
A The Derivations of NC (0) for Other EGNN Models408

In this section, we first illustrate how the other two baseline models (i.e. RF [17] and GMN [19]) can409

be derived to NC (0), and then discuss multi-layer EGNN.410

A.1 RF411

The overall equivariant convolution process of RF is similar to that of EGNN. The main difference412

is that RF does not use the node feature. Instead, it leverages the L2 norm of the velocity as an413

additional feature to update the predicted velocity:414

v̂0
i = Norm(v0

i )
(
ϕv(hi)v

0
i +

1

N − 1

∑
j ̸=i

(x0
i − x0

j )m
0
ij

)
, (19)

x̂T
i = x0

i + v̂0
i T, (20)

where Norm(v0
i ) denotes the L2 norm of the input velocity v0

i . Therefore, RF can be also viewed as415

a NC (0) model.416

A.2 GMN417

The main difference between GMN and EGNN is that GMN detects the sub-structures in the system418

and process the particles in each special sub-structure independently. Specifically, GMN re-formulates419

the original EGNN (i.e., Equations (2-4)) as follows:420

m0
ij = ϕe(hi,hj , ||x0

i − x0
j ||2, eij), (21)

v̂0
k = ϕv(

∑
i∈Sk

hi)v
0
k +

∑
i∈Sk

ϕk(x
0
i ,m

0
ij), (22)

v̂0
i = FK(v̂0

k), (23)

x̂T
i = x0

i + v̂0
i T, (24)

where v̂0
k is the predicted velocity of the sub-structure. GMN then uses it to calculate the velocity421

of each particle by a function FK which can be either learnable or based on the angles and relative422

positions in the sub-structure [19].423

A.3 Multi-layer EGNN424

In current EGNN methods, the input coordinate x0
i and velocity v0

i are regarded as constant feature425

and used in different layers. For example, in the multi-layer version EGNN, m0
ij will be formulated426

as follows:427

m0,l
ij = ϕe(h

l−1
i ,hl−1

j , ||x0
i − x0

j ||2, eij), (25)

where m0,l
ij is m0

ij in layer l and hl−1
i denotes the hidden feature in layer l − 1. Evidently, only the428

hidden features are updated within different layers. The overall formulation of multi-layer layer is429

akin to the single-layer EGNN.430
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B Proofs of Things431

B.1 Proof of Proposition 3.1432

Proof. The objective of the existing methods for a single system can be defined as:433

argmin
v̂0

∑
pi

(xT
i − x̂T

i ) (26)

=
∑
pi

(xT
i − x0

i − v̂0
i T ) (27)

=
∑
pi

T (
xT
i − x0

i

T
− v̂0

i ) (28)

=T
∑
pi

(
vt∗

i − (ϕv(hi)v
0
i +

∑
j ̸=i (x

0
i − x0

j )m
0
ij

N − 1
)
)

(29)

=T
∑
pi

(
vt∗

i − (w0v0
i + b0)

)
, (30)

where w0 ∈ R1 and b0 ∈ R3 denote the learnable variables irrelevant to v0
i and t, concluding the434

proof.435

B.2 Proof of Proposition 3.3436

Proof. As the higher order cases (k ≥ 1) have already been proved, we only need to show that437

ϵNC(0) ≥ ϵNC(1). The first order of Newton-Cotes formula NC (1) is also known as Trapezoidal rule,438

i.e.:439 ∫ T

0

v(t)dt ≈ T

2
(v0 + vT ). (31)

As aforementioned, the actual integration xT −x0 for different training examples is different, and we440

assume that it fluctuates around the base estimation T
2 (v

0 + vT ) and follows a normal distribution441

NNC(1), where the variance σ2
NC(1) is positively correlated with the difficulty of optimizing the442

overall objective. The variance of NNC(1) is:443

σ2
NC(1) =

∑
p (

∫ T

0
(v(t)−

∑1
k=0 C

kt(k))dt)2

NT 2
, (32)

where the integration term is a general form of polynomial interpolation error. According to Equa-444

tion 14, it can be derived to:445 ∫ T

0

(
(t− t0)(t− t1)v

′′
(ξ)

2!
)dt, (33)

where v
′′

denote the second derivative of v. Let s = t−t0

T , then t = t0 + sh and dt = d(v0 + sh) =446

Tds. the above equation can be re-written as:447

T

∫ 1

0

s(s− 1)T 2v
′′
(ξ)

2
ds = − 1

12
T 3v

′′
(ξ) = O(T 3). (34)

Therefore, the final σ2
NC(1) is:448

σ2
NC(1) =

∑
p (−

1
12T

3v
′′
(ξ))2

NT 2
(35)

= O(T 4) ≤ O(T 2) = σ2
NC(0), (36)

concluding the proof.449

14



0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 500 
D

iff
er

en
ce

 (%
)

Epoch

NC
NC+

(a) NC(2) (b) NC(3) (c) NC(5)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 500 

D
iff

er
en

ce
 (%

)

Epoch

NC NC+

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0 500 

D
iff

er
en

ce
 (%

)

Epoch

NC NC+

Figure 6: The prediction errors of intermediate velocities on MD17 dataset, w.r.t. training epoch. The
blue and green lines denote the prediction errors of NC and NC+, respectively.
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Figure 7: The prediction errors of intermediate velocities on N-body dataset, w.r.t. training epoch.
The blue and green lines denote the prediction errors of NC and NC+, respectively.
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Figure 8: Visualization of the intermediate velocities w.r.t. k. The red, blue, and green lines denote
the target, prediction of NC, and prediction of NC+, respectively.

B.3 Proof of Proposition 3.4450

Proof. The GNN models possessing equivariance property are equivariant to the translation, rotation,451

and permutation of input. NC directly feeds the input into these backbone models and naturally452

possesses this property.453

Formally, let Tg : x → x be a group of transformation operations. If the backbone modelM is454

equivariant then we will have:455

M(Tg(x)) = Sg(M(x)), (37)

where Sg is an equivalent transformation to Tg on the output space. NC can be regarded as a weighted456

combination of the outputs ofM:457 ∑
i

wiM(Tg(xi))) =
∑
i

wiSg(M(xi)), (38)

where the Newton-Cotes weights wi is constant and irrelevant to the input, the output, and the model458

M itself. Therefore, the above equation will always holds.459

C Additional Experimental Results460

The average intermediate velocity prediction errors on MD17 and Motion datasets are shown in461

Figure 6 and Figure 7, respectively. NC still learned the intermediate velocities we did not feed462

the intermediate into it. Particularly, the error on N-body dataset was small and stable, which may463

demonstrate the effectiveness of estimating intermediate velocities even without supervised data.464
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Table 4: Hyper-parameter settings in the main experiments.

Datasets # steps velocity
regularization

velocity
regularization

decay

parameter
regularization

parameter
regularization

decay

loss
criterion

input
feature

normalization

intermediate
velocity

normalization

N-body 2 0.001 0.999 1.0 0.99 MSE False True
MD17 2 0.1 0.999 1.0 0.95 MSE True True
Motion 2 0.01 0.999 1.0 0.95 MSE True True

# epoch batch-size # training
examples activation # layers learning

rate optimizer
clip

gradient
norm

N-body 1,500 200 500 ReLU 4 0.0005 Adam 1.0
MD17 1,000 100 500 ReLU 4 0.001 Adam 0.1
Motion 1,500 100 200 ReLU 4 0.0005 Adam 1.0

We also provide some visualized examples on these two datasets in Figure 8, from which we can465

observe the similar results compared with Figure 4 in the main paper.466

D Hyper-parameter Setting467

We list the main hyper-parameter setting of NC with different EGNN models on different datasets468

in Table 4. We used the Adam optimizer [47] and adopted layer normalization [48] and ReLU469

activation [49]) for all settings. For a fair comparison, the parameter settings for the backbone EGNN470

models were identical to these in the existing implementation [19].471
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