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ABSTRACT

The non-stationary nature of electroencephalography (EEG) introduces distribu-
tion shifts across domains (e.g., days and subjects), posing a significant challenge
to EEG-based neurotechnology generalization. Without labeled calibration data
for target domains, the problem is a source-free unsupervised domain adaptation
(SFUDA) problem. For scenarios with constant label distribution, Riemannian
geometry-aware statistical alignment frameworks on the symmetric positive defi-
nite (SPD) manifold are considered state-of-the-art. However, many practical sce-
narios, including EEG-based sleep staging, exhibit label shifts. Here, we propose
a geometric deep learning framework for SFUDA problems under specific dis-
tribution shifts, including label shifts. We introduce a novel, realistic generative
model and show that prior Riemannian statistical alignment methods on the SPD
manifold can compensate for specific marginal and conditional distribution shifts
but hurt generalization under label shifts. As a remedy, we propose a parameter-
efficient manifold optimization strategy termed SPDIM. SPDIM uses the informa-
tion maximization principle to learn a single SPD-manifold-constrained parameter
per target domain. In simulations, we demonstrate that SPDIM can compensate
for the shifts under our generative model. Moreover, using public EEG-based
brain-computer interface and sleep staging datasets, we show that SPDIM outper-
forms prior approaches.

1 INTRODUCTION

Electroencephalography (EEG) measures multi-channel electric brain activity from the human scalp
(Niedermeyer & da Silva, 2005) and can reveal cognitive processes (Pfurtscheller & Da Silva, 1999),
emotion states (Suhaimi et al., 2020), and health status (Alotaiby et al., 2014). Neurotechnology and
brain-computer interfaces (BCI) aim to extract patterns from the EEG activity that can be utilized
for various applications, including rehabilitation and communication (Wolpaw et al., 2002). Despite
their capabilities, they currently suffer from a low signal-to-noise ratio (SNR), low specificity, and
non-stationarities manifesting as distribution shifts across days and subjects (Fairclough & Lotte,
2020).

For EEG-based neurotechnology, distribution shifts have been traditionally mitigated by collecting
labeled calibration data and training domain-specific models (Lotte et al., 2018), limiting neurotech-
nology utility and scalability (Wei et al., 2022). As an alternative, domain adaptation (DA) learns a
model from one or multiple source domains that performs well on different (but related) target do-
main(s), offering principled statistical learning approaches with theoretical guarantees (Ben-David
et al., 2010; Hoffman et al., 2018). Within the BCI field, DA primarily addresses cross-session and
cross-subject transfer learning (TL) problems (Wu et al., 2020), aiming to achieve robust general-
ization across domains (e.g., sessions and subjects) without supervised calibration data.

BCIs that generalize across domains without requiring labeled calibration data are one of the grand
challenges in EEG-based BCI research (Fairclough & Lotte, 2020; Wolpaw et al., 2002). Since target
domain data is typically unavailable during training, the problem corresponds to a source-free unsu-
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Figure 1: Framework Overview. a, EEG data x is generated by mixing source signals z with
unknown, linear forward modelsAj. A submanifold S+

D of the sources’ covariance matrices E ∈ S+
P

encodes information about the label y. Domain-specific label priors πj and forward models Aj
introduce label and conditional distribution shifts, respectively. b, Multi-source domain training,
utilizes balanced batch sampling and the end-to-end latent alignment framework proposed in (Kobler
et al., 2022a). c, Proposed SPDIM framework. After latent alignment of marginal distributions (step
1), SPDIM uses the information maximization (IM) loss to fit a bias parameter Φj ∈ S+

D (step 2),
and thereby counteract over-corrections in step 1 that are driven by label shifts.

pervised domain adaptation (SFUDA) problem (Liu et al., 2021; Yang et al., 2021). For this problem
class, Riemannian geometry-aware statistical alignment frameworks (Barachant et al., 2011) oper-
ating with symmetric, positive definite (SPD) matrix-valued features are considered state-of-the-art
(SoA) in cross-domain (Roy et al., 2022; Mellot et al., 2023) generalization. They offer several
advantageous properties, such as invariance to linear mixing, that are suitable for EEG data (Con-
gedo et al., 2017), as well as consistent (Sabbagh et al., 2020) and inherently interpretable (Kobler
et al., 2021) estimators for generative models with a log-linear relationship between the power of
latent sources and the labels. Additionally, Collas et al. (2024) suggests that a linear mapping exists
between the source and target domains in Riemannian geometry framework. To facilitate gener-
alization across domains, statistical alignment frameworks aim to align first (Zanini et al., 2017;
Yair et al., 2019) and second (Rodrigues et al., 2019; Kobler et al., 2022a) order moments, denoted
Fréchet mean and variance on Riemannian manifolds. Once the moments are aligned, a model
trained on source domains typically generalizes to related target domains (Zanini et al., 2017; Wei
et al., 2022; Kobler et al., 2022a; Ju & Guan, 2022; Mellot et al., 2024).

Although infrequently studied, many applications, including EEG-based sleep staging, exhibit la-
bel shift (Thölke et al., 2023). Under label shift, aligning the moments of the marginal feature
distributions can increase the generalization error (Bakas et al., 2023). To address various sources
of distribution shifts in EEG, an SFUDA approach that can deal with additional label shifts is re-
quired. Machine learning literature offers several frameworks for SFUDA problems with label shift
(Li et al., 2021; Liang et al., 2024), but few have been applied to EEG data. For example, Li et al.
(2023) employed the information maximization (Shi & Sha, 2012) objective for cross-domain gen-
eralization. Within Riemannian geometry methods, Mellot et al. (2024) studied an EEG-based age
regression problem and proposed a framework to facilitate generalization across populations with
different prior distributions.

Here, we propose a geometric deep learning framework to tackle SFUDA classification problems
under distribution shifts, including label shift. We introduce a realistic generative model with a log-
linear relationship between the covariance of latent sources and the labels (Figure 1a). We provide
theoretical analyses showing that prior Riemannian statistical alignment methods (Figure 1b) on the
SPD manifold can compensate for the conditional distribution shifts introduced in our model but hurt
generalization under additional label shifts. As a remedy, we propose a parameter-efficient manifold
optimization strategy termed SPDIM. SPDIM employs the information maximization principle to
learn a domain-specific SPD-manifold-constrained bias parameter to compensate over-corrections
introduced via aligning the Fréchet mean (Figure 1c).
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2 PRELIMINARIES

2.1 SFUDA SCENARIO

Let y and x denote random variables representing the true labels and associated features, and let
pj(y) and pj(x|y) be the prior and conditional probability distributions for domain j. In the transfer
learning scenario considered here, we assume that the class priors πj := pj(y) can be different from
each other, as well as specific shifts in the conditional distributions pj(x|y). We consider a labeled
source dataset Ds = {(xi, yi, ji)|xi ∈ Xs, yi ∈ Ys, ji ∈ Js}Ls

i=1 and an unlabeled target dataset
Dt = {(xi, ji)|xi ∈ Xt, yi ∈ Yt, ji ∈ Jt}Lt

i=1, where yi and ji (or j(i) if used as suffix) indicate the
associated label and domain for each example i. We additionally assume that both datasets share the
feature space (i.e., Xs=Xt=X ), contain the same classes (i.e., Ys=Yt=Y), and comprise examples
from different domains (i.e., Js ∩Jt=∅). The goal is to transfer the knowledge learned from Ds to
Dt via first learning a source decoder hs within hypothesis class H and then use hs and the unlabeled
target dataset Dt to learn ht ∈ H.

2.2 RIEMANNIAN GEOMETRY ON S+
D

The SPD manifold S+
D = {C ∈ RD×D : CT=C,C ≻ 0} together with an inner product on

its tangent space TCS+
D at each point C ∈ S+

D forms a Riemannian manifold. Tangent spaces
have Euclidean structure with easy-to-compute distances, which locally approximate Riemannian
distances on S+

D (Absil et al., 2008). In this work, we consider the affine invariant Riemannian
metric (AIRM) gAIRM

C (S1, S2)=Tr(C−1S1C
−1S2) as the inner product, which gives rise to the

following distance (Bhatia, 2009):

δ(C1, C2) = ∥ log(C− 1
2

1 C2C
− 1

2
1 )∥F (1)

where C1 and C2 are two SPD matrices, Tr(·) denotes the trace, log(·) the matrix logarithm, and
∥ · ∥F the Frobenius norm. For a set of points C = {Ci ∈ S+

D}i≤M , the Fréchet mean is defined as
the minimizer of the average squared distances:

C̄ = arg min
G∈S+

D

νG(C) = arg min
G∈S+

D

1

M

M∑
i=1

δ2(G,Ci) (2)

For M = 2, there exists a closed form solution:
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D
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= C
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2
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(3)

where parameter t ∈ [0, 1] smoothly interpolates along the geodesic C1#tC2 (i.e., the shortest path)
connecting both points.

The logarithmic map LogC̄ : S+
D → TC̄S+

D and exponential map ExpC̄ : TC̄S+
D → S+

D project
points between the manifold and the tangent space at point C̄:

LogC̄(Ci) = C̄
1
2 log(C̄− 1

2CiC̄
− 1

2 )C̄
1
2 (4)

ExpC̄(Si) = C̄
1
2 exp(C̄− 1

2SiC̄
− 1

2 )C̄
1
2 (5)

To transport points Si ∈ TC̄S+
D from the tangent space at C̄ to the tangent space at C̄ϕ, parallel

transport on S+
D can be used as:

ΓC̄→C̄ϕ
(Si) = P⊤SiP, P =

(
C̄−1C̄ϕ

) 1
2 (6)

While parallel transport is generally defined for tangent space vectors (Absil et al., 2008), for
(S+
D , g

AIRM
· ) it can be directly applied without explicitly computing tangent space projections (i.e.,

ExpC̄ϕ
◦ ΓC̄→C̄ϕ

◦ LogC̄ = ΓC̄→C̄ϕ
) (Brooks et al., 2019; Yair et al., 2019).

If C̄ϕ lies along the geodesic connecting C̄ with the identity matrix ID, there exists a step-size t ∈ R
so that C̄ϕ = C̄#tID, and (6) simplifies to Mellot et al. (2024):

ΓC̄→ID (Ci; t) = ΓC̄→C̄#tID (Ci) = C̄− t
2CiC̄

− t
2 (7)
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3 METHODS

3.1 GENERATIVE MODEL

In the case of EEG, the features xi ∈ X ⊆ RP×T comprise epochs of multivariate time-series data
with P spatial channels and T consecutive temporal samples. Propagation of brain activity to the
EEG electrodes, located at the scalp, is typically modeled as a linear mixture of sources (Nunez &
Srinivasan, 2006):

xi := Aj(i)zi (8)

where Aj(i) ∈ {A ∈ RP×P : rank(A)=P} is a domain-specific forward model and zi ∈ RP×T

the activity of latent sources. Utilizing the uniqueness of the polar decomposition for invertible
matrices, we constrain the model to

Aj := Qexp(Pj) (9)

whereQ ∈ {Q ∈ RP×P : QTQ=IP } is a orthogonal matrix modeling rotations and exp(Pj) ∈ S+
P

a SPD matrix modeling domain-specific scalings.

Like (Sabbagh et al., 2020; Kobler et al., 2021; Mellot et al., 2024), we consider zero-mean (i.e.,
E{zi} = 0P ∀ i) signals, and a log-linear relationship between the spatial covariance Ei =
Cov(zi) ∈ S+

P of the latent sources zi and the target yi. As graphically outlined in Figure 1a,
we model the source covariance matrices as:

Ei := exp ◦upper−1(si) (10)

where the linear mapping upper−1 : RP (P+1)/2 → SP transforms a vector to a symmetric matrix
while preserving its norm (i.e., S ∈ SP : ∥upper−1(s)∥F=∥s∥2), and latent log-space features
si ∈ RP (P+1)/2 are generated as:

si := Bỹi + εi , ỹi := 1yi − πj (11)

where 1yi represents one-hot-coded labels, πj = [pj(y=y)]y=1,...,|Y| contains the class priors
for domain j, εi ∈ RP (P+1)/2 is zero-mean additive noise, and B ∈ {B ∈ RP (P+1)/2×|Y| :
rank(B)=|Y|}. We assume that the matrix B is sparse and structured so that label information in
log(Ei) is only encoded in its first D-dimensional block (Figure 1a).

Proposition 1 Given the specified generative model and a set of examples Ej = {(Ei, yi, j)|Ei ∈
S+
P , yi ∈ Y}i≤Mj

of domain j ∈ J , we have that the Fréchet mean of Ej , defined in (2), converges
to the identity matrix IP with Mj → ∞ for all domains j ∈ J .

Our proof, provided in appendix A.1, relies on the uniqueness of the Fréchet mean for (S+
P , g

AIRM
· )

and that ỹi and εi in (11) are zero-mean.

For the generated multi-variate time-series features xi ∈ X the empirical covariance matrix Ci is:

Ci := Cov(xi) =
1

T
xix

T
i ∈ S+

P (12)

Due to the linear relationship between observed features and latent sources (8), we obtain a direct
relationship to the latent source covariance matrices Ei:

Ci = Aj(i)EiA
T
j(i) (13)

Since Ei encodes the target yi ∈ Y and Aj is invertible, Ci are sufficient descriptors to decode yi.

Remark 1 Note that for each domain j the covariance matrices of the generated data {Ci : ji = j}
are not necessarily jointly diagonalizable. Depending on the structure ofB and εi, the proposed gen-
erative model reduces to a jointly diagonalizable model if all the off-diagonal elements in log(Ei)
are zero ∀i.

3.2 DECODING FRAMEWORK

Given source domain data Ds and a hypothesis class H, we aim to learn a decoder function hs ∈ H,
and - once the unlabeled target data Dt is revealed - use Dt and hs to learn ht ∈ H. Following
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Kobler et al. (2022a), we constrain the hypothesis class H to functions h : X × J → Y that can
be decomposed into a composition of a shared feature extractor fθ : X → S+

D , latent alignment
mϕ : S+

D × J → RD(D+1)/2, and a shared linear classifier gψ : RD(D+1)/2 → Y with parameters
Θ = {θ, ϕ, ψ} (Figure 1b). Within this section, we focus on theoretical considerations formϕ under
our generative model.

Tangent space mapping (TSM) to recover log(Ei) Considering a set of labeled data D =
{(xi, yi) : xi ∈ X , yi ∈ Y, ji=j ∀i} obtained from a single domain j, TSM (Barachant et al.,
2011) provides an established (Lotte et al., 2018; Jayaram & Barachant, 2018) decoding approach
to infer yi. TSM requires SPD-matrix valued representations. For the considered generative model,
covariance features Ci, as defined in (12), are a natural choice (i.e., fθ = Cov). In a nutshell, TSM
first estimates the Fréchet mean C̄ of C = {Cov(xi) : (xi, yi) ∈ D} , projects each Ci to the tangent
space at C̄, and finally transports the data to vary around IP . Formally,

m̃ϕ(Ci) := upper ◦ ΓC̄→I ◦ LogC̄(Ci) = upper
(
log

(
C̄− 1

2 Ci C̄
− 1

2

))
, ϕ = {C̄} (14)

where the resulting representations of m̃ϕ have a linear relationship to log(Ei) (Sabbagh et al., 2020;
Kobler et al., 2021) and through (10) and (11) also to the labels yi.

RCT+TSM compensates marginal and conditional shifts In the context of functional neu-
roimaging data, the recentering (RCT) transform (Zanini et al., 2017; Yair et al., 2019) and its
extensions (Rodrigues et al., 2019; He & Wu, 2019; Kobler et al., 2022a; Mellot et al., 2023) ad-
dress source-free UDA problems. Combined with TSM, RCT+TSM essentially applies (14) inde-
pendently to each domain j. The outputs m̃ϕ(j(i))(Ci), where ϕ(j) = {C̄j}, are treated as domain-
invariant and passed on to the shared classifier gψ .

Although RCT+TSM is an established method to address SFUDA problems for neuroimaging data
(Lotte et al., 2018; Wei et al., 2022; Roy et al., 2022), there is a lack of understanding of what kind
of distribution shifts RCT+TSM can compensate.

Proposition 2 For the generative model, specified in section 3.1, RCT+TSM compensates condi-
tional distribution shifts introduced by the invertible linear map Aj , defined in (8), and recovers
domain-invariant representations if there are no label shifts (i.e., pj(y=y)=p(y=y) ∀y ∈ Y, ∀j ∈
Js ∪ Jt).
A detailed proof is provided in appendix A.2. Starting with m̃ϕ(j(i))(Ci), as defined in (14) and
utilizing the unique polar decomposition (9) of Aj into rotational Q and scaling exp(Pj) transfor-
mations along with proposition 1 we obtain:

log
(
C̄

− 1
2

j(i)CiC̄
− 1

2

j(i)

)
= Q log(Ei)Q

T = Qupper−1
(
B
(
1yi − πj(i)

)
+ εi

)
QT (15)

If there are no label shifts we have πj = πk ∀j, k ∈ Js ∪ Jt. Then (15) only contains domain-
invariant terms on the right hand side. Thus, RCT+TSM compensates the conditional shifts intro-
duced by exp(Pj). □

Remark 2 If all sources in (8) can be partitioned into relevant and irrelevant sources
zi=[z

∥
i , z

⊥
i ], z

∥
i=f(yi) ∈ RD×T , z⊥i ̸=f(yi) ∈ R(P−D)×T that are independent from each other,

then the source covariance matrices Ei have a block-diagonal structure. Consequently, RCT+TSM
compensates marginal shifts in z⊥i and conditional shifts in z∥i introduced by exp(Pj).

Alignment under label shifts We aim to extend RCT+TSM to extract label shift invariant repre-
sentations. Specifically, we aim to apply additional transformations on (S+

D , g
AIRM
· ) that attenuate

the effect of class priors πj in (15). We first rewrite (15) as:

C̄
− 1

2

j(i)CiC̄
− 1

2

j(i) = exp
(
Q log(Ei)Q

T
)
= exp

(
Qupper−1

(
B
(
1yi − πj(i)

)
+ εi

)
QT

)
(16)

= exp

Qupper−1 (B1yi + εi)︸ ︷︷ ︸
log(Ẽi)

QT −Qupper−1
(
Bπj(i)

)︸ ︷︷ ︸
P̄j(i)

QT

 (17)
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where we split log(Ei) into domain-invariant log(Ẽi) and label shift P̄j(i) terms. To separate both
terms into products of matrices, we utilize exp(α(A + B)) = exp(αB/2) exp(αA) exp(αB/2) +
O(α3) (Higham, 2008, Theorem 10.5), resulting in:

C̄
− 1

2

j(i)CiC̄
− 1

2

j(i) = Q exp
(
P̄j(i)

)− 1
2 QTQẼiQ

TQ exp
(
P̄j(i)

)− 1
2 QT +O(|| log(Ei)||3F ) (18)

with the approximation error O(|| log(Ei)||3F ) decaying cubically for || log(Ei)||F < 1. In this
form, it is straightforward to see that an additional bilinear transformation on the left hand side in
(18) with an SPD matrix can approximately compensate the effect of exp(P̄j(i)). We denote this
parameter as domain-specific bias parameter Φj(i) ∈ S+

D , and generalize RCT+TSM to:

mϕ(j(i))(Ci) = upper ◦ log
(
Φ

1
2

j(i)C̄
− 1

2

j(i) Ci C̄
− 1

2

j(i)Φ
1
2

j(i)

)
, ϕ(j(i)) = {C̄j(i),Φj(i)} (19)

Note that if exp(P̄j) and exp(Pj) share the same eigenvectors, they commute and lie on the same
geodesic connecting exp(Pj) with ID. Consequently, the combined effect of exp(P̄j) and exp(Pj)
is constrained to the geodesic connecting C̄j with ID. Then, the solution space can be constrained
to Φj ∈ {Φ : Φ ∈ S+

D ,Φ = C̄j#φj
ID, φj ∈ R}, and (7) used to simplify (19) to:

m#
ϕ(j(i))(Ci) = upper ◦ log ◦ΓC̄j(i)→C̄j(i)#φj(i)

ID (Ci), ϕ(j(i)) = {C̄j(i), φj(i)} (20)

where the geodesic step-size parameter φj(i) ∈ R needs to be learned.

Latent alignment with domain-specific SPD batch norm. Parametrizing the feature extractor
fθ : X → S+

D as a neural network naturally extends the decoding framework to neural networks
with SPD matrix-valued features (Huang & Gool, 2017). In this end-to-end learning setting, SPD
batch norm (SPDBN)(Brooks et al., 2019; Kobler et al., 2022b) and domain-specific batch norm
(Kobler et al., 2022a) layers can be utilized to implement mϕ.

3.3 SPD MANIFOLD INFORMATION MAXIMIZATION

We utilize the labeled source domain dataset Ds to learn the shared feature extractor fθ, gψ , and mϕ

for the source domains j ∈ Js with the cross-entropy loss as the training objective (Figure 1b).

For the target domains, we keep fθ and gψ fixed and learn ϕ(j) ∀j ∈ Jt (Figure 1c). For each domain
j ∈ Jt, we use (2) to compute the Fréchet mean C̄j(i) of Cj = {fθ(xi) : (xi, j(i)) ∈ Dt, j(i) = j}.
To estimate Φj(i) in an unsupervised fashion, we employ the information maximization (IM) loss
(Shi & Sha, 2012) to ensure that target outputs are individually certain and globally diverse. The IM
loss is a popular training objective for SFUDA and test-time adaptation frameworks (Liang et al.,
2020; 2024). In practice, when the target domain data is revealed, we initialize Φj(i) with ID and
φj(i) with 1. We then minimize the following LCEM and LMEM that together constitute the LIM loss:

LIM = LCEM + LMEM (21)

LCEM = −E(xi,ji)∈Dt


|Y|∑
k=1

δk

(
ht(xi, ji)

T

)
log δk

(
ht(xi, ji)

T

)
LMEM =

|Y|∑
k=1

p̂k log p̂k, p̂k = E(xi,ji)∈Dt

{
δk

(
ht(xi, ji)

T

)}
where δk is the k-th element of the softmax output, LCEM is conditional entropy minimization, LMEM
is marginal entropy maximization and factor T is temperature scaling. IM balance is more effective
than conditional entropy minimization because minimizing only the conditional entropy may lead to
model collapse with all test data allocated to one class (Grandvalet & Bengio, 2004). We additionally
employed a temperature scaling factor T to adjust the model’s prediction confidence on the target
data, a common technique for calibrating probabilistic models (Li et al., 2023; Guo et al., 2017).
Temperature scaling uses a single scalar parameter T > 0 for all classes, and it increases the softmax
output entropy when T > 1 and decreases it when 0 < T < 1.
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4 EXPERIMENTS

We conducted simulations and experiments with public EEG motor imagery and sleep stage datasets
to evaluate our proposed framework empirically.

Multi-source domain training Following Kobler et al. (2022a), we parameterize hs = gψ ◦mϕ ◦fθ
as a neural network and fit the source decoder hs in an end-to-end fashion (Figure 1b), denoted as
TSMNet. We used the standard-cross entropy loss as training objective, and optimized the param-
eters with the Riemannian ADAM optimizer (Bécigneul & Ganea, 2018). We split the source do-
mains’ data into training and validation sets (80% / 20% splits, randomized, stratified by domain and
label) and iterated through the training set for 100 epochs. We stick to the TSMNet hyper-parameters
as provided in the public reference implementation (for implementation details see Appendix A.7.1).

SPDIM Source-free domain adaptation SPDIM keeps the fitted source feature extractor fθ and
linear classifier gψ fixed and estimates a domain-specific bias parameter for latent alignment mϕ

(Figure 1c). Depending on the choice of the bias parameter, we distinguish between SPDIM(bias),
defined in (19), and SPDIM(geodesic), defined in (20). We use the entire target domain data to
estimate gradients for the IM loss (21) and Riemannian ADAM to optimize the bias parameter for
50 epochs.

SFUDA Baseline Methods. We consider several multi-source (-target) SFUDA baseline methods,
including Recenter (RCT) (Zanini et al., 2017), Euclidean alignment (EA) (He & Wu, 2019), and
spatio-temporal Monge alignment (STMA) (Gnassounou et al., 2024). These alignment methods
are model-agnostic techniques that are applied to the EEG data before a classifier is fitted. Among
the end-to-end learning SFUDA methods, we consider SPDDSBN (Kobler et al., 2022a) which
was introduced together with the TSMNet architecture. Lastly, we compare SPDIM to classic IM
approaches (Shi & Sha, 2012) that adapt parameters in fθ or gψ .

No DA Baseline Methods. Methods in this category, denoted w/o SFUDA, treat the problem as a
standard supervised learning problem; they do not utilize the domain labels Js ∪ Jt during training
and testing. In models that perform TSM, all data are projected to the tangent space at the Fréchet
mean of the entire source dataset Ds.
We used publicly available Python code for baseline methods and implemented custom methods
using the packages torch (Paszke et al., 2019), scikit-learn (Pedregosa et al., 2011), braindecode
(Schirrmeister et al., 2017), geoopt (Kochurov et al., 2020) and pyRiemann Barachant et al. (2023).
We conducted the experiments on standard computation PCs with 32-core CPUs, 128 GB of RAM,
and a single GPU.

4.1 SIMULATIONS

To examine the effectiveness of SPDIM, we simulated binary classification problems under our gen-
erative model (implementation details in Appendix A.6). We used balanced accuracy as evaluation
metric and examined the performance of SPDIM(bias) and SPDIM(geodesic) against RCT (Zanini
et al., 2017) over different label ratios. Figure 2 summarizes the results for different class separability
levels. Supplementary Figures display the methods’ performance over parameters |Js| (Figure A1),
Mj (Figure A2), P (Figure A3), and D (Figure A4).

The simulation results empirically confirm Proposition 2. That is, RCT can compensate the condi-
tional shifts introduced by Aj if there are no labels shifts (i.e., label ratio = 1.0). They also demon-
strate that as the label shifts become more severe (i.e., lower label ratio), the average performance
of SPDIM decreases while the variability increases. Still, SPDIM outperforms RCT across almost
all considered parameter configurations.

4.2 EEG MOTOR IMAGERY DATA

Almost all public motor imagery datasets are generated in a highly controlled lab environment and
desgined to be balanced. However, in realistic brain-computer interface application settings, the
variability of human behavior and environmental factors likely cause label shifts across days and
subjects. To bridge the gap between controlled research settings and real-world scenarios, we artifi-
cially introduced label shifts in the target domains.
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Figure 2: Simulation results. Balanced accuracy scores (higher is better) across target domain label
ratios (i.e., majority to minority label ratio) on the x-axis and class separability p(s|y) across panels.
Source domain labels were balanced.

We considered 4 public motor imagery datasets: BNCI2014001 (Tangermann et al., 2012) (9 sub-
jects/2 sessions/4 classes/22 channels), BNCI2015001 (Faller et al., 2012) (12/2-3/2/13), Zhou2016
(Zhou et al., 2016) (4/3/3/14), and BNCI2014004 (Leeb et al., 2007) (9/5/2/3). We used MOABB
(Jayaram & Barachant, 2018; Chevallier et al., 2024) to pre-process the continuous time-series data
and extract labeled epochs. Pre-processing included resampling EEG signals to 250 or 256 Hz, ap-
plying temporal filters to capture frequencies between 4 and 36 Hz, and extracting 3-second epochs
linked to specific class labels. Following Kobler et al. (2022a), we use TSMNet as model archi-
tecture and treat sessions as domains, and use a leave-one-group-out cross-validation (CV) scheme
to fit and evaluate the methods. To evaluate cross-session transfer, we fitted and evaluated models
independently per subject and treated the session as the grouping variable. To evaluate cross-subject
transfer, we treated the subject as the grouping variable. After running pilot experiments with the
BNCI2014001 dataset, we set the temperature scaling factor in (21) to T = 2 for binary classifica-
tion problems and T = 0.8 otherwise. Early stopping were fit with a single stratified (domain and
labels) inner train/validation split. We used balanced accuracy as the metric to examine the perfor-
mance of each method at label ratios of 1.0 and 0.2 for the source and target domains, respectively.

Grand average results across all 4 datasets are summarized in Figure 3, and grouped by the transfer
learning scenario (cross-session, cross-subject). To attenuate large variability across subjects, we
report scores relative to the score obtained with SPDDSBN w/o label shifts (i.e., 1.0 label ratio).
Detailed results per dataset are listed in Table A4 (w/ label shifts) and Table A4 (w/o label shifts)
along with the ones of relevant baseline methods. Although no method can perfectly compensate the
artificially introduced label shifts, SPDIM(bias) is consistently at the top (cross-subject) or among
the top (cross-session) performing methods. Significance testing (n=34 subjects), summarized in Ta-
ble A4, revealed that the performance of SPDIM(bias) is significantly higher than w/o, SPDDSBN,
IM(classifier), and IM(all) in the cross-subject setting as well as SPDDSBN, IM(classifier), and
IM(all) in the cross-session scenario.
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Figure 3: Motor-imagery results (0.2 label ratio). Average of test-set scores (balanced accuracy;
higher is better; error bars indicate 95% confidence interval) relative to TSMNet+SPDSBN (Kobler
et al., 2022a) w/o label shifts. For extended results per dataset, see Tables A4 and A5.
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4.3 EEG-BASED SLEEP STAGING

The aim of this experiment is to demonstrate the effectiveness of our method on datasets with inher-
ent label shifts. Due to the inherent variability of sleep, most sleep stage datasets exhibit label shifts
across subjects (Eldele et al., 2023). Sleep stage classification plays a key role in assessing sleep
quality and diagnosing sleep disorders (Perez-Pozuelo et al., 2020). Yet, automated frameworks lack
accuracy and suffer from poor generalization across domains, resulting in accuracy drops compared
to expert neurologists.

We considered 4 public sleep stage datasets: CAP (Terzano et al., 2001; Goldberger et al., 2000),
Dreem (Guillot et al., 2020), HMC (Alvarez-Estevez & Rijsman, 2021a;b), and ISRUC (Khalighi
et al., 2016). A detailed description is provided in Supplementary Table A1. We consider sleep
stages following the AASM (Berry et al., 2012) standard (W, N1, N2, N3, REM). If data was orig-
inally scored following the K&M (Wolpert, 1969) standard (W, S1, S2, S3, S4, REM), we merged
stages S3 and S4 into a single stage N3. EEG data pre-processing followed (Guillot & Thorey,
2021) and was implemented with MNE-python (Gramfort et al., 2014). First, all EEG channels
were retained, and an IIR band-pass filter ranging from 0.2 to 30 Hz was applied. The signals were
then resampled to 100 Hz, and non-overlapping 30-second epochs were extracted together with the
associated labels. To attenuate the effects of gross outliers, each recording was scaled to have unit
inter-quartile range and a median of zero, and values exceeding 20 times the inter-quartile range
were clipped Perslev et al. (2021). Lastly, subjects with corrupted data (e.g., mismatched labels and
epochs) were excluded, resulting in a total of 426 remaining subjects.

Since label shifts occur in the source domains of sleep stage data, the considered models are trained
with a balanced mini-batch sampler, which is a popular method to compensate for label shifts during
training in deep learning (Cao et al., 2019). The balanced sampler over-sampled minority classes to
ensure that the label distribution per domain is balanced within each mini-batch.

To evaluate the methods, we employed a 10-fold grouped cross-validation scheme, ensuring that
each group (i.e., subject) appears either in the training set (i.e., source domains) or the test set
(i.e., target domains). As before, we set the temperature scaling factor T = 0.8 and used stratified
(labels and domains) inner train/validation splits for early stopping. In addition to the TSMNet
architecture, we included four baseline deep learning architectures specifically proposed for sleep
staging: Chambon (Chambon et al., 2018), Usleep (Perslev et al., 2021), DeepSleepNet (Supratak
et al., 2017), and AttnNet (Eldele et al., 2023) (implementation details in Appendix A.7.2).

Table 1 summarizes the results across datasets along with the grand average results of published
baseline methods. Extended results for all considered baseline methods are listed in Supplemen-
tary Table A2. TSMNet+SPDIM(bias) significantly outperforms all other methods for the patient
and healthy (except TSMNet+STMA) subject groups. Overall, the margin to TSMNet+SPDDSBN
was approx. 5% in the patient group, which indicates that SPDIM has great potential for clinical
applications.

Ablation Study Table 2 summarizes grand average test scores relative to SPDIM(bias). We highlight
four observations. First, all considered ablations lead to a significant performance drop of at least
3% compared to SPDIM(bias), suggesting the combined importance of IM paired with the manifold-
constrained bias parameter. Second, in the presence of label shifts, fitting m̃ϕ per domain (i.e., TSM-
Net+SPDSBN) hurts generalization compared to global m̃ϕ (i.e., TSMNet+w/o). Third, fine-tuning
the classifier bias parameter yields approximately the same performance as SPDIM(geodesic), ex-
tending the finding of (Mellot et al., 2024) from regression to classification scenarios. Fourth, IM
methods obtained the top 3 scores, but two variants failed to improve upon the global method, which
underscores the importance of regularization (i.e., via selecting the right parameter) to prevent the
IM loss from overfitting.

5 DISCUSSION

We proposed a geometric deep learning framework, denoted SPDIM, to address SFUDA prob-
lems with conditional and label shifts and demonstrated its utility in highly relevant EEG-based
neurotechnology application scenarios. We first introduced a realistic generative model, and pro-
vided theoretical analyses showing that prior Riemannian statistical alignment methods that align
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Dataset: CAP Dreem HMC ISRUC Overall

Group: patient healthy patient patient healthy patient healthy patient
Model SFUDA (n=82) (n=22) (n=50) (n=154) (n=10) (n=108) (n=32) (n=394)

Chambon w/o • 64.7 • 65.2 • 53.4 • 64.0 72.7 • 68.9 • 67.5 • 64.2
(10.7) (9.1) (16.2) (9.6) (3.9) (8.2) (8.6) (11.5)

EA • 63.8 • 64.7 • 54.5 • 63.4 74.9 70.7 • 67.9 • 64.3
(11.3) (10.3) (14.4) (10.7) (4.8) (9.3) (10.0) (12.0)

STMA • 65.2 • 67.1 • 51.3 • 63.8 74.8 70.8 • 69.5 • 64.4
(10.0) (7.7) (19.0) (9.1) (4.4) (7.6) (7.7) (12.1)

USleep w/o • 59.1 • 55.9 • 48.4 • 66.6 72.9 • 68.8 • 61.3 • 63.3
(10.3) (8.3) (8.2) (9.3) (6.1) (8.3) (11.0) (11.3)

Deep- w/o • 68.1 • 68.6 68.7 • 64.9 75.8 72.7 70.9 • 68.2
SleepNet (11.3) (9.9) (10.3) (10.3) (4.5) (9.1) (9.1) (10.7)

AttnSleep w/o 68.9 • 65.4 • 61.7 67.7 75.4 73.1 • 68.5 68.7
(10.3) (10.7) (14.2) (10.0) (4.0) (8.6) (10.2) (10.9)

TSMNet w/o • 68.0 • 65.9 66.7 • 63.6 • 73.4 • 68.7 • 68.3 • 66.3
(11.2) (9.6) (12.4) (11.3) (3.9) (9.3) (8.9) (11.1)

SPDDSBN • 68.2 • 68.9 • 64.2 • 62.2 • 72.8 • 66.6 • 70.1 • 64.9
(8.8) (5.8) (8.5) (6.0) (2.8) (6.4) (5.3) (7.5)

SPDIM(bias) 71.0 72.1 68.1 68.6 76.7 71.6 73.5 69.9
(proposed) (9.6) (8.0) (9.8) (8.5) (3.4) (6.9) (7.2) (8.6)

Table 1: Sleep-staging results per dataset. Average of test-set scores (balanced accuracy; higher is
better; standard-deviation in brackets). Permutation-paired t-tests were used to identify significant
differences between TSMNet+SPDIM (proposed) and baseline methods (1e4 permutations, 14 tests,
t-max correction). Significant differences are highlighted (• p ≤ 0.05, • p ≤ 0.01, • p ≤ 0.001).
Extended results are provided in Table A2.

Alignment fit Fréchet mean LIM ΘIM mean (std) t-val (p-val)

mϕ (19) per domain j ✓ Φj - -
m#

ϕ (20) per domain j ✓ φj -3.0 (3.6) -17.4 (0.0001)
m̃ϕ (14) per domain j ✗ - -4.8 (4.5) -22.1 (0.0001)
m̃ϕ (14) global (i.e., Ds) ✗ - -3.7 (8.5) -9.0 (0.0001)
m̃ϕ (14) per domain j ✓ bias in ψ -3.0 (3.8) -16.1 (0.0001)
m̃ϕ (14) per domain j ✓ ψ -4.8 (5.4) -18.5 (0.0001)
m̃ϕ (14) per domain j ✓ θ ∪ ψ -27.1 (13.5) -41.5 (0.0001)

Table 2: Sleep-staging ablation results. Balanced accuracy scores (higher is better) relative to the
proposed method. Averages and standard deviation summarize the individual (n=426 subjects) test-
set scores. Student’s t values and adjusted p values indicate the effect strength (permutation-paired
t-tests, 1e4 permutations, 6 tests, t-max correction). Table A3 lists results per dataset and group.

the Fréchet mean can compensate for the conditional distribution shifts introduced in our gen-
erative model, but hurt generalization under additional label shifts. As a remedy, we proposed
SPDIM to learn a domain-specific SPD manifold-constrained bias parameter to compensate for over-
corrections introduced via aligning the Fréchet means by employing the information maximization
principle. In simulations and experiments with real EEG data, SPDIM consistently achieved the
highest scores among the considered baseline methods.

A limitation of our framework is that the IM loss, due to large noise and outliers, can sometimes
estimate an inappropriate bias parameter, leading to the data being shifted in the wrong direction.
While it generally improves average performance, it also increases variability. We expect future
work to explore a more robust way to estimate the bias parameter.
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A APPENDIX

A.1 PROOF OF PROPOSITION 1

Proposition 1 stats that given the generative model specified in section 3.1 and a set of examples
Ej = {(Ei, yi, j)|Ei ∈ S+

P , yi ∈ Y}i≤Mj
of domain j ∈ J , we have that the Fréchet mean of Ej ,

defined in (2), converges with Mj → ∞ to the identity matrix IP for all domains j ∈ J .

Since (S+
P , g

AIRM
· ) forms a Cartan-Hadamard manifold with global non-positive sectional curvature,

a unique Fréchet mean exists (Bhatia, 2013). At the global minimum, we have:
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where we used the derivative of the Riemannian distance (Moakher, 2005; Pennec, 2018) in (22).
For E = IP , (24) simplifies to:

Mj∑
i=1

log(Ei)
!
= 0 =⇒

Mj→∞
E{log(Ei)}

!
= 0 (25)

E{Bỹi + εi} = BE{ỹi}+ E{εi}
!
= 0 (26)

which holds true because by definition ỹi and εi are zero-mean. Therefore, Ej = IP is the global
minimizer of νE(Ej) for all domains j ∈ J . □

A.2 PROOF OF PROPOSITION 2

Proposition 2 states that for the generative model, specified in section 3.1, RCT+TSM compensates
conditional distribution shifts introduced by the invertible linear mapAj , defined in (8), and recovers
domain-invariant representations if there are no target shifts (i.e., pj(y=y) = p(y=y) ∀y ∈ Y, ∀j ∈
Js ∪ Jt).
Due to the congruence invariance of the Fréchet mean (Bhatia, 2013) we have

C̄j = arg min
G∈S+

P

νG(Cj) = AjĒjA
T
j (27)

where Ēj is the Fréchet mean of Ej . Utilizing proposition 1 (i.e., Ēj = IP ∀ j) and plugging in (9)
for Aj , (27) simplifies to:

C̄j = AjIPA
T
j = Q exp(Pj) exp(Pj)Q

T = Q exp(Pj)
2QT (28)

⇒ C̄
− 1

2
j = Q exp(Pj)

−1QT (29)

The RCT+TSM transform, as defined in (14), recenters the data Ci ∈ Cj for each domain j. Ex-
cluding the invertible mapping upper, RCT+TSM computes:
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where we used (13) for Ci, the fact that Q is an orthogonal matrix and log(ACA−1) =
A log(C)A−1 for non-singular A and C ∈ S+

P . Plugging (11) for log(Ei), we obtain a direct
relationship to the label yi

log
(
C̄

− 1
2

j CiC̄
− 1

2
j

)
= Qupper−1 (B (1yi − πj) + εi)Q

T (34)

If there are no target shifts the class priors are constant pj(y=y) = p(y=y) ∀y ∈ Y for all domains
j ∈ Js ∪ Jt, and consequently πj = π. Then (34) simplifies to:

log
(
C̄

− 1
2

j CiC̄
− 1

2
j

)
= Qupper−1 (B (1yi − π) + εi)Q

T (35)

which contains only domain-invariant terms on the right hand side. Thus, RCT+TSM compensates
the conditional shifts introduced by Aj . □

A.3 SLEEP STAGE DATASET DETAILS

Dataset Recordings Subjects Channel numbers Patients Scorer Scoring rule

ISRUC-SG1 100 100 6 ✓ Scorer1 AASM
ISRUC-SG2 16 8 6 ✓ Scorer1 AASM
ISRUC-SG3 10 10 6 ✗ Scorer1 AASM
Dreem-SG1 22 22 12 ✗ Scorer1 AASM
Dreem-SG2 50 50 8 ✓ Scorer1 AASM

HMC 154 154 4 ✓ - AASM
CAP-SG1 36 36 13 ✓ - K&M
CAP-SG2 34 34 9 ✓ - K&M
CAP-SG3 22 22 5 ✓ - K&M

Table A1: Sleep stage dataset details. Overview of datasets and their subgroups (SG), including
the number of recordings, subjects, channel numbers, patient status, scorer (the chosen scorer if
there are multiple scorers), and scoring rule.
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A.4 EEG-BASED SLEEP STAGING RESULTS

Dataset: CAP Dreem HMC ISRUC Overall

Group: patient healthy patient patient healthy patient healthy patient
Model SFUDA (n=82) (n=22) (n=50) (n=154) (n=10) (n=108) (n=32) (n=394)

Chambon w/o mean 64.7 65.2 53.4 64.0 72.7 68.9 67.5 64.2
std 10.7 9.1 16.2 9.6 3.9 8.2 8.6 11.5

t-val • -6.8 • -5.3 • -6.1 • -7.0 -2.6 • -4.6 • -5.8 • -11.3

EA mean 63.8 64.7 54.5 63.4 74.9 70.7 67.9 64.3
std 11.3 10.3 14.4 10.7 4.8 9.3 10.0 12.0

t-val • -7.5 • -3.8 • -6.1 • -7.5 -1.2 -1.3 • -3.8 • -10.7

STMA mean 65.2 67.1 51.3 63.8 74.8 70.8 69.5 64.4
std 10.0 7.7 19.0 9.1 4.4 7.6 7.7 12.1

t-val • -8.5 • -5.0 • -6.0 • -8.6 -1.3 -1.4 • -4.7 • -10.4

USleep w/o mean 59.1 55.9 48.4 66.6 72.9 68.8 61.3 63.3
std 10.3 8.3 8.2 9.3 6.1 8.3 11.0 11.3

t-val • -12.1 • -8.0 • -13.3 • -2.8 -2.2 • -4.3 • -6.8 • -12.1

DeepSleepNet w/o mean 68.1 68.6 68.7 64.9 75.8 72.7 70.9 68.2
std 11.3 9.9 10.3 10.3 4.5 9.1 9.1 10.7

t-val • -3.3 • -3.1 0.5 • -5.1 -0.5 1.7 -2.8 • -3.9

EA mean 66.4 66.3 62.3 67.1 74.1 73.2 68.8 68.0
std 11.7 10.3 11.4 10.2 4.6 9.9 9.6 11.1

t-val • -5.1 • -3.1 • -3.6 -2.3 • -4.1 2.1 • -3.6 • -4.1

STMA mean 67.7 70.5 64.2 64.8 74.5 72.9 71.8 67.6
std 10.1 8.5 11.4 10.2 4.0 7.8 7.5 10.3

t-val • -4.7 -1.4 -2.7 • -5.5 -1.3 2.5 -1.9 • -5.8

AttnSleep w/o mean 68.9 65.4 61.7 67.7 75.4 73.1 68.5 68.7
std 10.3 10.7 14.2 10.0 4.0 8.6 10.2 10.9

t-val -2.6 • -4.4 • -3.1 -1.4 -1.3 2.2 • -4.3 -2.6

EA mean 68.6 65.5 59.6 65.7 75.4 74.2 68.6 67.9
std 11.7 11.1 15.3 11.1 4.5 7.1 10.5 11.9

t-val • -2.9 • -3.4 • -3.9 • -3.9 -1.0 • 4.5 • -3.4 • -4.0

STMA mean 69.9 69.0 61.8 66.8 75.7 74.6 71.1 68.9
std 10.2 8.8 14.8 9.4 3.9 7.0 8.2 10.7

t-val -1.7 -2.9 • -3.0 • -3.3 -0.8 • 5.2 -2.9 -2.2

TSMNet w/o mean 68.0 65.9 66.7 63.6 73.4 68.7 68.3 66.3
std 11.2 9.6 12.4 11.3 3.9 9.3 8.9 11.1

t-val • -3.7 • -6.5 -1.0 • -6.8 • -3.4 • -3.8 • -7.0 • -8.2

EA mean 67.5 66.7 67.0 62.1 73.3 68.1 68.7 65.5
std 9.9 11.2 11.1 12.0 2.2 9.7 9.8 11.2

t-val • -4.3 • -3.4 -0.8 • -8.2 -3.3 • -4.3 • -4.2 • -9.5

STMA mean 69.9 70.7 68.2 65.0 73.4 69.2 71.5 67.6
std 9.6 7.7 10.6 9.0 5.1 7.9 7.1 9.2

t-val -1.8 -1.5 0.1 • -7.3 -1.9 • -4.8 -2.4 • -7.3

SPDDSBN mean 68.2 68.9 64.2 62.2 72.8 66.6 70.1 64.9
std 8.8 5.8 8.5 6.0 2.8 6.4 5.3 7.5

t-val • -6.3 • -4.8 • -8.6 • -15.3 • -3.8 • -13.4 • -6.2 • -21.4

SPDIM(bias) mean 71.0 72.1 68.1 68.6 76.7 71.6 73.5 69.9
std 9.6 8.0 9.8 8.5 3.4 6.9 7.2 8.6

t-val - - - - - - - -

Table A2: Sleep-staging results per dataset. Summary statistics of the test-set scores (balanced
accuracy; higher is better) across public sleep staging datasets. Parameters that were adapted to the
test-data with the IM loss are indicated in brackets. Permutation-paired t-tests were used to identify
significant differences between our proposed (i.e., TSMNet+SPDIM(bias)) and baseline methods
(1e4 permutations, 10 tests, t-max correction). Student’s t values summarize the effect strength.
Significant differences are highlighted (• p ≤ 0.05, • p ≤ 0.01, • p ≤ 0.001).
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Dataset: CAP Dreem HMC ISRUC Overall

Alignment / Group: patient healthy patient patient healthy patient healthy patient
Mean LIM / ΘIM (n=82) (n=22) (n=50) (n=154) (n=10) (n=108) (n=32) (n=394)

mϕ (19) / ✓ / Φj mean 71.0 72.1 68.1 68.6 76.7 71.6 73.5 69.9
per domain j std 9.6 8.0 9.8 8.5 3.4 6.9 7.2 8.6

t-val - - - - - - - -

m#
ϕ (20) ✓ / φj mean 68.6 70.0 66.8 64.7 74.6 68.3 71.4 66.8

per domain j std 9.2 6.6 9.0 7.1 3.2 6.4 6.1 7.8
t-val • -6.4 • -3.9 • -3.7 • -12.2 • -3.9 • -10.0 • -5.3 • -16.8

m̃ϕ (14) ✗ / - mean 68.2 68.9 64.2 62.2 72.8 66.6 70.1 64.9
per domain j std 8.8 5.8 8.5 6.0 2.8 6.4 5.3 7.5

t-val • -6.3 • -4.8 • -8.6 • -15.3 • -3.8 • -13.4 • -6.2 • -21.4

m̃ϕ (14) ✗ / - mean 68.0 65.9 66.7 63.6 73.4 68.7 68.3 66.3
global std 11.2 9.6 12.4 11.3 3.9 9.3 8.9 11.1

t-val • -3.7 • -6.5 -1.0 • -6.8 • -3.4 • -3.8 • -7.0 • -8.2

m̃ϕ (14) ✓ / bias in ψ mean 69.8 70.3 65.7 64.1 74.7 68.9 71.7 66.8
per domain j std 9.5 6.8 9.2 6.9 2.7 6.8 6.1 8.1

t-val • -3.3 • -4.0 • -7.4 • -13.0 • -3.9 • -8.1 • -5.4 • -15.6

m̃ϕ (14) ✓ / ψ mean 67.4 68.8 63.1 62.3 73.2 67.7 70.2 64.9
per domain j std 10.5 8.5 10.9 9.8 5.0 8.8 7.7 10.1

t-val • -5.9 • -3.1 • -6.1 • -14.5 • -3.8 • -8.6 • -4.3 • -18.0

m̃ϕ (14) ✓ / θ ∪ ψ mean 54.8 46.9 36.2 35.8 53.6 45.9 49.0 42.5
per domain j std 14.8 13.8 11.4 11.2 13.4 12.5 13.8 14.5

t-val • -13.3 • -9.6 • -17.1 • -32.8 • -6.4 • -23.0 • -11.6 • -39.9

Table A3: Sleep-staging ablation study results per dataset. Summary statistics (mean, std, t-val)
of the test-set scores (balanced accuracy; higher is better) across public sleep staging datasets. All
statistics are computed at the subject level. Permutation-paired t-tests were used to identify signifi-
cant differences (1e4 permutations, 6 tests, t-max correction). Significant differences are highlighted
(• p ≤ 0.05, • p ≤ 0.01, • p ≤ 0.001). For a summary across datasets and groups see Table 3 in the
main manuscript.
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A.5 EEG-BASED MOTOR IMAGERY BCI

label ratio = 0.2

Evaluation : session subject
Dataset : 2014001 2014004 2015001 Zhou2016 Overall 2014001 2014004 2015001 Zhou2016 Overall

Model SFUDA (n=9) (n=9) (n=12) (n=4) (n=34) (n=9) (n=9) (n=12) (n=4) (n=34)

EEGNet w/o mean 41.1 74.5 72.4 71.7 64.6 42.6 69.0 61.4 72.6 59.7
v4 std 17.9 14.6 16.3 5.8 20.6 16.6 10.7 8.3 3.7 15.6

t-val • -4.8 0.2 • -4.1 -4.4 • -5.0 • -4.3 -1.7 -2.3 -3.4 • -4.2

EA mean 53.2 75.3 76.0 77.2 69.9 48.6 72.0 70.7 70.6 65.2
std 21.8 15.4 18.3 2.9 19.7 17.2 11.1 14.7 6.8 16.7
t-val • -5.2 0.8 -2.7 -8.9 • -4.4 -1.9 -0.1 -0.5 -3.2 -1.5

STMA mean 28.9 73.8 55.5 67.1 54.7 50.0 71.7 68.5 73.1 65.0
std 5.5 14.4 9.5 14.5 20.2 16.1 12.4 14.3 2.2 16.0
t-val • -7.3 -0.2 • -8.3 -2.4 • -6.8 -1.6 -0.2 -0.8 -9.1 -1.5

EEG- w/o mean 48.6 75.0 71.6 73.9 66.7 41.7 69.4 60.6 74.6 59.6
Conformer std 17.0 11.4 18.5 3.8 18.4 15.2 10.9 11.7 6.0 16.6

t-val • -6.1 0.5 • -4.0 -6.2 • -5.5 • -4.1 -1.7 -2.4 -2.8 • -4.1

ATCNet w/o mean 52.2 74.7 72.8 80.3 68.7 41.6 68.4 59.8 67.5 58.2
std 18.7 13.8 16.3 4.3 18.1 16.3 10.9 8.7 8.7 15.5
t-val -4.0 0.3 • -3.8 -2.3 • -4.5 • -4.8 -3.1 -2.9 -3.9 • -5.3

EEGIn w/o mean 47.7 71.5 72.6 75.1 66.0 39.4 67.0 59.2 63.1 56.5
ceptionMI std 17.0 12.1 15.8 9.4 18.0 13.8 9.5 9.5 6.4 14.8

t-val • -6.1 -1.2 • -4.9 -1.9 • -6.1 -3.5 -2.3 -2.5 -6.9 • -4.9

TSMNet w/o mean 68.6 74.8 82.7 81.0 76.7 41.1 69.5 61.1 77.8 60.0
std 12.9 11.1 13.4 2.5 12.8 12.7 9.6 10.9 2.6 16.2
t-val -0.5 0.4 -0.6 -1.8 -0.9 • -4.3 -1.5 -2.0 -1.3 • -3.5

EA mean 67.2 76.0 83.6 81.9 77.0 50.0 73.0 68.2 73.3 65.3
std 13.7 12.0 9.5 5.2 12.6 16.9 10.6 13.7 4.3 15.9
t-val -1.2 2.1 -0.1 -0.9 -0.6 -1.4 0.5 -0.9 -2.4 -1.5

STMA mean 69.9 74.7 83.0 83.3 77.3 50.2 71.9 66.9 76.8 65.0
std 16.0 13.1 7.7 6.3 12.7 17.5 11.5 13.0 5.5 16.0
t-val 0.1 0.4 -0.3 -0.4 -0.2 -1.4 -0.2 -1.2 -1.2 -1.7

IM mean 69.9 74.2 83.2 78.3 76.7 52.9 70.6 73.0 75.4 67.3
(classifier std 17.5 12.5 10.1 3.0 13.3 15.0 9.9 15.1 3.8 15.3
bias) t-val 0.2 -0.0 -0.6 -11.2 -1.7 0.4 -1.0 -0.7 -1.7 -1.7

IM mean 66.6 70.9 78.2 77.0 73.0 50.5 67.0 69.7 69.0 63.8
(classifier) std 17.2 9.5 6.6 1.7 11.5 14.9 9.1 12.4 7.5 14.1

t-val -3.1 -3.0 • -3.8 -17.2 • -6.8 -1.1 • -4.1 • -3.9 -2.9 • -5.0

IM mean 37.9 50.9 70.8 55.4 55.0 36.0 50.4 63.2 56.0 51.8
(all) std 10.9 1.7 7.8 6.4 15.1 7.5 1.7 8.3 4.1 12.5

t-val • -6.6 • -6.1 • -4.0 -7.5 • -9.5 • -4.0 • -5.2 -2.5 -10.3 • -7.3

SPDDSBN mean 69.3 73.5 81.2 80.6 76.0 52.1 69.6 71.5 76.2 66.4
std 16.2 11.0 8.6 2.4 12.0 13.9 9.8 13.5 3.1 14.5
t-val -0.3 -0.9 -2.4 -7.0 -2.8 -0.3 -1.9 -2.6 -1.9 • -3.2

SPDIM mean 70.0 74.7 83.7 82.6 77.6 52.3 70.9 73.4 78.4 67.7
(geodesic) std 16.5 11.9 10.3 3.5 13.1 15.1 10.9 15.2 3.6 16.0

t-val 0.4 0.8 0.1 -1.4 0.1 -0.3 -1.4 -0.3 -1.1 -1.6

SPDIM mean 69.7 74.3 83.6 84.1 77.5 52.6 72.2 73.6 80.4 68.5
(bias) std 18.4 12.2 10.6 2.2 13.9 16.5 12.0 14.8 2.4 16.6

t-val - - - - - - - - - -

Table A4: Motor imagery BCI results for a label ratio of 0.2. Average and standard deviation
of test-set scores (balanced accuracy; higher is better) across public motor imagery BCI datasets.
For all IM and SPDIM variants, the parameters that were tuned to the test-data with the IM loss
are indicated in brackets. Permutation-paired t-tests were used to identify significant differences
between the proposed (i.e., TSMNet+SPDIM(bias)) and baseline methods (1e4 permutations, 14
tests, t-max correction). Student’s t values summarize the effect strength. Significant differences are
highlighted (• p ≤ 0.05, • p ≤ 0.01, • p ≤ 0.001).
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label ratio = 1.0

Evaluation : session subject
Dataset : 2014001 2014004 2015001 Zhou2016 Overall 2014001 2014004 2015001 Zhou2016 Overall

Model SFUDA (n=9) (n=9) (n=12) (n=4) (n=34) (n=9) (n=9) (n=12) (n=4) (n=34)

EEGNet w/o mean 41.0 73.1 73.5 70.6 64.4 43.6 69.6 61.3 75.1 60.4
v4 std 16.6 15.0 15.8 6.5 20.3 16.7 8.1 8.8 3.2 15.4

t-val • -6.5 • -3.6 • -4.7 -3.8 • -6.3 • -5.0 -2.1 -2.4 -2.8 • -4.4

EA mean 54.5 76.3 75.7 79.6 70.7 49.9 74.0 72.5 73.9 67.1
std 19.9 15.5 17.1 2.9 18.7 16.9 10.4 14.2 3.7 16.6
t-val • -6.3 -1.0 • -3.7 -4.9 • -5.5 -3.4 1.5 -0.3 -4.8 -1.2

STMA mean 30.1 74.4 55.9 68.3 55.4 49.7 72.6 69.9 75.0 65.9
std 4.7 15.8 8.0 16.8 20.1 16.9 10.6 14.6 2.4 16.4
t-val • -9.4 -1.8 • -9.9 -1.8 • -7.6 • -3.7 -0.8 -0.7 -4.9 -1.6

EEG- w/o mean 46.9 73.8 73.1 71.1 66.1 42.6 68.8 60.1 74.5 59.5
Conformer std 17.2 12.8 17.2 3.2 18.7 16.7 10.0 10.7 4.4 16.1

t-val • -8.9 • -3.6 • -4.5 -8.5 • -7.2 • -5.0 -2.8 -2.6 -4.1 • -4.7

ATCNet w/o mean 51.6 74.3 73.2 77.9 68.3 42.7 68.5 60.2 69.8 58.9
std 18.4 13.8 15.6 4.3 17.8 16.4 8.9 8.4 6.3 14.9
t-val • -5.6 -3.0 • -4.7 -3.0 • -6.3 • -5.7 • -3.6 -2.8 -4.6 • -5.5

EEGInc- w/o mean 49.1 71.7 73.1 72.3 66.3 39.7 67.3 59.5 67.6 57.3
eptionMI std 17.9 12.6 15.7 8.5 17.7 12.7 8.1 9.2 5.4 14.6

t-val • -7.3 • -3.8 • -5.6 -2.6 • -7.7 • -5.1 -2.8 -2.5 -5.2 • -5.2

TSMNet w/o mean 69.7 75.1 82.2 80.0 76.8 43.0 68.0 61.7 77.5 60.3
std 11.8 11.2 12.9 2.0 12.1 13.3 9.3 11.4 3.7 15.6
t-val -2.6 -2.4 -2.0 -5.3 • -4.6 • -6.0 -3.2 -2.0 -1.7 • -3.9

EA mean 71.1 77.1 85.2 83.8 79.2 51.2 73.1 72.5 75.0 67.3
std 13.3 12.8 9.7 2.6 12.2 15.1 11.1 13.6 1.8 15.6
t-val -2.1 -0.5 -0.0 -1.0 -1.8 -1.6 -0.6 -0.3 -8.1 -1.1

STMA mean 71.9 76.3 84.9 82.8 78.9 52.5 72.5 70.1 77.1 66.9
std 15.2 13.3 9.2 3.0 12.6 16.4 11.3 14.2 1.9 15.6
t-val -1.6 -2.4 -0.3 -4.3 -2.0 -1.7 -1.3 -0.7 -4.0 -1.3

SPDDSBN mean 73.7 77.4 85.3 84.6 80.0 54.6 73.3 74.3 80.9 69.6
std 15.3 12.5 10.4 2.3 12.5 16.1 11.1 14.7 1.5 15.9
t-val - - - - - - - - - -

Table A5: Motor imagery BCI results for balanced data (i.e., label ratio of 1.0). Average and
standard deviation of test-set scores (balanced accuracy; higher is better) across public motor im-
agery BCI datasets. For all IM and SPDIM variants, the parameters that were tuned to the test-data
with the IM loss are indicated in brackets. Permutation-paired t-tests were used to identify signifi-
cant differences between the TSMNet+SPDDSBN and baseline methods (1e4 permutations, 9 tests,
t-max correction). Student’s t values summarize the effect strength. Significant differences are high-
lighted (• p ≤ 0.05, • p ≤ 0.01, • p ≤ 0.001).
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A.6 SIMULATIONS

A.6.1 IMPLEMENTATION DETAILS

We generated covariance matrices Ci ∈ S+
P with P = 2. To do so, we first generated log-space

features siRP (P+1)/2, defined in (11), using the scikit-learn function make classification
with 2 dimensions encoding label information. The data were then normalized to have zero mean
and unit variance. To obtain Ei ∈ S+

P , we applied upper−1 and ExpIP , as defined in (5). At this
level, the data were split across source domains and the target domain, with each domain receiv-
ing 500 observations. Finally, the data were projected to the channel space using domain-specific
mixing matrices Aj , as defined in (9). To introduce label shifts, we artificially varied the label ratio
(LR), defined as the proportion of the minority class to the majority class, in the target domain via
randomly dropping samples.

We used balanced accuracy as evaluation metric and examined the performance of SPDIM(bias) and
SPDIM(geodesic) against RCT (Zanini et al., 2017) over different label ratios. Figure 2 summarizes
the results for different SNR levels. To control the SNR, we varied the class separability parameter of
the make classification function. Additional Figures summarize the methods’ performance
over parameters |Js| (Figure A1), Mj (Figure A2), P (Figure A3), and D (Figure A4).
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Figure A1: Performance over the number of source domains. Same parameters as in Figure 2
(panel 3) but for a different number of source domains |Js| ∈ {1, 3, 5, 7}.
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Figure A2: Performance over the number of samples per domain Mj . Same as Figure 2 (panel
3) but for a different number of samples per domains Mj ∈ {100, 200, 400, 800}.

A.7 IMPLEMENTATION DETAILS

A.7.1 TSMNET

We used the TSMNet as provided in the public reference implementation as follows:

Architecture The feature extractor fθ has two convolutional layers, followed by covariance pooling
(Acharya et al., 2018), BiMap (Huang & Gool, 2017), and ReEig Huang & Gool (2017) layers.
The first convolutional layer operates convolution along the temporal dimension, implementing a
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Figure A3: Performance over the number of dimensions P . Same parameters as in Figure 2
(panel 3) but for a different number of dimensions P ∈ {2, 4, 8}.
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Figure A4: Performance over the number of informative sources. Same as Figure 2 (panel 3)
but for a different number of informative dimensions encoding label information in s, as defined
in (11). The n informative parameter of the scikit-learn function make classification
effectively defines the dimensionality of the label encoding subspace D.

finite impulse response (FIR) filter bank (4 filters) with learnable parameters. The second convo-
lutional layer applies spatio-spectral filters (40 filters) along the spatial and convolutional channel
dimensions. Covariance pooling is then applied along the temporal dimension. A subsequent BiMap
layer projects covariance matrices to a D-dimensional subspace (D-20) via bilinear mapping. Next,
a ReEig layer rectifies all eigenvalues lower than a threshold 10−4. We varied the alignment and
tangent space mapping layer mϕ as specified in the main text. Finally, the classification head gψ is
parametrized as a linear layer with softmax activations.

Parameter estimation We used the cross-entropy loss as the training objective, employing the Py-
Torch framework (Paszke et al., 2019) with extensions for structured matrices (Ionescu et al., 2015)
and manifold-constrained gradients (Absil et al., 2008) to propagate gradients through the layers.
We stick to the hyper-parameters as provided in the public reference implementation. Specifically,
gradients were estimated using fixed-size mini-batches (50 observations; 10 per domain across 5 do-
mains) and updated parameters with the Riemannian ADAM optimizer (Bécigneul & Ganea, 2018)
(10−3 learning rate, 10−4 weight decay, β1 = 0.9, β2 = 0.999). We split the source domains’ data
into training and validation sets (80% / 20% splits, randomized, stratified by domain and label) and
iterated through the training set for 100 epochs using exhaustive minibatch sampling. After training,
the model with minimal loss on the validation data was selected.

A.7.2 SLEEP STAGING MODEL

We considered four baseline deep learning architectures Chambon (Chambon et al., 2018), Usleep
(Perslev et al., 2021), DeepSleepNet (Supratak et al., 2017), and AttnNet (Eldele et al., 2023) here.
Although DeepSleepNet and AttnNet are initial proposed for a single-channel EEG data, there are
many related studies (Guillot et al., 2020; Ji et al., 2023; Ma et al., 2024; Guillot & Thorey, 2021)
use the model proposed for single-channel data as a baseline for multi-channels data. We use the
implementation provided in braindecode (Schirrmeister et al., 2017) for all architectures above, and
stick to all model hyper-parameters as provided in the braindecode. We used similar learning-related
hyper-parameters with an Adam optimizer (e.g., early stopping, no LR scheduler, same batch size,
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similar number of epochs) to TSMNet A.7.1. We split the source domains’ data into training and
validation sets (80% / 20% splits, randomized, stratified by domain and label), and the model with
minimal loss on the validation data was selected after training.
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