
A Full Related Work577

Our work is inspired by the broader study of interpolating and overparameterized methods in machine578

learning; a partial list of works in this theme includes Advani and Saxe [1], Allen-Zhu et al. [3], Arora579

et al. [4], Bartlett et al. [7], Belkin et al. [8, 9, 10], Breiman [11], Chizat and Bach [15], Dziugaite580

and Roy [17], Geiger et al. [20], Gerace et al. [21], Ghorbani et al. [22], Goldt et al. [24], Hastie581

et al. [28], Liang and Rakhlin [36], Mei and Montanari [38], Muthukumar et al. [40], Nakkiran et al.582

[43], Neal et al. [46], Neyshabur et al. [47], Schapire et al. [58], Zhang et al. [71].583

Interpolating Methods. Many of the best-performing techniques on high-dimensional tasks are584

interpolating methods, which fit their train samples to 0 train error. This includes neural-networks585

and kernels on images [29, 60], and random forests on tabular data [18]. Interpolating methods586

have been extensively studied both recently and in the past, since we do not theoretically understand587

their practical success [8–11, 28, 36, 38, 43, 57, 58, 71]. In particular, much of the classical588

work in statistical learning theory (uniform convergence, VC-dimension, Rademacher complexity,589

regularization, stability) fails to explain the success of interpolating methods [8, 9, 42, 71]. The few590

techniques which do apply to interpolating methods (e.g. margin theory [58]) remain vacuous on591

modern neural-networks and kernels.592

Decision Trees. In a similar vein to our work, Olson and Wyner [49], Wyner et al. [67] investigate593

decision trees, and show that random forests are equivalent to a Nadaraya–Watson smoother [41, 66]594

with a certain smoothing kernel. Decision trees [13] are often intuitively thought of as “adaptive595

nearest-neighbors,” since they are explicitly a spatial-partitioning method [27]. Thus, it may not be596

surprising that decision trees behave similarly to 1-Nearest-Neighbors. Olson and Wyner [49], Wyner597

et al. [67] took steps towards characterizing and understanding this behavior – in particular, Olson598

and Wyner [49] defines an equivalent smoothing kernel corresponding to a random forest, and599

empirically investigates the quality of the conditional density estimate. Our work presents a formal600

characterization of the quality of this conditional density estimate (Conjecture 1), which is a novel601

characterization even for decision trees, as far as we know.602

Kernel Smoothing. The term kernel regression is sometimes used in the literature to refer to kernel603

smoothers, such as the Nadaraya–Watson kernel smoother [41, 66]. But in this work we use the term604

“kernel regression” to refer only to regression in a Reproducing Kernel Hilbert Space, as described in605

the experimental details.606

Label Noise. Our conjectures also describe the behavior of neural networks under label noise, which607

has been empirically and theoretically studied in the past, though not formally characterized before608

[9, 14, 45, 54, 63, 71, 72]. Prior works have noticed that vanilla interpolating networks are sensitive609

to label noise (e.g. Figure 1 in Zhang et al. [71], and Belkin et al. [9]), and there are many works on610

making networks more robust to label noise via modifications to the training procedure or objective611

[45, 54, 63, 72]. In contrast, we claim this sensitivity to label noise is not necessarily a problem to be612

fixed, but rather a consequence of a stronger property: distributional generalization.613

Conditional Density Estimation. Our density calibration property is similar to the guarantees of a614

conditional density estimator. More specifically, Conjecture 1 states that an interpolating classifier615

samples from a distribution approximating the conditional density of p(y|x) in a certain sense.616

Conditional density estimation has been well-studied in classical nonparametric statistics (e.g. the617

Nadaraya–Watson kernel smoother [41, 66]). However, these classical methods behave poorly in618

high-dimensions, both in theory and in practice. There are some attempts to extend these classical619

methods to modern high-dimentional problems via augmenting estimators with neural networks620

(e.g. Rothfuss et al. [55]). Random forests have also been known to exhibit properties similar to621

conditional density estimators. This has been formalized in various ways, often only with asymptotic622

guarantees [5, 39, 52].623

No prior work that we are aware of attempts to characterize the quality of the resulting density624

estimate via testable assumptions, as we do with our formulation of Conjecture 1. Finally, our625

motivation is not to design good conditional density estimators, but rather to study properties of626

interpolating classifiers — which we find happen to share properties of density estimators.627

Feature Calibration (Conjecture 1) is also related to the concepts of calibration and multicalibra-628

tion [26, 30, 48]. In our framework, calibration is implied by Feature Calibration for a specific629

set of partitions L (determined by level sets of the classifier’s confidence). However, we are not630

15

concerned with a specific set of partitions (or “subgroups” in the algorithmic fairness literature)631

but we generally aim to characterize for which partitions Feature Calibration holds. Moreover, we632

consider only hard-classification decisions and not confidences, and we study only standard learning633

algorithms which are not given any distinguished set of subgroups/partitions in advance. Our notion634

of distributional generalization is also related to the notion of “distributional subgroup overfitting”635

introduced recently by Yaghini et al. [69] to study algorithmic fairness. This can be seen as studying636

distributional generalization for a specific family of tests (determined by distinguished subgroups in637

the population).638

Locality and Manifold Learning. Our intuition for the behaviors in this work is that they arise due639

to some form of “locality” of the trained classifiers, in an appropriate space. This intuition is present640

in various forms in the literature, for example: the so-called called “manifold hypothesis,” that natural641

data lie on a low-dimensional manifold (e.g. Narayanan and Mitter [44], Sharma and Kaplan [61]), as642

well as works on local stiffness of the loss landscape [19], and works showing that overparameterized643

neural networks can learn hidden low-dimensional structure in high-dimensional settings [6, 15, 21].644

It is open to more formally understand connections between our work and the above.645

Note about Proper Scoring Rules: If the loss function used in training is a strictly-proper scoring646

rule such as cross-entropy, then we may expect that in the limit of a large-capacity network and647

infinite data, training on samples {(xi, yi)} will yield a good density estimate of p(y|x) at the softmax648

layer. However, this is not what is happening in our experiments: First, our experiments consider the649

hard-decisions, not the softmax outputs. Second, we observe Conjecture 1 even in settings without650

proper scoring rules (kernel SVM and decision trees).651

B Experimental Details652

Here we describe general background, and experimental details common to all sections. Then we653

provide section-specific details below.654

B.1 Datasets655

We consider the image datasets CIFAR-10 and CIFAR-100 [33], MNIST [34], Fashion-MNIST [68],656

CelebA [37], and ImageNet [56]. We normalize images to x 2 [0, 1]C⇥W⇥H .657

We also consider tabular datasets from the UCI repository [16]. For UCI data, we consider the 121658

classification tasks as standardized in Fernández-Delgado et al. [18]. Some of these tasks have very659

few examples, so we restrict to the 92 classification tasks from Fernández-Delgado et al. [18] which660

have at least 200 total examples.661

B.2 Models662

We consider neural-networks, kernel methods, and decision trees.663

B.2.1 Decision Trees664

We train interpolating decision trees using a growth rule from Random Forests [12, 31]: selecting665

a split based on a random
p
d subset of d features, splitting based on Gini impurity, and growing666

trees until all leafs have a single sample. This is as implemented by Scikit-learn [51] defaults with667

RandomForestClassifier (n_estimators=1, bootstrap=False).668

B.2.2 Kernels669

Throughout this work we consider classification via kernel regression and kernel SVM. For M -class
classification via kernel regression, we follow the methodology in e.g. Belkin et al. [9], Rahimi and
Recht [53], Shankar et al. [60]. We solve the following convex problem for training:

↵⇤ := argmin
↵2RN⇥M

||K↵� y||22 + �↵TK↵

where Kij = k(xi, xj) is the kernel matrix of the training points for a kernel function k, y 2 RN⇥M

is the one-hot encoding of the train labels, and � � 0 is the regularization parameter. The solution

16

can be written
↵⇤ = (K + �I)�1y

which we solve numerically using SciPy linalg.solve [64]. We use the explicit form of all kernels670

involved. That is, we do not use random-feature approximations [53], though we expect they would671

behave similarly.672

The kernel predictions on test points are then given by673

g↵(x) :=
X

i2[N]

↵ik(xi, x) (11)

f↵(x) := argmax
j2[M]

g↵(x)j (12)

where g(x) 2 RM are the kernel regressor outputs, and g(x) 2 [M] is the thresholded classification674

decision. This is equivalent to training M separate binary regressors (one for each label), and taking675

the argmax for classification. We usually consider unregularized regression (� = 0), except in676

Section 5.2.677

For kernel SVM, we use the implementation provided by Scikit-learn [51] sklearn.svm.SVC with678

a precomputed kernel, for inverse-regularization parameter C � 0 (larger C corresponds to smaller679

regularization).680

Types of Kernels. We use the following kernel functions k : Rd ⇥ Rd ! R�0.681

• Gaussian Kernel (RBF): k(xi, xj) = exp(� ||xi�xj ||22
2e�2).682

• Laplace Kernel: k(xi, xj) = exp(� ||xi�xj ||2
e�).683

• Myrtle10 Kernel: This is the compositional kernel introduced by Shankar et al. [60]. We684

use their exact kernel for CIFAR-10.685

For the Gaussian and Laplace kernels, we parameterize bandwidth by � := e�/
p
d. We use the686

following bandwidths, found by cross-validation to maximize the unregularized test accuracy:687

• MNIST: � = 0.15 for RBF kernel.688

• Fashion-MNIST: � = 0.1 for RBF kernel. � = 1.0 for Laplace kernel.689

• CIFAR-10: Myrtle10 Kernel from Shankar et al. [60], and � = 0.1 for RBF kernel.690

B.2.3 Neural Networks691

We use 4 different neural networks in our experiments. We use a multi-layer perceptron, and three692

different Residual networks.693

MLP: We use a Multi-layer perceptron or a fully connected network with 3 hidden layers with 512694

neurons in each layer. A hidden layer is followed by a BatchNormalization layer and ReLU activation695

function.696

WideResNet: We use the standard WideResNet-28-10 described in Zagoruyko and Komodakis [70].697

Our code is based on this repository.698

ResNet50: We use a standard ResNet-50 from the PyTorch library [50].699

ResNet18: We use a modification of ResNet18 [29] adapted to CIFAR-10 image sizes. Our code is700

based on this repository.701

For Experiment 1 and Section 4, the hyperparameters used to train the above networks are given in702

Table 1.703

17

https://github.com/hysts/pytorch_image_classification/blob/master/pytorch_image_classification/models/cifar/wrn.py
https://github.com/kuangliu/pytorch-cifar/blob/master/models/resnet.py

MLP ResNet18 WideResNet ResNet50

Batchsize 128 128 128 32
Epochs 820 200 200 50

Optimizer
Adam

(�1 = 0.9,�2 = 0.999)
SGD +

Momentum (0.9)
SGD +

Momentum (0.9) SGD

Learning rate

(LR) schedule Constant LR = 0.001
Inital LR= 0.05
scale by 0.1 at

epochs (80, 120)

Inital LR= 0.1
scale by 0.2 at

epochs (80, 120, 160)

Initial LR = 0.001,
scale by 0.1

if training loss stagnant
for 2000 gradient steps

Data

Augmentation
Random flips + RandomCrop(32, padding=4)

CIFAR-10 Error ⇠ 37% ⇠ 8% ⇠ 4% N/A

Table 1: Hyperparameters used to train the neural networks and their errors on the unmodified
CIFAR-10 dataset

18

C Feature Calibration: Appendix704

C.1 A guide to reading the plots705

All the experiments in support of Conjecture 1 involve various quantities which we enumaerate here706

1. Inputs x: Each experiment involves inputs from a standard dataset like CIFAR-10 or MNIST.707

We use the standard train/test splits for every dataset.708

2. Distinguishable feature L(x): This feature depends only on input x. We consider various709

features like the original classes itself, a superset of classes (as in coarse partition) or some710

secondary attributes (like the binary attributes provided with CelebA)711

3. Output labels y: The output label may be some modification of the original labels. For712

instance, by adding some type of label noise, or a constructed binary task as in Experiment 1713

4. Classifier family F : We consider various types of classifiers like neural networks trained714

with gradient based methods, kernel and decision trees.715

In each experiment, we are interested in two joint densities (y, L(x)), which depends on our dataset716

and task and is common across train and test, and (f(x), L(x)) which depends on the interpolating717

classifiers outputs on the test set. Since y, L(x) and f(x) are discrete, we will look at their discrete718

joint distributions. We sometimes refer to (y, L(x)) as the train joint density, as at interpolation719

(y, L(x)) = (f(x), L(x)) for all training inputs x. We also refer to (f(x), L(x)) as the test density,720

as we measure this only on the test set.721

C.2 Experiment 1722

Experimental details: We now provide further details for Experiment 1. We first construct a dataset723

from CIFAR-10 that obeys the joint density (y, L(x)) shown in Figure 1 left panel. We then train724

a WideResNet-28-10 (WRN-28-10) on this modified dataset to zero training error. The network is725

trained with the hyperparameters described in Table 1. We then observe the joint density (f(x), L(x))726

on the test images and find that the two joint densities are close as shown in Figure 5.727

We now consider a modification of this experiment as follows:728

Experiment 2. Consider the following distribution over images x and binary labels y.729

Sample x as a uniformly random CIFAR-10 image, and sample the label as p(y|x) =730

Bernoulli(CIFAR_Class(x)/10). That is, if the CIFAR-10 class of x is k 2 {0, 1, . . . 9}, then731

the label is 1 with probability (k/10) and 0 otherwise. Figure 5 shows this joint distribution of (x, y).732

As before, train a WideResNet to 0 training error on this distribution.733

In this experiment too, we observe that the train and test joint densities are close as shown in Figure 5.734

Now, we repeat the same experiment, but with an MLP instead of WRN-28-10. The training procedure735

is described in Table 1. This MLP has an error on 37% on the original CIFAR-10 dataset.736

Since this MLP has poor accuracy on the original CIFAR-10 classification task, it does not form a737

distinguishable partition for it. As a result, the train and test joint densities (Figure 6) do not match as738

well as they did for WRN-28-10.739

C.3 Constant Partition740

Conjecture 1 states that the marginal distribution of class labels for any interpolating classifier f(x)741

is close to the true marginals p(y). To show this, we construct a dataset based on CIFAR-10 that has742

class-imbalance. For class k 2 {0...9}, sample (k + 1)⇥ 500 images from that class. This will give743

us a dataset where classes will have marginal distribution p(y = `) / `+ 1 for classes ` 2 [10], as744

shown in Figure 2. We do this both for the training set and the test set, to keep the distribution D745

fixed.746

We then train a variety of classifiers (MLPs, RBF Kernel, ResNets) to interpolation on this dataset,747

which have varying levels of test errors (9-41%). The class balance of classifier outputs on the748

(rebalanced) test set749

19

Figure 5: Distributional Generalization in Experiment 2. Joint densities of the distributions
involved in Experiment 2. The top panel shows the joint density of labels on the train set:
(CIFAR_Class(x), y). The bottom panels shows the joint density of classifier predictions on the test
set: (CIFAR_Class(x), f(x)). Distributional Generalization claims that these two joint densities
are close.

Figure 6: Joint density of (y,Class(x)), top, and (f(x),Class(x)), bottom, for test samples (x, y)
from Experiment 2 for an MLP.

C.4 Class Partition750

C.4.1 Neural Networks and CIFAR-10751

We now describe details for the experiments in Figures 2A and 3A. A WRN-28-10 achieves an error752

of 4% on CIFAR-10. Hence, the original labels in CIFAR-10 form a distinguishable partition for753

this dataset. To demonstrate that Conjecture 1 holds, we consider different structured label noise on754

the CIFAR-10 dataset. To do so, we apply a variety of confusion matrices to the data. That is, for a755

confusion matrix C : 10⇥ 10 matrix, the element cij gives the joint density that a randomly sampled756

image had original label j, but is flipped to class i. For no noise, this would be an identity matrix.757

We begin by a simple confusion matrix where we flip only one class 0 ! 1 with varying probability758

p. Figure 7A shows one such confusion matrix for p = 0.4. We then train a WideResNet-28-10759

to zero train error on this dataset. We use the hyperparameters described in B.2 We find that the760

classifier outputs on the test set closely track the confusion matrix that was applied to the distribution.761

Figure 7C shows that this is independent of the value of p and continues to hold for p = [0, 1].762

20

Figure 7: Feature Calibration with original classes on CIFAR-10: We train a WRN-28-10 on
the CIFAR-10 dataset where we mislabel class 0 ! 1 with probability p. (A): Joint density of the
distinguishable features L (the original CIFAR-10 class) and the classification task labels y on the
train set for noise probability p = 0.4. (B): Joint density of the original CIFAR-10 classes L and the
network outputs f(x) on the test set. (C): Observed noise probability in the network outputs on the
test set (the (1, 0) entry of the matrix in B) for varying noise probabilities p

To show that this is not dependent on the particular class used, we also show that the same holds for a763

random confusion matrix. We generate a sparse confusion matrix as follows. We set the diagonal to764

0.5. Then, for every class j, we pick any two random classes for and set them to 0.2 and 0.3. We765

train a WRN-28-10 on it and report the test confusion matrix. The resulting train and test densities766

are shown in Figure 2A. As expected, the train and test confusion matrices are close, and share the767

same sparsity pattern.768

C.4.2 Decision Trees769

Figure 8 shows a version of this experiment for decision trees on the molecular biology UCI task.770

The molecular biology task is a 3-way classification problem: to classify the type of a DNA splice771

junction (donor, acceptor, or neither), given the sequence of DNA (60 bases) surrounding the junction.772

We add varying amounts of label noise that flips class 2 to class 1 with a certain probability, and we773

observe that interpolating decision trees reproduce this same structured label noise on the test set.774

Similar results hold for decision trees; here we show experiments on two UCI tasks: wine and775

mushroom.776

The wine task is a 3-way classification problem: to identify the cultivar of a given wine (out of 3777

cultivars), given 13 physical attributes describing the wine. Figure 9 shows an analogous experiment778

with label noise taking class 1 to class 2.779

The mushroom task is a 2-way classification problem: to classify the type of edibility of a mushroom780

(edible vs poisonous) given 22 physical attributes (e.g. stalk color, odor, etc). Figure 10 shows an781

analogous experiment with label noise flipping class 0 to class 1.782

C.5 Multiple Features783

Conjecture 1 states that the network should be automatically calibrated for all distinguishable features,784

without any explicit labels for them. To verify this, we use the CelebA dataset [37], containing images785

with various labelled binary attributes per-image (“male”, “blond hair”, etc). Some of these attributes786

form a distinguishable feature for ResNet50 as they are learnable to high accuracy [32]. We pick787

one of hard attributes as the target classification task. We train a ResNet-50 to predict the attribute788

{Attractive, Not Attractive}. We choose this attribute because a ResNet-50 performs poorly on this789

task (test error ⇠ 20%) and has good class balance. We choose an attribute with poor generalization790

because the conjecture would hold trivially for if the network generalizes well. We initialize the791

network with a pretrained ResNet-50 from the PyTorch library [50] and use the hyperparameters792

described in Section B.2 to train on this attribute. We then check the train/test joint density with793

various other attributes like Male, Wearing Lipstick etc. Note that the network is not given any label794

21

Figure 8: Feature Calibration for Decision trees on UCI (molecular biology). We add label noise
that takes class 2 to class 1 with probability p 2 [0, 0.5]. The top row shows the confusion matrix
of the true class L(x) vs. the label y on the train set, for varying levels of noise p. The bottom row
shows the corresponding confusion matrices of the classifier predictions f(x) on the test set, which
closely matches the train set, as predicted by Conjecture 1.

Figure 9: Decision trees on UCI (wine). We add label noise that takes class 1 to class 2 with
probability p 2 [0, 0.5]. Each column shows the test and train confusion matrices for a given p. Note
that this decision trees achieve high accuracy on this task with no label noise (leftmost column).
We plot the empirical joint density of the train set, and not the population joint density of the train
distribution, and thus the top row exhibits some statistical error due to small-sample effects.

information for these additional attributes, but is calibrated with respect to them. That is, the network795

says ⇠ 30% of images that have ’heavy makeup’ will be classified as ’Attractive’, even if the network796

makes mistakes on which particular inputs it chooses to do so. In this setting, the label distribution797

is deterministic, and not directly dependent on the distinguishable features, unlike the experiments798

considered before. Yet, as we see in Figure 11, the classifier outputs are correctly calibrated for each799

attribute. Loosely, this can be viewed as the network performing 1NN classification in a metric space800

that is well separated for each of these distinguishable features.801

C.6 Coarse Partition802

We now consider cases where the original classes do not form a distinguishable partition for the803

classifier in consideration. That is, the classifier is not powerful enough to obtain low error on the804

original dataset, but can perform well on a coarser division of the classes.805

To verify this, we consider a division of the CIFAR-10 classes into Objects {airplane, automobile,806

ship, truck} vs Animals {cat, deer, dog, frog}. An MLP trained on this problem has low error (⇠ 8%),807

but the same network performs poorly on the full dataset (⇠ 37% error). Hence, Object vs Animals808

forms a distinguishable partition with MLPs. In Figure 12a, we show the results of training an MLP809

22

Figure 10: Decision trees on UCI (mushroom). We add label noise that takes class 0 to class 1 with
probability p 2 [0, 0.5]. Each column shows the test and train confusion matrices for a given p. Note
that this decision trees achieve high accuracy on this task with no label noise (leftmost column).

Figure 11: Feature Calibration for multiple features on CelebA: We train a ResNet-50 to perform
binary classification task on the CelebA dataset. The top row shows the joint distribution of this task
label with various other attributes in the dataset. The bottom row shows the same joint distribution
for the ResNet-50 outputs on the test set. Note that the network was not given any explicit inputs
about these attributes during training.

on the original CIFAR-10 classes. We see that the network mostly classifies objects as objects and810

animals as animals, even when it might mislabel a dog for a cat.811

We perform a similar experiment for the RBF kernel on Fashion-MNIST, with partition812

{clothing, shoe, bag}, in Figure 12b.813

ImageNet experiment. In Table 2 we provide results of the terrier experiment in the body, for various814

ImageNet classifiers. We use publicly available pretrained ImageNet models from this repository,815

and use their evaluations on the ImageNet test set.816

C.7 Discussion: Proper Scoring Rules817

Here we distinguish the density-estimation of Conjecture 1 from another setting where density
estimation occurs. If `(bp, y) is a strictly-proper scoring rule3 on predicted distribution bp 2 �(Y)
and sample y 2 Y , then the population minimizer of `(F (x), y) is exactly the conditional density
F (x) = p(y|x). That is,

p(y|x) = argmin
F :X!�(Y)

E
(x,y)⇠p

[`(F (x), y)]

3See [23] for a survey of proper scoring rules.

23

https://github.com/Cadene/pretrained-models.pytorch

Model AlexNet ResNet18 ResNet50 BagNet8 BagNet32

ImageNet Accuracy 0.565 0.698 0.761 0.464 0.667
Accuracy on dogs 0.588 0.729 0.793 0.462 0.701
Accuracy on terriers 0.572 0.704 0.775 0.421 0.659
Accuracy for binary {dog/not-dog} 0.984 0.993 0.996 0.972 0.992
Accuracy on {terrier/not-terrier} among dogs 0.913 0.955 0.969 0.876 0.944

Fraction of real-terriers among dogs 0.224 0.224 0.224 0.224 0.224
Fraction of predicted-terriers among dogs 0.209 0.222 0.229 0.192 0.215

Table 2: ImageNet classifiers are calibrated with respect to dogs: All classifiers predict terrier for
roughly ⇠ 22% of all dogs (last row), though they may mistake which specific dogs are terriers.

(a) CIFAR10 + MLP (b) Fashion-MNIST + RBF

Figure 12: Coarse partitions as distinguishable features: We consider a setting where the original
classes are not distinguishable, but a superset of the classes are distinguishable.

This suggests that in the limit of large-capacity network and very large data (to approximate population818

quantities), training neural nets with cross-entropy loss on samples (x, y) will yield a good density819

estimate of p(y|x) at the softmax layer. However, this is not what is happening in our experiments.820

First, our experiments consider the hard-thresholded classifier, i.e. the argmax of the softmax layer. If821

the softmax layer itself was close to p(y|x), then the classifier itself will be close to argmax
y
p(y|x)822

– that is, close to the optimal classifier. However, this is not the case (since the classifiers make823

significant errors). Second, we observe Conjecture 1 even in settings where we train with non-proper824

scoring rules (e.g. kernel regression, where the classifier does not output a probability).825

D Nearest-Neighbor Proofs826

D.1 Feature Calibration Property827

Proof of Theorem 1. Recall that L being an (",NN,D, n)-distinguishable partition means that828

nearest-neighbors works to classify L(x) from x:829

Pr
{xi,yi}⇠Dn

S={(xi,L(xi)}
x,y⇠D

[NN(y)
S

(x) = L(x)] � 1� " (13)

24

Now, we have830

{(NN(y)
S

(x), L(x))}S⇠Dn

x,y⇠D
⌘ {(byi, L(x))} S⇠Dn

bxi,byi NNS(x)
x,y⇠D

(14)

⇡" {(byi, L(bxi))} S⇠Dn

bxi,byi NNS(x)
x,y⇠D

(15)

⇡� {(byi, L(bxi))} bxi,byi⇠D (16)

Line (15) is by distinguishability, since Pr[L(x) 6= L(bxi)]  ". And Line (16) is by the regularity831

condition.832

E Non-interpolating Classifiers: Appendix833

Here we give an additional example of distributional generalization: in kernel SVM (as opposed to834

kernel regression, in the main text).835

25

Figure 13: Distributional Generalization. Train (left) and test (right) confusion matrices for kernel
SVM on MNIST with random sparse label noise. Each row corrosponds to one value of inverse-
regularization parameter C. All rows are trained on the same (noisy) train set.

26

Figure 14: Distributional Generalization for WideResNet on CIFAR-10. We apply label noise
from a random sparse confusion to the CIFAR-10 train set. We then train a single WideResNet28-10,
and measure its predictions on the train and test sets over increasing train time (SGD steps). The
top row shows the confusion matrix of predictions f(x) vs true labels L(x) on the train set, and the
bottom row shows the corresponding confusion matrix on the test set. As the network is trained for
longer, it fits more of the noise on the train set, and this behavior is mirrored almost identically on the
test set.

27

	Introduction
	Distributional Generalization
	Our Contributions and Organization
	Related Work and Significance

	Preliminaries
	Feature Calibration Conjecture
	Distributions of Interest
	Feature Calibration
	Feature Calibration for 1-Nearest-Neighbors
	Limitations: Natural Distributions

	Experiments: Feature Calibration
	Distributional Generalization
	Feature Calibration as Distributional Generalization
	Beyond Interpolating Methods

	Conclusion
	Full Related Work
	Experimental Details
	Datasets
	Models
	Decision Trees
	Kernels
	Neural Networks

	Feature Calibration: Appendix
	A guide to reading the plots
	Experiment 1
	Constant Partition
	Class Partition
	Neural Networks and CIFAR-10
	Decision Trees

	Multiple Features
	Coarse Partition
	Discussion: Proper Scoring Rules

	Nearest-Neighbor Proofs
	Feature Calibration Property

	Non-interpolating Classifiers: Appendix

