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ABSTRACT
The inherent variability and unpredictability in open multi-view
learning scenarios infuse considerable ambiguity into the learn-
ing and decision-making processes of predictors. This demands
that predictors not only recognize familiar patterns but also adap-
tively interpret unknown ones out of training scope. To address
this challenge, we propose an Ambiguity-Aware Multi-view Learn-
ing Framework, which integrates four synergistic modules into an
end-to-end framework to achieve generalizability and reliability be-
yond the known. By introducing the mixed samples to broaden the
learning sample space, accompanied by corresponding soft labels to
encapsulate their inherent uncertainty, the proposed method adapts
to the distribution of potentially unknown samples in advance. Fur-
thermore, an instance-level sparse inference is implemented to
learn sparse approximated points in the multiple view embedding
space, and individual view representations are gated by view-level
confidence mappings. Finally, a multi-view consistent representa-
tion is obtained by dynamically assigning weights based on the
degree of cluster-level dispersion. Extensive experiments demon-
strate that our approach is effective and stable compared with other
state-of-the-art methods in open-world recognition situations.

CCS CONCEPTS
• Computing methodologies→ Artificial intelligence; Neural
networks; Supervised learning.

KEYWORDS
Multi-view Learning, Open-set Recognition.

1 INTRODUCTION
Different feature extractors or sensors can perceive various patterns
of information conveyed by real-world objects. Multi-view data pro-
vides a wealth of information that can significantly enhance learn-
ing and understanding of models in analysis tasks [7, 26]. Therefore,
multi-view learning can improve the robustness and reliability of
recognition performance by integrating multiple perspectives or
patterns of data as compared to single-pattern information pro-
cessing. Indeed, due to constraints imposed by device limitations
or working conditions, it is often expensive or even infeasible to
gather comprehensive multi-view data encompassing all categories
during the training phase [13, 20]. Although multi-view learning
methods are well-developed, most work has focused on improving
performance within known constraints. Nonetheless, the inference
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process in real-world testing environments is plagued by ambiguity,
an aspect frequently neglected in previous works. Ambiguity essen-
tially captures the gap between the controlled conditions of model
training and uncontrollable factors encountered when the model
is deployed in real-world scenarios. To encapsulate, the presence
of ambiguity in scenarios of open multi-view learning remains a
paramount obstacle, originating from the inherent variability and
unpredictability of external factors.

This ambiguity in multi-view data arises from its inherent vari-
ability, presenting a persistent issue for multi-view learning:how to
reconcile disparate views to distill essential patterns amidst
the noise and redundancy. Variability of multi-view data in-
troduces consistency and complementarity nature that contribute
to favorable inference performance [27, 29], while additional mes-
sages that tend to disrupt decision-making are also conflated. Each
view may capture distinct facets of the data, leading to varied rep-
resentations that necessitate reconciliation for a comprehensive
comprehension. A primary concern is the redundancy brought
by an excessive amount of information, which includes irrelevant
details that can obscure the essential patterns critical for precise
classification. Concurrently, the disparity in feature spaces across
different views, known as the heterogeneity gap, complicates the
amalgamation of data samples from these disparate sources [12].
To tackle these challenges, recent studies have concentrated on
developing a unified representation space that integrates intrinsic
information from various views, thus facilitating a more coher-
ent interpretation of multi-view data. Additionally, by learning
to identify and prioritize the most task-relevant features across
views, it is possible to significantly mitigate the negative influence
of redundancy.

Whereas external ambiguity introduced by unknown classes
blurs the boundaries between categories in the representation space,
thereby presenting issue: How to inform multi-view classifiers
about the existence of its unknown classes so that it rec-
ognizes them with low confidence.Moreover, the open-world
problem introduces safety risks, particularly when classifiers er-
roneously assign high confidence levels to unknown classes, po-
tentially compromising decision performance [5]. The ability to
simultaneously recognize known categories and reject unknown
categories is the task of open-set recognition approaches [11, 18, 28].
Unfortunately, these methods predominantly focus on analyzing
single-view feature data, which is prone to external disturbances,
potentially leading to misrecognition. In contrast, multi-view learn-
ing leverages the complementary nature of diverse views to en-
hance the efficacy of open-set recognition. In order to avoid the
problem of ambiguous category boundaries caused by insufficient
categories of training multi-view data, we try to extract category
information from the existing raw data for the model to adapt to
the distribution of potentially unknown categories in advance. This
preparation allows the model to adjust its recognition boundaries
more dynamically, enhancing its ability to differentiate between
known and unknown categories effectively.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Overall of the proposed Ambiguity-Aware Multi-view Learning Framework. The soft-mixup augmentation module
generates mixing samples from the original ones, feeding them into the subsequent network alongside the original. The
instance-level sparse inference module computes view-specific representations, while the view-level confidence network
module calculates confidence maps for gating. Ultimately, a consistent representation is fused using inter-class dispersion
weights via the centroid-guided adaptive fusion module. The entire framework is optimized with three losses.

To jointly address the above-mentioned issues, in this work, we
focus on generalization in open multi-view environments, aim-
ing at exploring data distributions and underlying properties from
observational data to enhance the ability to recognize potentially
unknown classes. Specifically, we devise four distinct modules, each
geared towards achieving specific objectives. The soft-mixup aug-
mentation module is designed to generate soft-labelled synthetic
instances in order to better manage open space risk. While the
instance-level sparse inference module based on interpretable opti-
mization objectives is applied to filter out the influence of redundant
features and projects multi-view features into common representa-
tion space. Additionally, the view-level confidence network module
estimates prediction confidence to gating view-specific represen-
tations. Finally, the centroid-guided adaptive fusion module dy-
namically modulates the contributions of different views based on
inter-class dispersion, guaranteeing that the intrinsic information
of multiple views is encoded into the multi-view consistent repre-
sentation. The overall framework is illustrated in Fig. 1. The main
contributions of this paper can be listed as follow:

• We propose Ambiguity-Aware Multi-view Learning Frame-
work (AAML), which addresses the variability and unpre-
dictability in open multi-view learning environments.

• We employ mixed interpolated samples to occupy the un-
known ambiguous space between categories to broaden the
learnable feature space, in which the soft labeling strategy
measures the uncertainty.

• Extensive comparative experiments prove that the proposed
AAML achieves stable correct classification rates at varying
levels of false positive rate, highlighting its robustness and
reliability in open-set classification tasks.

2 RELATEDWORK
2.1 Multi-view Learning
Existing multi-view learning methods are usually based on the
assumption that the different feature views are projected from
the potential feature space. Assuming that the training multi-view
dataset D𝑡𝑟𝑎𝑖𝑛 = {{X(𝑣) }𝑉

𝑣=1, y
∗} consists of 𝑁 instances across

𝐾 known categories with 𝑉 views, where X(𝑣) = {x(𝑣)
𝑖

}𝑁
𝑖=1 ∈

R𝑁×𝐷 (𝑣)
and corresponding true labels y∗ = {𝑦∗

𝑖
}𝑁
𝑖=1 with 𝑦∗ ∈

Y = [1, 𝐾]. In a multi-view scenario, the first step is to construct
view-specific mappings to project various feature spaces X (𝑣) to
uniform space H , where𝑚 (𝑣) : X (𝑣) → H , where 𝑑 (𝑣) represents
the dimensional of original features in 𝑣-th view.

Such approaches adhere to a specific-uniform procedure where
potential features are first extracted from each view and then com-
bined to create a uniform representation. The main goal is to take
advantage of the complementary and consistent information pro-
vided by multiple views, and to reduce the interference of invalid
information such as redundancy and noise. To avoid degrading the
quality of the derived representation, Wang et al. [19] proposed
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MetaViewer to guide the learning of uniform representations, for-
mulating the extraction and fusion of view-specific features as a
nested optimization problem. Similarly, Tang et al. [17] proposed
deep network to achieve multi-view safeness by automatically se-
lecting features while extracting complementary information and
eliminating irrelevant noise. In order to keep the views with clear
clustering structures from receiving constraints from views with
ambiguous structures, Chen et al. [2] utilized global discriminative
information to guide the learning of local common representation.
Tang et al. [16] projected each view into a label space with consen-
sus part and view-specific part, while cross-view similarity graph
learning term is embedded to preserve the local structure. Liang
et al. [14] factorized task-relevant information in multi-view data
into shared and unique information, and removed task-irrelevant
information via upper bounds on mutual information. Despite the
increasing interest in multi-view learning methods, rarely has re-
search focused on tailoring these approaches to open settings.

2.2 Open-set Recognition
Open-set recognition addresses confronts the challenge of correctly
classifying samples from known categories while accurately identi-
fying those from unknown categories. The main challenge is that
incomplete knowledge exists in the training phase and potential
unknown categories can be encountered in an algorithm during
testing [6, 24]. Following predictive distribution 𝑃 (𝑦 | x𝑖 ;Θ) calcu-
lated by the classifier 𝑓 : H → Y, the entire classification network
can be trained by using loss functions such as cross-entropy loss,
defined as

L𝑐𝑒 = − ∑
(x𝑖 ,𝑦∗𝑖 ) ∈D𝑡𝑟𝑎𝑖𝑛

(
I𝑦

∗
𝑖 log p (𝑦 | x𝑖 ;Θ)

)
(1)

where I𝑦
∗
𝑖 denotes the one-hot label vectors, and Θ is a set of

model parameters. However, due to the closed-world property∑𝐾
𝑖=1 𝑃 (𝑖 | x𝑖 ;Θ) = 1, it can mistakenly classify novel class in-

stances with high confidence. To identify instances from outside
the predefined category set, a straightforward strategy is to set
thresholds on the predicted prediction, the instance is conserva-
tively labeled as "unknown" if the score is below the threshold 𝛿 .
Thus it can be inferred that the class predicted as

𝑦𝑖 =


argmax

𝑗∈Y
𝑃 ( 𝑗 | x𝑖 ;Θ) , if 𝑃 ( 𝑗 | x𝑖 ;Θ) ≥ 𝛿

unknown class otherwise.
(2)

However, simply applyingmanually defined thresholds to all known
categories may not always be applicable or effective, especially
when dealing with multi-view data with various representation
spaces. Such an approach ignores the inherent complexity and di-
versity among different categories as well as among different views,
which may lead to misclassification and poor recognition of novel
categories. It’s essential to consider a more tailored strategy that
respects the complementarity and consistency nature of multi-view
datasets to ensure robust classification and effective identification
of new category instances beyond the known.

3 THE PROPOSED FRAMEWORK
The proposed model consists of four key components: 1) Soft-
Mixup Augmentation Module introduces a soft labeling strategy

for these synthetic interpolated data to measure their uncertainty. 2)
Instance-level Sparse Inference Module employs a data-driven
feedforward network to learn sparse approximated points in the
multiple view embedding space; 3) View-level Confidence Net-
work Module develops the view-level confidence map to approxi-
mate true class probability for the trustworthiness of predictions;
4) Centroid-Guided Adaptive Fusion Module adopts the inter-
class dispersion to metric the informativeness of each view for
reliable fusion.

3.0.1 Soft-Mixup Augmentation Module. Effective classifiers must
distinguish known classes and adeptly manage the risk associated
with "open space". This entails avoiding the overextension of class
boundaries without cannibalizing the uncharted areas of the feature
space that could belong to unrecognized categories. Drawing from
the Mixup approach [25], we apply linear interpolation on two
samples drawn at random from the training data to produce addi-
tional virtual outliers. A random parameter 𝜆 ∈ [0, 1] is sampled as
𝜆 ∼ Beta(𝛼, 𝛼). We select x(𝑣)

𝑖
and x(𝑣)

𝑗
in the 𝑣-th view to generate

the augmented samples D𝑚𝑖𝑥 = {{X̃(𝑣) }𝑉
𝑣=1, ỹ} to enhance the

generalization ability by familiarizing it with the open space near
existing class clusters. For each view, we perform a randomized
perturbation to selection x′(𝑣) , which can be obtained as follows

x̃(𝑣) = 𝜆x(𝑣)
𝑖

+ (1 − 𝜆) x′ (𝑣)
𝑗
, (3)

where 𝜆 determines the contribution of each original sample to
features of the mixed samples. Since the samples produced by linear
interpolation may lie in the neighborhood of another known class,
simply assigning them to the unknown category may confuse the
judgement of the predictor. Therefore, we employ a soft label I�̃� to
teach the model to be uncertain for artificially created instances as

I�̃� = 𝜆I𝑦𝑖 + (1 − 𝜆) 1
|Y|

∑︁
𝑦 𝑗 ∈Y

I𝑦 𝑗 . (4)

Soft labels of mixed samples weight the distribution of class-specific
metrics and all classes for an original sample, reflecting the proba-
bility that the sample belongs to each possible class. At the same
time, by ensuring that unknown samples have a uniform probabil-
ity distribution across known categories, the model avoids making
overconfident predictions about never before learned categories.
This approach mitigates potential classifier confusion by not strictly
assigning these mix samples to an existing class but instead indi-
cating their intermediate nature. Achieving a maximum entropy
distribution across a set of categories indicates maximum uncer-
tainty about which category a sample belongs to, implying that the
model assigns probabilities across all categories as evenly as possi-
ble for unknown samples. Thus the learning objective for mixed
samples is defined as

L𝑠𝑜 𝑓 𝑡 = −
∑︁

(x̃𝑖 ,𝑦𝑖 ) ∈D𝑚𝑖𝑥

((
I�̃�𝑖 log p (𝑦 | x̃𝑖 ;Θ)

)
. (5)

Upon generating these mixed instances, the entire dataset repre-
sented as X(𝑣) = {X(𝑣) , X̃(𝑣) }, is fed into the proposed network.
This process involves the integration of original and augmented
data, enriching the learning context and bolstering its capability
to discern and represent complex data patterns, ultimately leading
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to improved task performance, especially in scenarios involving
categories not present in the training data.

3.0.2 Instance-level Sparse Inference Module. In order to strive bal-
ance between model complexity and learning capacity, we design
a data-driven feedforward network. To learn compact feature rep-
resentations h ∈ R𝐾 of multi-view samples, the function involves
data fitting terms term and certain regularizations, expressed as

h = argmin
h

{
𝜆R (h) +

𝑉∑
𝑣=1

𝑤𝑣F (h, x)
}
. (6)

where 𝜆 denotes a regularization parameter, and w = [𝑤𝑖 ]𝑉𝑖=1 de-
notes a weight vector for balancing the contributions from distinct
views. This formulation encapsulates the integration of data-fitting
terms and various regularizations, aiming to implement efficient
category separation in low-dimensional spaces.

Specify, we first project diverse original feature spaces into uni-
fied dimensional space in preparation for subsequent fusion. To
address the challenges inherent in high-dimensional problems, we
turn our focus to the concept of model sparsity. Herein, we invoke
the sparsity of the combined ℓ1-norm to suppress irrelevant fea-
tures. Designating Φ as the view-specific projection matrix. Since
the objective is a quadratic optimization with a non-differentiable
regularizer problem. Formally, this corresponds to the case where
the proximal operator defined for a convex regularizer, given by

prox𝜆R (h) = argmin
u
𝜆R (u) + 1

2 ∥u − h∥22 . (7)

At each iteration of the proximal algorithm, the current value of h
is updated as the solution of the proximal problem

h𝑡+1 = prox𝜆R
(
h𝑡 − 𝜆

𝐿𝑓
gradhF (h𝑡 )

)
,

= prox𝜆R
(
h𝑡 − 𝜆

𝐿𝑓
(h𝑡Φ − x) Φ𝑇

)
,

(8)

where 𝐿𝑓 is the Lipschitz constant of F . Taking inspiration from
the Learned Iterative Shrinkage and Thresholding Algorithm net-
work [8], the optimization strategy can be effectively unrolled into
a sequence of updates within a feedforward network. Here, the
components that need to be precomputed are parameterized as
a fully connected layer within the network, enabling it to learn
adaptively from the data. To specifically address different views
in the data, we extend our network layer update formulation as
follows

h(𝑣)
𝑡+1 = 𝜎𝜏

(
h(𝑣)𝑡 U(𝑣)

𝑡 + x(𝑣)V(𝑣)
𝑡

)
(9)

where U(𝑣)
𝑡 = I − ΦΦ𝑇 and V(𝑣)

𝑡 = Φ𝑇 serve to refine the view-
specific transformations at each iteration. And the update formula
is defined as 𝜎𝜏 (x) = F(x − 𝜏) − F(−x − 𝜏), where 𝜏 represents
a learnable threshold parameter, and F(·) denotes an activation
function such as ReLU, SELU, ELU, etc. The above formulation
positions each network layer to correspond to an optimization
algorithm iteration, enhancing the learning process of traditional
optimization models through parameterized updates. Besides, we
adopt a one-step inference, simplifying the process by retaining
a single iteration of this optimization, thus promoting a balance
between efficiency and performance.

This module adopts a straightforward mathematical model in-
spired by sparse coding principles to construct the entire network
structure. This choice is driven by two primary objectives: 1) To

ensure that a sufficiently discriminative sparse representation is
learned from both the original and mixed-sample features, reducing
the interference of redundant information for improved adaptation
to the open world. 2) To improve interpretability, with simpler mod-
els offering clearer insights into the dynamics between responses
and covariates.

3.0.3 View-level Confidence Network Module. Adopting the Maxi-
mum Softmax Probability MCP = 𝑃 (𝑦 = 𝑦 | x;Θ) as the confidence
score usually leads to over-confidence, particularly in cases of in-
correct predictions [3]. To counteract this issue, we consider the
True Class Probability (TCP) as the target confidence value, defined
as the predicted probability of the ground truth class TCP (x, 𝑦∗) =
𝑃 (𝑦 = 𝑦∗ | x;Θ). To obtain a confidence score estimate for each
view, an auxiliary view-specific confidence network module 𝑐 (𝑣)
parameterized by 𝜃𝑐 is customized as

CONF(𝑣) = 𝑐 (𝑣)
(
x(𝑣) ;𝜃𝑐

)
, (10)

where the sigmoid activate function is employed after the confi-
dence network to ensure that CONF(𝑣) is normalized within the
[0, 1]. CONF(𝑣) denotes a confidence map for each view, the goal of
this module is to train it such that CONF(𝑣) closely approximates
the TCP, utilizing a mean-square-error loss for this purpose

L𝑐𝑜𝑛𝑓 =
𝑉∑
𝑣=1

𝑁∑
𝑖=1

(
𝑐 (𝑣)

(
x(𝑣)
𝑖

;𝜃𝑐
)
− TCP (x𝑖 , 𝑦∗)

)2
. (11)

To further refine the capacity to leverage view-specific information
effectively, a view-level gating strategy is employed as

H(𝑣) = CONF(𝑣)H(𝑣) . (12)

This approach ensures that the learned view-specific representa-
tions are informed by the reliability of predictions, thereby enhanc-
ing the overall predictive performance and trustworthiness.

3.0.4 Centroid-Guided Adaptive Fusion Module. Recognizing the
variability in quality across different views, where less informa-
tive views may dilute overall performance, we strategically assign
weights to each view. Essentially, by emphasizing more informative
views and diminishing the impact of less informative ones, we can
achieve a more effective and reliable integration.

Intuitively, the proximity of centroids within views is negatively
correlated with the discriminative capability of each single view
embedding. To quantify this, we first identify the centroids o(𝑣)

𝑖
of

known category within the 𝑣-th view embedding space as below

o(𝑣)
𝑖

= 1
|𝐶𝑖 |

∑
𝑗 :y𝑗=𝑖

h(𝑣)
𝑗
, h(𝑣)
𝑗

∈ H(𝑣) , (13)

where |𝐶𝑖 | is the number of training instances in category𝐶𝑖 . Subse-
quently, we calculate the inter-category distance from all centroids
of each view. To avoid making the largest distance between two
classes overly influence the measure of interclass variation, we
focus on the minimum distance between any two categories as a
metric for view discriminativeness, denoted as

𝑑𝑣 = min
{
𝐷𝑖𝑠𝑡

(
o(𝑣)
𝑖
, o(𝑣)
𝑗

)}
, 𝑖, 𝑗 ∈ Y and 𝑖 ≠ 𝑗, (14)

where𝐷𝑖𝑠𝑡 (·, ·) is the distance function, which adopts the Euclidean
distance in this work. This strategy provides a balanced assess-
ment of the contribution of the different views. Building on this
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Algorithm 1 Ambiguity-Aware Multi-view Learning Framework
Require: Multi-view data D𝑡𝑟𝑎𝑖𝑛 , training epoch 𝑒 , regularization

parameters 𝛼, 𝛽 , learning rate 𝜂.
Ensure: Optimized model parameters Θ.
1: Initialize {U(𝑣) ,V(𝑣) }𝑉

𝑣=1;
2: for 𝑖 = 1 → 𝑒 do
3: for 𝑣 = 1 → 𝑉 do
4: Genrate the augmented samples {X̃(𝑣) ∈ R𝑚×𝐷 (𝑣)

, ỹ} for
joint training as Eq. (4);

5: Calculate view-specify representation H(𝑣) as Eq. (9);
6: Compute confidence map CONF(𝑣) though view-specific

confidence network module as Eq. (10);
7: Update H(𝑣) with view-level gating CONF(𝑣) as Eq. (12);
8: Calculate the weight of multiple views𝑤 (𝑣) as Eq. (15);
9: end for
10: Fusing multiple view representations to obtain view-

consistent representation H as Eq. (16);
11: Obtain predictive distribution 𝑃 (𝑦 | x𝑖 ;Θ) by classifier 𝑓 ;
12: Compute the loss of joint optimization as Eq. (17);
13: Update the parameters Θ though backward propagation;
14: end for
15: return Optimized Θ.

foundation, we perform class-wise ℓ1-norm on the reciprocal dis-
tances: d̂ = d−1/



d−1

1. By normalizing the reciprocal of these
distances, views with more distinctive category separations are
afforded greater weights. Accordingly, the weight assignments w
can be determined as

𝑤𝑣 =
exp

(
−𝑑𝑣

)
∑𝑉

𝑗=1 exp
(
−𝑑 𝑗

) , 𝑉∑
𝑣=1

𝑤𝑣 = 1. (15)

Ultimately, these weights are employed to construct the multi-view
consistent representation H through a weighted summation of
individual view embeddings

H =

𝑉∑︁
𝑣=1

𝑤𝑣H(𝑣) (16)

Through this method to achieve balanced and insightful fusion of
multiple views, this embedding is expected to be more discrimina-
tive than any single-view setting.

3.1 Overall Training Objective
Additional classifier, denoted as 𝑓 : H → Y, is tailored to process
view-consistent representation H. The output from the final fully-
connected layer is subsequently processed through the SoftMax
function, generating a probability distribution over the labels of all
𝐾 recognized classes. The overall learning objective of the model is
encapsulated by the following composite loss function

L = L𝑐𝑒 + 𝛼L𝑐𝑜𝑛𝑓 + 𝛽L𝑠𝑜 𝑓 𝑡 . (17)

L𝑐𝑒 plays a fundamental role in guiding the model toward the accu-
rate classification of known categories on the training data. L𝑐𝑜𝑛𝑓
facilitates the alignment of the output of the confidence network
with the true confidence level as indicated by TCP, thereby enhanc-
ing the reliability, particularly in its confidence estimations. L𝑠𝑜 𝑓 𝑡

Table 1: A brief description of the tested multi-view datasets.

Datasets Samples Dimension of Views Classes

ESP-Game 11,032 100/100 7
Flower17 1,360 1,360/1,360/1,360/1,360/1,360/1,360/1,360 17
MNIST 2,000 1,930/9/30 10
Reuters 1,500 21,531/24,892/34,251/15,506/11,547 6
ORL 400 512/59/864/254 40

Youtube 2,000 2,000/1,024/64/512/64/647 10

is crafted to minimize prediction error on these mixed instances,
enhancing its ability to generalize from known to unknown cate-
gories. This objective not only enhances confidence accuracy but
also improves adaptability to unknown categories, ensuring robust
and versatile performance in various real-world applications. The
entire procedure is outlined in Algorithm 1.

The core computations for computing multi-view consistent
representation are 1) creation of 𝑀 mixed samples where linear
interpolation is O(𝑀𝐷 (𝑣) ); 2) one-step sparse inference, for which
the complexity is O((𝑁 +𝑀)𝐻2 + (𝑁 +𝑀) (𝐷 (𝑣) )2), accounting for
operations on both the original 𝑁 samples and the𝑀 mixed sam-
ples.; 3) the gating strategy is O((𝑁 +𝑀)𝐻 ), and 4) Computing the
centroids for each category has a complexity of O(∑𝐾𝑖=1 |𝐶𝑖 |𝐷 (𝑣) ) =
O(𝑁𝐷 (𝑣) ) and calculating inter-category distances between 𝐾 (𝐾 +
1)/2 pairs of centroids is O(𝐾2𝐷 (𝑣)/2). Given that 𝑁 is typically
larger than 𝑀 , the overall time complexity becomes O(𝑉𝑁𝐻2 +∑𝑉
𝑣=1 (𝑁 (𝐷 (𝑣) )2) + 𝐾2𝐷 (𝑣) )) under multi-view setting for each

training epoch.

4 EXPERIMENTAL RESULTS AND STUDY
4.1 Benchmark Datasets
Our experiments are conducted on six well-known multi-view
datasets. The statistics of these datasets are summarized in Table 1,
with detailed descriptions provided below.

1) ESP-Game1 is a social image collection searched from an
image annotation website where two players without any commu-
nication try to predict the same tags for a test image. 2) Flower172

consists of different flower categories that are common in the UK.
The images are available in a variety of views, scales and photomet-
ric variations. 3)MNIST3 is a well-known dataset of handwritten
digits with IsoProjection, LDA, and NPE features. 4) ORL4 is a
face image dataset, taken at varying lighting, different times, facial
expressions, and facial details. 5) Reuters5 consists of multilin-
gual document corpora in five languages: English, French, German,
Spanish, and Italian. 6) Youtube6 is a video game dataset including
both visual (Cuboids Histogram, Histogram of Motion Estimate,
and HOG features) and audio features (MFCC, Volume Streams,
and Spectrogram Streams).

1https://www.cs.cmu.edu/~biglou/resources/
2http://www.robots.ox.ac.uk/vgg/data/flowers/
3http://yann.lecun.com/exdb/mnist/
4http://cam-orl.co.uk/facedatabase.html
5https://archive.ics.uci.edu/dataset/259/reuters+rcv1+rcv2+multilingual+multiview+
text+categorization+test+collection
6https://archive.ics.uci.edu/dataset/269/youtube+multiview+video+games+dataset
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Figure 2: OSCR curves plotting the CCR over the FPR on all test multi-view datasets for all compared methods.

4.2 Compared Methods
We compare the proposed method with several state-of-the-art
methods for multi-view representation learning, including

1) IMvGCN [21] combines the reconstruction error and Lapla-
cian embedding, accompanied by a differentiable orthogonal nor-
malization constrain to improve generalization capability. 2) LGCN-
FF [1] integrates sparse autoencoders with a learnable GCN, en-
abling the simultaneous extraction of feature representations and
node relationships within graphs. 3) MMDynamics [9] models
both the feature-level and modality-level informativeness for trust-
worthy fusion. 4)MvNNcor [23] models view-specific information
and cross-correlations information through an interactive network
to jointly make decisions and infer categories. 5) PDMF [22] earns
relations and the auxiliary representation through pre-training to
tune the mappings from the original data to the comprehensive
representation. 6) TMC [10] conducts decision fusion according to
uncertainty estimation of multiple views.

4.3 Evaluation Metric
To handle known and unknown samples separately, we introduce
the Open-Set Classification Rate (OSCR) [4]. By setting a probability
threshold 𝜃 , it can balance sensitivity to known classes with the
ability to reject unknowns. For samples from known categories, we
calculate the Correct Classification Rate (CCR) as the fraction of the
samples where the correct class 𝑦∗ has maximum probability and
has a probability greater than 𝜃 . Concurrently, False Positive Rate
(FPR) is determined by the fraction of samples from the unknown

category that are classified as any known class 𝑦 ∈ Y with a proba-
bility greater than 𝜃 . Different applications may tolerate different
levels of FPR for the benefit of higher CCR, making these specific
metrics highly relevant for tuning the models according to specific
needs. For security-critical applications such as biometrics or fraud
detection, a low FPR is prioritized over CCR to block unauthorized
access. Conversely, content recommendation or advertising systems
may allow a higher FPR to enhance inclusivity and user experience
by ensuring relevant content is not overlooked. In order to measure
the quality of representation, we evaluate model performance with
CCR at FPR of 0.5%/1.0%/5.0%/10.0%. Regarding the choice of
thresholds, which is randomized, we follow the experimental setup
in [4] by taking the maximum probability set of predicted unknown
samples and traversing it to compute the CCR and FPR.

4.4 Implementation Details
In our experimental setting, we use the concept of openness [15],

openness = 1 −
√︃

2×𝐶𝑡𝑟𝑎𝑖𝑛

𝐶𝑡𝑟𝑎𝑖𝑛+𝐶𝑡𝑒𝑠𝑡
, (18)

where 𝐶𝑡𝑟𝑎𝑖𝑛 is the number of known classes during training, and
𝐶𝑡𝑒𝑠𝑡 is the total number of known and unknown classes during
testing. The proposed AAML has been implemented using the Py-
Torch framework on one NVIDIA Geforce RTX 4080 with GPU of
16GB memory. In practical application, rather than pre-generating
all mixing samples, we adopt linearly transforming each mini-batch
during the training process. Our training protocol involves 100
epochs across all benchmarks, maintaining a batch size of 100. In
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Table 2: CCR at different FPR are given for all compared algorithms tested on ESP-Game, Flower17 and MNIST under
openness=0.1 setting.

Datasets \Methods ESP-Game Flower17 MNIST

CCR at FPR of 0.5% 1.0% 5.0% 10% 0.5% 1.0% 5.0% 10% 0.5% 1.0% 5.0% 10%

IMvGCN 0.0319 0.0601 0.1891 0.3271 0.0117 0.0365 0.1711 0.2675 0.3792 0.4271 0.5409 0.6058
LGCN-FF 0.0273 0.0680 0.2119 0.3169 0.1250 0.1262 0.2014 0.2616 0.1302 0.2636 0.6022 0.6559

MMDynamics 0.028 0.0525 0.1826 0.3223 0.0205 0.057 0.133 0.2427 0.6357 0.6527 0.7226 0.7754
MvNNcor 0.08 0.1109 0.2451 0.3512 0.0486 0.0567 0.1435 0.2211 0.5485 0.6448 0.7261 0.7624
PDMF 0.0977 0.1602 0.3406 0.4537 0.0702 0.1111 0.1725 0.2485 0.0687 0.0980 0.3961 0.4598
TMC 0.0460 0.0820 0.2750 0.3911 0.0263 0.0424 0.1579 0.2558 0.4920 0.6916 0.7924 0.8074

AAML (w/o Soft-Mix) 0.0265 0.0560 0.1949 0.3199 0.0965 0.1477 0.2719 0.3699 0.6208 0.6597 0.7495 0.8014
AAML 0.0851 0.1354 0.3950 0.5140 0.1433 0.1550 0.3216 0.4240 0.5369 0.6996 0.8174 0.8623

Table 3: CCR at different FPR are given for all compared algorithms tested on ORL, Reuters, and Youtube under openness=0.1
setting. "–" indicates the out-of-memory error, and "N/A" indicates that the method does not achieve CCR at this FPR value.

Datasets \Methods ORL Reuters Youtube

CCR at FPR of 0.5% 1.0% 5.0% 10% 0.5% 1.0% 5.0% 10% 0.5% 1.0% 5.0% 10%

IMvGCN N/A 0.2116 0.3016 0.5714 0.2898 0.2955 0.3693 0.4205 0.0644 0.0714 0.2032 0.2847
LGCN-FF N/A 0.3704 0.5514 0.7490 0.0011 0.0079 0.3311 0.4018 0.1270 0.1611 0.2992 0.3635

MMDynamics N/A 0.4233 0.5132 0.5714 - - - - 0.1107 0.1378 0.2304 0.3018
MvNNcor N/A 0.0988 0.1358 0.1852 0.1874 0.2772 0.3333 0.3636 0.0389 0.081 0.2738 0.3881
PDMF N/A 0.7196 0.7354 0.8254 0.1946 0.2131 0.2571 0.2940 0.0443 0.0845 0.2032 0.2596
TMC N/A 0.6243 0.6825 0.7884 0.2159 0.2315 0.3679 0.4119 0.0372 0.1680 0.2827 0.3561

AAML (w/o Soft-Mix) N/A 0.3175 0.6349 0.7460 0.1818 0.2202 0.3452 0.4077 0.1690 0.2002 0.3793 0.4507
AAML N/A 0.6243 0.7672 0.8466 0.2656 0.2869 0.4176 0.4645 0.2515 0.3099 0.4406 0.5362

instance-level sparse inference module, the inital value of 𝜏 is set to
0.01, and the activation function F(·) adopts SELU. The dimension-
ality denoted as ℎ, of the common space, is uniformly set to 32 for
all datasets. The latent view-specific representations are initialized
using a 1-layer fully connected layer. Besides, the trade-off parame-
ter 𝛼 and 𝛽 are set within {0.1, 1.0, 10}. During training, only ten
percent of the labeled data are utilized for model training, with an
additional ten percent reserved for validation purposes. Finally, we
employ the Adam optimizer with an initial learning rate of 0.01 to
optimize the AAML.

4.5 Experimental Results
In all the experiments below, all our open experiments have com-
pared the proposed AAML with other classification methods under
the condition of openness=0.1.

1) The OSCR curves of different methods on six datasets are
depicted in Fig. 2. The proposed method (red solid line) overwhelm-
ingly outperforms the other methods (colored dashed lines) in all
cases, particularly notable in the Flower17 and Youtube datasets,
which demonstrates its ability tomaintain a high CCRwhile control-
ling the FPR. Specifically, it excels in minimizing misclassifications
of unknown categories while accurately classifying known classes.
This capability ensures that our model is adaptable to different
applications with varying FPR requirements, making it a versatile
and effective solution.

2) In order to conduct a numerical analysis, we computed the val-
ues of CCR at several representative FPR values, organized in Tables

Table 4: Classification accuracy of all compared methods on
multi-view datasets under openness=0 setting.

Datasets \Methods ESP-Game Flower17 MNIST ORL Reuters Youtube

IMvGCN 0.7130 0.4286 0.8352 0.7889 0.7200 0.3712
LGCN-FF 0.6880 0.6478 0.9196 0.8131 0.6786 0.5713

MMDynamics 0.7207 0.1961 0.6273 0.4261 - 0.4899
MvNNcor 0.8541 0.6533 0.8832 0.4506 0.3236 0.6546
PDMF 0.6665 0.3993 0.8632 0.6183 0.3094 0.3688
TMC 0.8195 0.5099 0.8757 0.8075 0.6778 0.6451

AAML 0.8402 0.6911 0.8757 0.8286 0.7406 0.7221

2 and 3, where the best performance is highlighted in bold and the
second best result is underlined. We report the performance of our
method without soft-mixup augmentation module as an ablation
comparison. It can be observed that AAML achieves the highest
performance on all datasets under CCR at FPR of 5.0% and 10.0%.
While PDMF and TMC occasionally outperform AAML in specific
cases, our method demonstrates more stable performance across all
scenarios. Overall, AAML showcases significant advancements over
existing methods in open environments, particularly in maintain-
ing high CCR under varying FPR requirements. Furthermore, we
observe that augmenting the network with synthetic data through
the soft interpolation method leads to further improvements in
performance compared to the network without the module. This
validates our capability to capture the distribution of potentially
unknown classes of data and enhances representation learning.
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a) Openness=0 b) Openness=0.1

Figure 3: Visualization of representation with t-SNE learned
by AAML on the MNIST dataset under different settings.

Figure 4: Comparison among variants on all test multi-view
datasets.

3) In addition to the above results based on the open setting,
we report the accuracy of compared methods on each dataset with
the openness equals 0in Table 4, where the problem is completely
closed. The outcomes demonstrate that the proposed model main-
tains competitive classification performance on known classes, af-
firming its capability to adeptly navigate the heterogeneity and
redundancy inherent in multi-view data.

4) Fig. 3 presents scatter diagrams of AAMLwith different openness
on MNIST. while colored dots signify samples from known classes,
while red crosses indicate samples from unknown classes. The re-
sults intuitively highlight that the classes, as defined by the known
labels, exhibit greater compactness and distinct separation. It is evi-
dent that samples belonging to the unknown class predominantly
cluster around the centroid, albeit with two classes seemingly merg-
ing with it. In contrast, the other classes are situated farther away
from the unknown class, emphasizing their distinctness.

4.6 Component and Parameter Analysis
4.6.1 Module Analysis. We empirically analyze the effectiveness of
the other three modules. AAML (w/o S): In this setup, we exclude
the instance-level sparse inference module. This implies that we
retain only the network structure within Eq. (9) without perform-
ing proximal updates to preserve sparsity. AAML (w/o C): Here,
we eliminate the view-level gating mechanism and the associated
confidence loss L𝑐𝑜𝑛𝑓 from our framework. AAML (w/o W): This

a) ESP-Game b) MNIST

Figure 5: Parameter sensitivity analysis of 𝛼 and 𝛽 in AAML
on ESP-Game and MNIST datasets.

configuration involves directly employing the average fusion strat-
egy, bypassing the centroid-guided adaptive fusion module. We
have the following observations from Fig. 4: AAML (w/o S) exerts
the most significant impact on the ESP-Game and ORL datasets.
AAML (w/o C)demonstrates a modest decrease across all datasets,
although its effect is less pronounced compared to moduleS. On the
other hand, AAML (w/o F ) exhibits the smallest impact, resulting
in only a slight decrease in performance across all datasets. Despite
the varying degrees of impact observed across these modules, our
comprehensive analysis underscores the importance of AAML, as
it consistently outperforms the ablated versions across all datasets.
This suggests that the synergistic integration of all modules leads
to the best overall performance.

4.6.2 Parameter Analysis. To investigate the influence of the trade-
off parameter 𝛼 and 𝛽 in Eq. (17), we conduct a sensitivity test by
varying from 0.001 to 100. Fig. 5 shows the influence of different
parameter values with respect to CCR at FPR at 10% on the ESP-
Game and MNIST datasets. Moreover, our method performs stably
when the values of 𝛼 and 𝛽 are within a certain region.

5 CONCLUSION
Under open multi-view learning contexts, characterized by ambi-
guity, we confront two principal challenges: Mitigating the adverse
effects of variability and recognizing unknown classes with multi-
view information. In this paper, the inherent ambiguity of these
synthetic points is managed by creating samples located at taxon
boundaries, using mixed samples from different taxa, and applying
soft labels to manage the inherent ambiguity of these synthetic
points. In this way, the generalization ability of the model is en-
hanced by adapting the model to the data distribution of potentially
unknown categories in advance during the training phase. In addi-
tion, we design a one-step sparse inference model that proficiently
eliminates superfluous information across multiple views. This is
complemented by confidence score estimation, which gates view-
specific representations to leverage prediction scores and enhance
reliability. Additionally, the inter-class dispersion is adopted to as-
certain the informativeness of the views, thereby amalgamating
them into a cohesive final representation. The proposed AAML not
only accurately classifies instances based on comprehensive multi-
view data, but also extends its classification capabilities beyond the
training data.
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