

u
a , yi)

Pθ(Y = y|Λ = Λu) =
P (Y = yi) exp(−θTd(u,i))∑

yj∈Y P (Y = yj) exp(−θTd(u,j))
.

Let Z2(θ) =
∑

yj∈Y P (Y = yj) exp(−θTd(u,j)), then

−∇θ log(Z2(θ)) =

∑
yj∈Y d(u,j)P (Y = yj) exp(−θTd(u,j))

Z2(θ)
= EY |Λ[d].

Since distances are upper bounded by 1, ||d||∞ ≤ 1, so ||EY |Λ[d]||∞ ≤ 1.
Now,

∇θ log
(
Pθ(Y = y|Λ = Λu)

)
= −d(u,i) −∇θ log(Z2(θ)).

Thus ||∇θ log
(
Pθ(Y = y|Λ = Λu)

)
||∞ ≤ 2.

=⇒ | log
(
Pθ1

(Y = y|Λ = Λu)
)
− log

(
Pθ2

(Y = y|Λ = Λu)
)
| ≤ 2||θ1 − θ2||∞.

Using the fact that for any t1, t2 ∈ [0, 1] |t1 − t2| ≤ | log(t1)− log(t2)|, gives us the result.

Lemma 10. The distribution function Pθ(Λ = Λu|Y = y) is (2, ℓ∞)−Lipshcitz continuous in θ for
any y ∈ Y and Λu ∈ Ym.

|Pθ1(Λ = Λu|Y = y)− Pθ2(Λ = Λu|Y = y)| ≤ 2||θ1 − θ2||∞ ∀θ1,θ2 ∈ Rm.

Proof. Doing the same steps as in the proof of Lemma 9 gives the result.

Lemma 11. For the noise distributions P,Q in (7) with parameters θ, θ̂ respectively and Y restricted
only to the elements with non-zero prior probability, Y ′ = {y ∈ Y : P (Y = y) > 0} the following
holds,

max
ij
|Pij −Qij | ≤ 4 · km||θ − θ̂||∞ .

Proof. It is easy to see that for any two bounded functions f1, f2 with |f1(x)| ≤ 1, |f2(x)| ≤ 1 and
Lipschitz continuous with constants L1, L2, the product of them is also Lipschitz continuous but with
constant L1 + L2. Using this fact along with lemma 9 and lemma 10 gives the result,

|Pij −Qij | ≤
∑

Λu∈Y′

|Pθ(yi|Λu)Pθ(Λ
u|yj)− Pθ̂(yi|Λ

u)Pθ̂(Λ
u|yj)| ≤ 4 · km||θ − θ̂||∞.
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It is important to note that we are restricting the values of y and λ to Y ′ which is the set of y with
non-zero prior probability and by our assumption it is small.

Finally, we restate and prove our generalization error result:

Theorem 2. (Generalization Error ) Let f̂ be the minimizer as defined in (2) over the clean labels
and let f̂q (defined in (9)) be the minimizer over the noisy labels obtained from inference in Algorithm

1. Suppose Assumptions 4,5,6 hold. Then for ϵ2 = k5/2 · Õ(ϵ(d+) + ϵ(d−)) ·
(
1 + κ(P)

σmin(P)

)
and

c1 = 1 +
√
k

σmin(P) , with high probability,

R(f̂q) ≤ R(f∗) +O(n− 1
4 ) + Õ

(c1
β
n− 1

2

)
+ Õ

(3ϵ2
β

n− 1
2

)
. (11)

Proof. Recall the definition of risk function,

R(f) = Ex,y

[
d2Y
(
f(x), y

)]
.

R(f̂q) = Ex,y

[
d2Y
(
f̂q(x), y

)]
,

≤ Ex,y

[
d2Y
(
f̂q(x), f̂(x)

)
+ d2Y(f̂(x), y) + 2dY(f̂q(x), f̂(x)) · dY(f̂(x), y)

]
,

= Ex[d
2
Y
(
f̂q(x), f̂(x)

)
] +R(f̂) + Õ(n−1/4),

≤ Õ
( 1
β

(
c1 + c2

)√ 1

n
+

c2
β
ϵ
)
+R(f̂) + Õ(n−1/4).

Using the result from [CRR16],

R(f̂) ≤ R(f∗) +O(n−1/4).

Combining the two we get

R(f̂q) ≤ R(f∗) + Õ(n−1/4) + Õ
( 1
β

(
c1 + c2

)√ 1

n
+

c3
β
ϵ)
)
.

We get the end result by plugging in the bound on ϵ = maxij ||P −Q|| from Lemma 11 and the
bound on parameter recovery error ||θ − θ̂||∞ from Theorem 1.

D Proofs for Continuous Label Spaces

Next we present the proofs for the results in the continuous (manifold-valued) label spaces. We
restate the first result on invariance:
Lemma 1. For Y =M, a hyperbolic manifold, y ∼ P for some distribution P onM and labeling
functions λa, λb drawn from (3), E cosh dY(λa, λb) = E cosh dY(λb, y)E cosh dY(λb, y), while for
Y =M a spherical manifold, E cos dY(λa, λb) = E cos dY(λb, y)E cos dY(λb, y).

Proof. We start with the hyperbolic law of cosines, which states that

cosh d(λa, λb) = cosh d(λa, y) cosh d(λb, y) + sinh d(λa, y) sinh d(λb, y) cosα,

where α is the angle between the sides of the triangle formed by (y, λa) and (y, λb). We can rewrite
this as follows. Let va = logy(λa), vb = logy(λb) be tangent vectors in TyM . Then,

cosh d(λa, λb) = cosh d(λa, y) cosh d(λb, y) + (sinh ∥va∥ sinh ∥vb∥)⟨
va
∥va∥

,
vb
∥vb∥

⟩.

Next, we take the expectation conditioned on y. The right-most term is then

E[(sinh ∥va∥ sinh ∥vb∥)⟨
va
∥va∥

,
vb
∥vb∥

⟩|y]

= E[(sinh ∥va∥ sinh ∥vb∥)|y]E[⟨
va
∥va∥

,
vb
∥vb∥

⟩|y]

= 0,
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where the last equality follows from the fact that va and vb are independent conditioned on y and
their distributions are symmetric. This leaves us with the cosh product terms. Taking expectation
again with respect to y gives the result.

The spherical version of the result is nearly identical, replacing hyperbolic sines and cosines with
sines and cosines, respectively.

Note, in addition, that it is easy to obtain a version of this result for curvatures that are not equal to
−1 in the hyperbolic case (or +1 in the spherical case).

We will use this result for our consistency result, restated below.
Theorem 3. Let M be a hyperbolic manifold. Fix 0 < δ < 1 and let ∆(δ) =

minρ Pr
(
∀i, dY(λa,i, λb,i) ≤ ρ

)
≥ 1 − δ. Then, there exists a constant C1 so that with proba-

bility at least 1− δ, E|Êd2Y(λa, y))− Ed2Y(λa, y)| ≤ C1 cosh(∆(δ))3/2/C0

√
2n.

Proof. [Kon14] First, we will condition on the event that the observed outputs have maximal distance
(i.e., diameter) ∆(δ). This implies that our statements hold with high probability. Then, we use
McDiarmid’s inequality. For each pair of distinct LFs a, b, we have that

P

(
1

n
|

n∑
i=1

cosh(d(λa,i, λb,i))− E cosh(d(λa, λb))| ≥ t

)
≤ 2 exp

(
− 2nt2

cosh(∆(δ))

)
,

Integrating the expression above in t, we obtain

E|Ê cosh(d(λa, λb))− E cosh(d(λa, λb))| ≤
√
π cosh(∆(δ))√

2n
. (19)

Next, we use this to control the gap on our estimator. Recall that using the triplet approach, we
estimate

Ê cosh(d(λa, y)) =

√
Ê cosh d(λa, λb)Ê cosh d(λa, λc)

(Ê cosh d(λb, λc))2
.

For notational convenience, we write ν(a) for E(cosh(d(λa, y))), ν̂(a) for its empirical counterpart,
and ν(a, b) and ν̂(a, b) for the versions between pairs of LFs a, b. Then, the above becomes

ν̂(a) =

√
ν̂(a, b)ν̂(a, c)

(ν̂(b, c))2
.

Note that cosh(x) ≥ 1, so that ν̂(a, b) ≥ 1 and similarly for the empirical versions. We also have
that ν̂(a, b) ≤ cosh(∆(δ)). With this, we can begin our perturbation analysis. Applying Lemma 1,
we have that

E|ν̂(a)− ν(a)| = E

∣∣∣∣∣
√

ν̂(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
= E

∣∣∣∣∣
√

ν̂(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν̂(a, c)

ν̂(b, c)2
+

√
ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤ E

∣∣∣∣∣
√

ν̂(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν̂(a, c)

ν̂(b, c)2

∣∣∣∣∣+ E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
= E

∣∣∣∣∣
√

ν̂(a, c)

ν̂(b, c)2
(
√

ν̂(a, b)−
√
ν(a, b))

∣∣∣∣∣+ E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤
√
π cosh(∆(δ))√

2n
+ E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣ .
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To see why the last step holds, note that
√
ν̂(a, c) ≤

√
cosh(∆(δ)), while ν̂(b, c) ≥ 1. Next,

for α, β ≥ 1, |
√
α −

√
β| = |α−β|√

α+
√
β
≤ |α − β|. This means that E|

√
ν̂(a, b) −

√
ν(a, b)| ≤

E|ν̂(a, b)− ν(a, b)| ≤
√

π cosh(∆(δ))√
2n

using (19).

Now we can continue, adding and subtracting as before. We have that

E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤ E

∣∣∣∣∣
√

ν(a, b)ν̂(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν̂(b, c)2

∣∣∣∣∣+ E

∣∣∣∣∣
√

ν(a, b)ν(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤
√
π cosh(∆(δ))√

2n
+ E

∣∣∣∣∣
√

ν(a, b)ν(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣
≤
√
π cosh(∆(δ))√

2n
+

2
√
π(cosh(∆(δ)))3/2√

n
.

The first expectation in the r.h.s is bounded using the same steps as above. The second expectation is
bounded as follows,

E

∣∣∣∣∣
√

ν(a, b)ν(a, c)

ν̂(b, c)2
−

√
ν(a, b)ν(a, c)

ν(b, c)2

∣∣∣∣∣ ≤ E

∣∣∣∣∣√ν(a, b)ν(a, c)
((ν̂(b, c)− ν(b, c)

)(
ν̂(b, c) + ν(b, c)

)
ν̂(b, c)ν(b, c)

)∣∣∣∣∣
Here, the denominator is lower bounded by 1 and in the numerator

√
ν(a, b)ν(a, c) ≤ cosh(∆(δ))

and ν̂(b, c)+ν(b, c) ≤ 2 cosh(∆(δ)) and E(ν̂(b, c)−ν(b, c)) ≤
√

π cosh(∆(δ))√
2n

. Putting it all together,
with probability at least 1− δ,

E|Ê cosh(d(λa, y))− E cosh(d(λa, y))| ≤
2
√
π cosh(∆(δ)) + 2

√
π(cosh(∆(δ))3/2√

n
. (20)

Next, recall that C0 satisfies E|Ê cosh(d(λa, λb)) − E cosh(d(λa, λb))| ≥ C0E|Êd(λa, λb)) −
Ed(λa, λb)|. Thus,

E|Êd2(λa, y)− Ed2(λa, y)| ≤
2
√
π cosh(∆(δ)) + 2

√
π(cosh(∆(δ)))3/2

C0
√
n

.

This concludes the proof.

Next, we will prove a simple result that is needed in the proof of Theorem 5. Consider the distribution
P of the quantities α(x)(y)d2Y(z, y) for some fixed z ∈M. We can think of this as the population-
level version of sample distances that are observed in the supervised version of the problem. We do
not have access to it in our approach; it will be used only as an object in our proof. Recall we set
q = argminz∈Y E[α(x)(y)d2Y(z, y)] to be the population-level minimizer. Here we use the notation
α(x)(y) to denote the corresponding kernel value at a point y. Finally, let us denote P ′ to be the
distribution over the quantities α(x)(y)

∑m
a=1 β

2
ad

2
Y(z, λa,i).

Lemma 12. Let the distributions P and P ′ be defined as above, with q the minimizer of
EP [α(x)(y)d

2
Y(z, y)]. Suppose that Assumptions 7 and 8 hold. Then, q is also the minimizer

of EP ′ [α(x)(y)
∑m

a=1 β
2
ad

2
Y(z, λa,i)].

Proof. We will use a simple symmetry argument. First, note that the minimizer of the objective
function under P ′ is not affected by uniformly scaling the distances by some constant. If we do so
repeatedly, we can shrink the region in which this minimizer—and that of the objective function for
P—are found. This means that the distance between the two minimizers must be arbitrarily small, so
that by a limit argument, they must be the same.
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Finally, this enables us to prove our main result, Theorem 5, restated below:
Theorem 5. LetM be a complete manifold and suppose the assumptions above hold. Then, there
exist constants C3, C4 such that,

E[d2Y(f̂(x), f̃(x))] ≤
C3σ

2
o + C4

∑m
a=1 β

2
a(µ̂

2
a + σ2

o)

n(1− kmin)2
.

Proof. We use Lemma 12 and compute a bound on the expected distance from the empirical estimates
to the common center. In both cases, the approach is nearly identical to that of [Str20] (proof of
Theorem 3.2.1); we include these steps for clarity. Suppose that the minimum and maximum values
of α are αmin and αmax, respectively.

Using the hugging function assumption, we have that,

∥ logq(f̂(x))− logq(yi)∥2 ≤ kmind
2
Y(q, f̂(x)) + d2Y(f̂(x), yi).

We also have that

∥ logq(f̂(x))− logq(yi)∥2 = d2Y(q, f̂(x))− 2⟨logq(f̂(x)), logq(yi)⟩+ d2Y(q, yi).

Then,

(1− kmin)d
2
Y(q, f̂(x)) ≤ 2⟨logq(f̂(x)), logq(yi)⟩+ d2Y(f̂(x), yi)− d2Y(q, yi).

Now, multiply each of the equations by αi and sum over them. In that case, the difference on the
right side is non-positive, as f̂(x) is the empirical minimizer. This yields

n∑
i=1

α(x)i(1− kmin)d
2
Y(q, f̂(x)) ≤

n∑
i=1

α(x)i2⟨logq(f̂(x)), logq(yi)⟩.

Using the minimum and maximum values of α, and setting q̄ = 1
n

∑n
i=1 logq(yi), we get

αmin(1− kmin)d
2
Y(q, f̂(x)) ≤ 2αmax⟨logq(f̂(x)), q̄⟩.

We apply Cauchy-Schwarz, obtaining

αmin(1− kmin)d
2
Y(q, f̂(x)) ≤ 2αmax∥ logq(f̂(x)∥∥q̄∥.

Since ∥ logq(f̂(x)∥ = dY(q, f̂(x)), we then have that

αmin(1− kmin)dY(q, f̂(x)) ≤ 2αmax∥q̄∥.

Squaring both sides, we obtain

α2
min(1− kmin)

2d2Y(q, f̂(x)) ≤ 4α2
max∥q̄∥2.

What remains is to take expectation and use the fact that the tangent vectors whose average forms q̄
are independent. This yields

α2
min(1− kmin)

2Ed2Y(q, f̂(x)) ≤ 4α2
max

σ2
o

n
.

Thus we obtain

α2
min(1− kmin)

2Ed2Y(q, f̂(x)) ≤ 4α2
max

σ2
o

n
,

or

Ed2Y(q, f̂(x)) ≤ 4
α2
max

α2
min

σ2
o

n(1− kmin)2
. (21)

We use the same approach, but apply it to the objective function that involves the n samples of the m
LFs drawn from the distribution P ′. In this case, the q̄ vector becomes 1

n

∑n
i=1(

∑m
a=1 βa logq(λa,i)).
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Doing so yields

α2
min(1− kmin)

2Ed2Y(q, f̃(x)) ≤ 4α2
max

∑m
a=1 β

2
aσ

2
a

n
,

where σ2
a corresponds to the expected squared distance for LF a to q. We bound this with triangle

inequality, obtaining σ2
a ≤ 2σ2

o + 2µ̂2
a, so that

α2
min(1− kmin)

2Ed2Y(q, f̃(x)) ≤ 8α2
max

∑m
a=1 β

2
a(σo + µ̂2

a)

n
,

or,

Ed2Y(q, f̃(x)) ≤ 8
α2
max

α2
min

∑m
a=1 β

2
a(σ

2
o + µ̂2

a)

n(1− kmin)2
. (22)

Now, again using triangle inequality,

Ed2Y(f̂(x), f̃(x)) ≤ 2Ed2Y(q, f̂(x)) + 2Ed2Y(q, f̃(x)).

Plugging (22) and (21) into this bound produces the result.

E Additional Details on Continuous Label Space

We provide some additional details on the continuous (manifold-valued) case.

Computing ∆(δ) In Theorem 3, we stated the result in terms of ∆(δ), a quantity that trades off the
probability of failure δ for the diameter of the largest ball that contains the observed points. Note that
if we fix the curvature of the manifold, it is possible to compute an exact bound for this quantity by
using formulas for the sizes of balls in d-dimensional manifolds of fixed curvature.

Hugging function Note that it is possible to derive a lower bound on the hugging function as a
function of the curvature. The way to do so is to use comparison theorems that upper bound triangle
edge lengths with those of larger-curvature triangles. This makes it possible to establish a concrete
value for kmin as a function of the curvature.

We note, as well, that an upper bound kmax on the hugging function can be obtained by a simple
rearrangement of Lemma 6 from [ZS16]. This result follows from a curvature lower bound based on
hyperbolic law of cosines; the bound we describe follows from the opposite—an upper bound based
on spherical triangles.

β Weights and Suboptimality An intuitive way to think of the estimator we described is the
following simple Euclidean version. Suppose we have labeling functions λ1, . . . , λm that are equal
to y + εa, where εa ∼ N (0, σ2

a). In this case, if we seek an unbiased estimator with lowest variance,
we require a set of weights βa so that

∑
a βa = 1 and Var[ 1m

∑m
a=1 βaλa] is minimized. It is not

hard to derive a closed-form solution for the βa coefficients as a function of the terms σ2
a.

Now, suppose we use the same solution, but with noisy estimates σ̂2 instead. Our weights β̂ will
yield a suboptimal variance, but this will not affect the scaling of the rate in terms of the number of
samples n.

F Extended Background on Pseudo-Euclidean Embeddings

We provide some additional background on pseudo-metric spaces and pseudo-Euclidean embeddings.
Our roadmap is as follows. First, we note that pseudo-Euclidean spaces are a particular kind of
pseudo-metric space, so we provide additional background and formal definitions for these pseudo-
metric spaces. Afterwards, we explain some of the ideas behind pseudo-Euclidean spaces, comparing
them to standard Euclidean spaces in the context of embeddings.
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F.1 Pseudo-metric Spaces

Pseudo-metric spaces generalize metric spaces by removing the requirement that pairs of points at
distance zero must be identical:
Definition 1. (Pseudo-metric Space) A set Y along with a distance function dY : Y × Y 7→ R+ is
called pseudo-metric space if dY satisfies the following conditions,

∀y, z ∈ Y dY(y, z) = dY(y, z) (23)
(Symmetry)

∀y ∈ Y dY(y,y) = 0 (24)
(Reflexivity)

∀x,y, z ∈ Y dY(y,x) ≤ dY(y, z) + dY(x, z) (25)
(Triangle Inequality)

These spaces have additional flexibility compared to standard metric spaces: note that while d(y, y) =
0, d(x, y) = 0 does not imply that x and y are identical. The downside of using such spaces, however,
is that conventional algebra may not produce the usual results. For example, limits where the distance
between a sequence of points and a particular point tends to zero do not convey the same information
as in standard metric spaces. However, these odd properties do not concern us, as we only use the
spaces for representing a set of distances from our given metric space.

A finite pseudo-metric space has |Y| <∞.

F.2 Pseudo-Euclidean Spaces

The following definitions are for finite-dimensional vector spaces defined over the field R.
Definition 2. (Symmetric Bilinear Form / Generalized Inner Product) For a vector space Y over
the field R, a symmetric bilinear form is a function ϕ : Y×Y 7→ R satisfying the following properties
∀y1, y2, z, y ∈ Y, c ∈ R:

P1) ϕ(y1 + y2, y) = ϕ(y1, y) + ϕ(y2, y),

P2) ϕ(cy, z) = cϕ(y, z),

P3) ϕ(y, z) = ϕ(z, y).
Definition 3. (Squared Distance w.r.t. ϕ) Let V be a real vector space equipped with generalized
inner product ϕ, then the squared distance w.r.t. ϕ between any two vectors y, z ∈ V is defined as,

||y − z||2ϕ := ϕ(y − z,y − z)

This definition also gives a notion of squared length for every y ∈ V ,
||y||2ϕ := ϕ(y,y)

The inner product can also be expressed in terms of a basis of the vector space V . Let the dimension of
Y be d, and {bi}di=1 be a basis of Y , then for any two vectors y = [y1, . . . yd], z = [z1, . . . zd] ∈ V ,

ϕ(y, z) =

d∑
i=1

d∑
j=1

yiziϕ(bi,bj)

The matrix M(ϕ) := [ϕ(bi,bj)]1≤i,j≤d is called the matrix of ϕ w.r.t the basis {bi}di=1 It gives a
convenient way to express the inner product as ϕ(y, z) = yTM(ϕ)z. A symmetric bilinear form ϕ
on a vector space of dimension d, is said to be non-degenerate if the rank of M(ϕ) w.r.t to some basis
is equal to d.

Example: For the d− dimensional euclidean space with standard basis and ϕ as dot product we get
M(ϕ) = Id

Definition 4. (Pseudo-euclidean Spaces) A real vector space Rd+,d−
of dimension d = d+ +

d−, equipped with a non-degenerate symmetric bilinear form ϕ is called a pseudo-euclidean (or
Minkowski) vector space of signature (d+, d−) if the matrix of ϕ w.r.t a basis {bi}di=1 of Rd+,d−

, is
given as,

M(ϕ) =

(
Id+ 0
0 −Id−

)
d×d
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Embedding Algorithms The tool that ensures we can produce isometric embeddings is the follow-
ing result:
Proposition 1. ([Gol85]) Let Y = {y0, . . . yk} be a finite pseudo-metric space equipped with
distance function dY , and let V = {vi, . . . ,vk} be a collection of vectors in Rd+,d−

. Then Y is
isometrically embeddable in Rd+,d−

if and only if,

⟨vi,vj⟩ϕ =
1

2

(
d2Y(yi, y0) + d2Y(yj , y0)− d2Y(yi, yj)

)
∀i, j ∈ [k] (26)

This bilinear form is very similar to the one used for MDS embeddings [KW78]—it is closely related
to the squared distance matrix. The main information needed is what the signature (i.e., how many
positive, negative, and zero eigenvalues) of this bilinear form is. If the dimension of the pseudo-
Euclidean space we choose to embed in is at least as large as the number of positive and negative
eigenvalues, we can obtain isometric embeddings. Because we are working with finite metric spaces,
this number is always finite, and, in fact, is never larger than the size of the metric space. This means
we can always produce isometric embeddings.

The practical aspects of how to produce the embedding are shown in the first half of Algorithm 1. The
basic idea is to do an eigendecomposition and capture eigenvectors corresponding to the positive and
negative eigenvalues. These allow us to perfectly reproduce the positive and negative components
of the distances separately; the resulting distance is the difference between the two components.
The process of performing the eigendecomposition is standard, so that the overall procedure has the
same complexity as running MDS. Compare this to MDS: there, we only capture the eigenvectors
corresponding to the positive eigenvalues and ignore the negative ones. Otherwise the procedure is
identical.

We note that in fact it is possible to embed pseudo-metric spaces isometrically into pseudo-Euclidean
spaces, but we never use this fact. Our only application of this tool is to embed conventional metric
spaces. However, our results directly lift to this more general setting.

The idea of using pseudo-Euclidean spaces for embeddings that can then be used in kernel-based or
other classifiers or other approaches to machine learning is not new. For example, [PPD01] used these
spaces for kernel-based learning, [LRBM06] used them for generic pairwise learning, and [PHD+06]
showed that they are among several non-standard spaces that provide high-quality representations.
Our contribution is using these in the context of weak supervision and learning latent variable models.

Dimensionality We also give more detail on the example we provided showing that pseudo-
Euclidean embeddings can have arbitrarily better dimensionality compared to one-hot encodings.
The idea here is simple. We start with a particular kind of tree with a root and three branches that are
simply long chains (paths) and have t nodes each, for a total of 3t + 1 nodes. One-hot encodings
have dimension that scales with the number of nodes, i.e., dimension 3t+ 1.

Pseudo-euclidean embeddings enable us to embed such a tree into a space of finite (and in fact, very
small) dimension while preserving the shortest-hops distances between each pair of nodes in the
graph. As described above, the key question is what the number of positive and negative eigenvalues
for the squared distance matrix (and thus the bilinear form) is. Fortunately, for such graphs, the
signature of the squared-distance matrix is known (Theorem 20 in [BS16]). Applying this result
shows that the pseudo-Euclidean dimension is just 3, a tiny fixed value regardless of the value of t
above.
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