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9 ALGORITHM

Algorithm 1: Learnable Intrinsic-Reward Generation Selection algorithm (LIGS)
Input: Environment E

Initial agent policies π0 = (π1
0 , . . . π

N
0 ) with parameters θπ1

0
, . . . θπ1

N
, Initial Generator

switch policy gc0 with parameters θgc0 , Initial Generator action policy g0 with parameters θg0 ,
Randomly initialised fixed neural network φ(·, ·), Neural networks h (fixed) and ĥ for
Augmented RND with parameter θĥ, Buffer B, Number of rollouts Nr, rollout length T , Number
of mini-batch updates Nu, Switch cost c, discount factor γ, learning rate α.
Output: Optimised agent policies π? = (π?,1, . . . , π?,N )
π = (π1, . . . , πN ), g, gc ← π0, g0, gc0
for n = 1, Nr do

// Collect rollouts
for t = 1, T do

Get environment states st from E

Sample at = (a1
t , . . . , a

N
t ) from (π1(st), . . . , π

N (st))

Apply action at to environment E, get rewards rt = (r1
t , . . . , r

N
t ) and next state st+1

Sample qt from gc(st) // Switching control
if qt = 1 then

Sample θct from g(st)
Sample θct+1 from g(st+1)

f it = γθct+1 − θct // Calculate F (θct , θ
c
t+1)

else
θct , f

i
t = 0, 0 // Dummy values

Append (st,at, gt, θ
c
t , rt, f

i
t , st+1) to B

for u = 1, Nu do
Sample data (st,at, gt, θ

c
t , rt, f

i
t , st+1) from B

if gt = 1 then
Set reward to rst = rt + f it

else
Set reward to rst = rt

// Update Augmented RND
LossRND = ||h(st,at)− ĥ(st,at)||2
θĥ ← θĥ − α∇LossRND
// Update Generator
lt = ||h(st,at)− ĥ(st)||2 // Compute L(st,at)
ct = cgt
Compute Lossg using (st, at, gt, ct, rt, f

i
t , lt, st+1) using PPO loss // Section 4.1

Compute Lossgc using (st, at, gt, ct, rt, f
i
t , lt, st+1) using PPO loss // Section 4.1

θg ← θg − α∇Lossg
θgc ← θgc − α∇Lossgc
// Update agent j, for each j ∈ 1, . . . , N

Compute Lossπj using (st,at, r
j,s
t := rjt + f it , st+1) using PPO loss // Section 4.1

θπj ← θπj − α∇Lossπj
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10 ABLATION STUDY: PLUG & PLAY

In order to validate our claim that LIGS freely adopts RL learners, we tested the ability of LIGS to
boost performance in a complex coordination task using independent Proximal policy optimization
algorithm (IPPO) (Schulman et al., 2017) as the base learner. In this experiment, two agents are
spawned at opposite sides of the grid. The red agent is spawned in the left hand side and the blue
agent is spawned in the right hand side of the grid in Fig. 5 (right). The goal of the agents is to arrive
at their corresponding goal states (indicated by the coloured square, where the colour corresponds
to the agent whose goal state it is) at the other side of the grid. Upon arriving at their goal state the
agents receive their reward. However, the task is made difficult by the fact that only one agent can
pass through the corridor at a time. Therefore, in this setup, the only way for the agents to complete
the task is for the agents to successfully coordinate, i.e. one agent is required to allow the other agent
to pass through before attempting to traverse the corridor.

It is known that independent learners in general, struggle to solve such tasks since their ability to
coordinate systems of RL learners is lacking (Yang et al., 2020). This is demonstrated in Fig. 5 (left)
which displays the performance curve of for IPPO which fails to score above 0. As claimed, when
incorporated into the LIGS framework, the agents succeed in coordinating to solve the task. This is
indicated by the performance of IPPO + LIGS (blue).
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Figure 5: Left. Performance curves for IPPO and IPPO with LIGS. Right. Coordination environment.
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11 ABLATION STUDY: THE UTILITY OF SWITCHING CONTROLS

A core component of LIGS is the switching control mechanism. This component enables the
Generator to selectively add intrinsic rewards only at the set of states most relevant for improving
learning outcomes while avoiding adding intrinsic rewards where they are not necessary. To evaluate
the impact of this component of LIGS, we compared the performance of LIGS with a version in
which the switching control was replaced with an equal-chances Bernoulli Random Variable (i.e., at
any given state, the Generator adds or does not add intrinsic rewards with equal probability), and,
a version where it always adds intrinsic rewards. Figure 6 shows the performance of these three
versions of LIGS. We added vanilla MAPPO as a baseline reference. We examined the performance
of the variants of LIGS on the coordination task described in Section 10. As can be seen in the plot,
incorporating learned switching controls in LIGS (labelled "LIGS") leads to superior performance
compared to simply adding intrinsic rewards at random (line labelled "LIGS with Random Switching")
and adding intrinsic rewards everywhere (labelled "LIGS with Always Adding intrinsic Rewards").
In fact, adding intrinsic rewards at random is detrimental to performance as demonstrated by the fact
that the performance of LIGS with Random Switching is worse than that of vanilla MAPPO.
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Figure 6: Ablation of the switching control mechanism. Learned switching controls ("LIGS")
outperform versions where intrinsic rewards are added at random ("LIGS with Random Switching")
and where intrinsic rewards are always added ("LIGS with Always Added intrinsic Rewards").
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12 FLEXIBILITY OF LIGS TO ACCOMMODATE DIFFERENT EXPLORATION
BONUS TERMS L

To demonstrate the robustness of our method to different choices of exploration bonus terms in
Generator’s objective, we conducted an Ablation study on the L-term (c.f. Equation 3) where we
replaced the RND L term with a basic count-based exploration bonus. To exemplify the high degree
of flexibility, we replaced the RND with a simple exploration bonus term L(s) = 1

Count(s)+1 for any
given state s ∈ S where Count(s) refers to a simple count of the number of times the state s has been
visited. We conducted the Ablation study on all three Foraging environments presented in Sec. 6.1.
We note that despite the simplicity of the count-based measure, generally the performance of both
versions of LIGS is comparable and in fact the count-based variant is superior to the RND version for
the joint exploration environment.
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Figure 7: Performance of LIGS compared with the exploration bonus replaced by count-based method
on the three tasks in the Foraging environment.
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13 FURTHER EXPERIMENT DEMONSTRATING LIGS IMPROVED USE OF
EXPLORATION BONUSES.

As we have shown above, LIGS can accommodate a variety of exploration bonuses and perform
well. Here, we did a experiment to further justify using LIGS against simpler exploration bonus
methods. We compared LIGS against and MAPPO with an RND intrinsic reward in the agents’
objectives (MAPPO+RND) and vanilla MAPPO. Fig. 8 shows performance of these two methods
on coordination environment shown in Fig. 5. We note that LIGS markedly outperforms both
MAPPO+RND and vanilla MAPPO. Due to the added benefit of switching controls and intrinsic
reward selection performed by the Generator, we observe that LIGS is able to significantly augment
the benefits of applying RND directly to the agents’ objectives.
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Figure 8: Performance curves for LIGS, MAPPO with RND intrinsic rewards and vanilla MAPPO.
The additional machinery of switching-controls and intrinsic reward selection allows LIGS to make
better use of exploration bonuses. In this case, LIGS demonstrates significant improvement over
MAPPO with RND intrinsic rewards.
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14 FURTHER IMPLEMENTATION DETAILS

Details of the Generator and F (intrinsic-reward)
Object Description

Θ Discrete action set which is size of output of f ,
i.e., Θ is set of integers {1, ...,m}

g Fixed feed forward NN that maps Rd 7→ Rm
[512, ReLU, 512, ReLU, 512, m]

F γθct+1 - θct , γ = 0.95

d=Dimensionality of states; m ∈ N - tunable free parameter.

In all experiments we used the above form of F as follows: a state st is input to the g network and
the network outputs logits pt. we softmax and sample from pt to obtain the action θct . This action is
one-hot encoded. In this way the policy of the Generator chooses the intrinsic-reward.

14.1 HYPERPARAMETER SETTINGS

In the table below we report all hyperparameters used in our experiments. Hyperparameter values in
square brackets indicate ranges of values that were used for performance tuning.

Clip Gradient Norm 1
γE 0.99
λ 0.95

Learning rate 1x10−4

Number of minibatches 4
Number of optimisation epochs 4

Number of parallel actors 16
Optimisation algorithm ADAM

Rollout length 128
Sticky action probability 0.25

Use Generalized Advantage Estimation True

Coefficient of extrinsic reward [1, 5]
Coefficient of intrinsic reward [1, 2, 5, 10, 20, 50]

Generator discount factor 0.99
Probability of terminating option [0.5, 0.75, 0.8, 0.9, 0.95]

L function output size [2, 4, 8, 16, 32, 64, 128, 256]
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15 NOTATION & ASSUMPTIONS

We assume that S is defined on a probability space (Ω,F ,P) and any s ∈ S is measurable with respect
to the Borel σ-algebra associated with Rp. We denote the σ-algebra of events generated by {st}t≥0

by Ft ⊂ F . In what follows, we denote by (V, ‖‖) any finite normed vector space and byH the set
of all measurable functions. Where it will not cause confusion (and with a minor abuse of notation)
for a given function h we use the shorthand h(πi,π−i)(s) = h(s, πi, π−i) ≡ Eπi,π−i [h(s, ai, a−i)].

The results of the paper are built under the following assumptions which are standard within RL and
stochastic approximation methods:

Assumption 1 The stochastic process governing the system dynamics is ergodic, that is the process
is stationary and every invariant random variable of {st}t≥0 is equal to a constant with probability 1.

Assumption 2 The constituent functions of the agents’ objectives R, F and L are in L2.

Assumption 3 For any positive scalar c, there exists a scalar µc such that for all s ∈ S and for any
t ∈ N we have: E [1 + ‖st‖c|s0 = s] ≤ µc(1 + ‖s‖c).

Assumption 4 There exists scalars C1 and c1 such that for any function J satisfying |J(s)| ≤
C2(1 + ‖s‖c2) for some scalars c2 and C2 we have that:

∑∞
t=0 |E [J(st)|s0 = s]− E[J(s0)]| ≤

C1C2(1 + ‖st‖c1c2).

Assumption 5 There exists scalars c and C such that for any s ∈ S we have that: |J(s, ·)| ≤
C(1 + ‖s‖c) for J ∈ {R,F, L}.
We also make the following finiteness assumption on set of switching control policies for the
Generator:

Assumption 6 For any policy gc, the total number of interventions is K <∞.

We lastly make the following assumption on L which can be made true by construction:

Assumption 7 Let n(s) be the state visitation count for a given state s ∈ S. For any a ∈ A, the
function L(s,a) = 0 for any n(s) ≥M where 0 < M ≤ ∞.

21



Published as a conference paper at ICLR 2022

16 PROOF OF TECHNICAL RESULTS

We begin the analysis with some preliminary lemmata and definitions which are useful for proving
the main results.

Given a V π,g : S × N → R, ∀π ∈ Π and g, ∀sτk ∈ S, we define the Generator intervention
operatorMπ,gV π,g by

Mπ,gV π,g(sτk , Iτk) := R(sτk ,aτk) + F (θτk ,θτk−1
) − δτkτk + γ

∑
s′∈S

P (s′;aτk , s)V
π,g(s′, I(τk+1)),

(4)

where aτk ∼ π(·|sτk), θτk ∼ g(·|sτk) and τk is a Generator switching time. We define the Bellman
operator T of G by

TV π,g(st, It) := max
{
Mπ,gV π,g(st, It), R(st,at) + γmax

a∈A

∑
s′∈S

P (s′;a, st)V
π,g(s′, It)

}
.

(5)

Definition 1 A.1 An operator T : V → V is said to be a contraction w.r.t a norm ‖ · ‖ if there exists
a constant c ∈ [0, 1[ such that for any V1, V2 ∈ V we have that:

‖TV1 − TV2‖ ≤ c‖V1 − V2‖. (6)

Definition 2 A.2 An operator T : V → V is non-expansive if ∀V1, V2 ∈ V we have:

‖TV1 − TV2‖ ≤ ‖V1 − V2‖. (7)

Lemma 1 For any f : V → R, g : V → R, we have that:∥∥∥∥max
a∈V

f(a)−max
a∈V

g(a)

∥∥∥∥ ≤ max
a∈V

‖f(a)− g(a)‖ . (8)

Proof: We restate the proof given in Mguni (2019):

f(a) ≤ ‖f(a)− g(a)‖+ g(a) (9)
=⇒ max

a∈V
f(a) ≤ max

a∈V
{‖f(a)− g(a)‖+ g(a)} ≤ max

a∈V
‖f(a)− g(a)‖+ max

a∈V
g(a). (10)

Deducting max
a∈V

g(a) from both sides of (10) yields:

max
a∈V

f(a)−max
a∈V

g(a) ≤ max
a∈V
‖f(a)− g(a)‖ . (11)

After reversing the roles of f and g and redoing steps (9) - (10), we deduce the desired result since
the RHS of (11) is unchanged. �

Lemma 2 A.4 The probability transition kernel P is non-expansive, that is:

‖PV1 − PV2‖ ≤ ‖V1 − V2‖. (12)

Proof: The result is well-known e.g. (Tsitsiklis & Van Roy, 1999). We give a proof using the
Tonelli-Fubini theorem and the iterated law of expectations, we have that:

‖PJ‖2 = E
[
(PJ)2[s0]

]
= E

(
[E [J [s1]|s0])

2
]
≤ E

[
E
[
J2[s1]|s0

]]
= E

[
J2[s1]

]
= ‖J‖2,

where we have used Jensen’s inequality to generate the inequality. This completes the proof. �

PROOF OF PROP. 1

Proof: To prove (i) of the proposition it suffices to prove that the term
∑T
t=0 γ

tF (θct , θ
c
t−1)I(t)

converges to 0 in the limit as T →∞. As in classic potential-based reward shaping (Ng et al., 1999),
central to this observation is the telescoping sum that emerges by construction of F .
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First recall ṽπ,g(s, I0), for any (s, I0) ∈ S × {0, 1} is given by:

ṽπ,g(s, I0) = Eπ,g

[ ∞∑
t=0

γt
{
R(st,at) + F (θct , θ

c
t−1)It

}]
(13)

= Eπ,g

[ ∞∑
t=0

γtR(st,at) +

∞∑
t=0

γtF (θct , θ
c
t−1)It

]
(14)

= Eπ,g

[ ∞∑
t=0

γtR(st,at)

]
+ Eπ,g

[ ∞∑
t=0

γtF (θct , θ
c
t−1))It

]
. (15)

Hence it suffices to prove that Eπ,g
[∑∞

t=0 γ
tF (θct , θ

c
t−1))It

]
= 0.

Recall there a number of time steps that elapse between τk and τk+1, now

∞∑
t=0

γtF (θct , θ
c
t−1))I(t)

=

τ2∑
t=τ1+1

γtθct − γt−1θct−1 + γτ1θcτ1 +

τ4∑
t=τ3+1

γtθct − γt−1θct−1 + γτ3θcτ3

+ . . .+

τ2k∑
t=τ(2k−1)+1

γtθct − γt−1θct−1 + γτ1θcτ2k+1
+ . . .+

=

τ2−1∑
t=τ1

γt+1θct+1 − γtθct + γτ1θcτ1 +

τ4−1∑
t=τ3

γt+1θct+1 − γtθct + γτ3θcτ3

+ . . .+

τ2K−1∑
t=τ(2k−1)

γtθct − γt−1θct−1 + γτ2k−1θcτ2k−1
+ . . .+

=

∞∑
k=1

τ2K−1∑
t=τ2k−1

γt+1θct+1 − γtθct −
∞∑
k=1

γτ2k−1θcτ2k−1

=

∞∑
k=1

γτ2kθcτ2k −
∞∑
k=1

γτ2k−1θcτ2k−1

=

∞∑
k=1

γτ2k0−
∞∑
k=1

γτ2k−10 = 0,

where we have used the fact that by construction θct ≡ 0 whenever t = τ1, τ2, . . ..

We now note that it is easy to see that v̂π,gc (s0, I0) is bounded above, indeed using the above we have
that
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v̂π,gc (s0, I0) = Eπ,g

 ∞∑
t=0

γt

R̂−∑
k≥1

δtτ2k−1
+ Ln(st)

 (16)

= Eπ,g

 ∞∑
t=0

γt

R−∑
k≥1

δtτ2k−1
+ Ln(st)

+

∞∑
t=0

γtFIt

 (17)

≤ Eπ,g

[ ∞∑
t=0

γt (R+ Ln(st))

]
(18)

≤

∣∣∣∣∣Eπ,g
[ ∞∑
t=0

γt (R+ Ln(st))

]∣∣∣∣∣ (19)

≤ Eπ,g

[ ∞∑
t=0

γt ‖R+ Ln‖

]
(20)

≤
∞∑
t=0

γt (‖R‖+ ‖Ln‖) (21)

=
1

1− γ
(‖R‖+ ‖L‖) , (22)

using the triangle inequality, the definition of R̂ and the (upper-)boundedness of L andR (Assumption
5). We now note that by the dominated convergence theorem we have that ∀(s0, I0) ∈ S × {0, 1}

lim
n→∞

v̂π,gc (s0, I0) = lim
n→∞

Eπ,g

 ∞∑
t=0

γt

R̂−∑
k≥1

δtτ2k−1
+ Ln(st)

 (23)

= Eπ,g lim
n→∞

 ∞∑
t=0

γt

R̂−∑
k≥1

δtτ2k−1
+ Ln(st)

 (24)

= Eπ,g

 ∞∑
t=0

γt

R̂−∑
k≥1

δtτ2k−1

 (25)

= Eπ,g

 ∞∑
t=0

γt

R−∑
k≥1

δtτ2k−1

 = − K

1− γ
+ vπ(s0), (26)

using Assumption 6 in the last step, after which we deduce (i).

To deduce (ii) we simply note that v̂π,gc (s0, I0) and vπ(s0) differ by only a constant and hence share
the same optimisation.

�

PROOF OF THEOREM 1

Proof: Theorem 1 is proved by firstly showing that when the players jointly maximise the same
objective there exists a fixed point equilibrium of the game when all players use Markov policies and
Generator uses switching control. The proof then proceeds by showing that the MG G admits a dual
representation as an MG in which jointly maximise the same objective which has a stable point that
can be computed by solving an MDP. Thereafter, we use both results to prove the existence of a fixed
point for the game as a limit point of a sequence generated by successively applying the Bellman
operator to a test function.

Therefore, the scheme of the proof is summarised with the following steps:
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I) Prove that the solution to Markov Team games (that is games in which both players maximise
identical objectives) in which one of the players uses switching control is the limit point of
a sequence of Bellman operators (acting on some test function).

II) Prove that for the MG G that is there exists a function Bπ,g : S × {0, 1} → R such
that5 vπ,g(z) − vπ′,g(z) = Bπ,g(z) − Bπ′,g(z), ∀z ≡ (s, I0) ∈ S × {0, 1}, ∀g, and
v̂π,gc (z)− v̂π,g′c (z) = Bπ,g(z)−Bπ′,g(z), ∀z ≡ (s, I0) ∈ S × {0, 1},∀π ∈ Π,

III) Prove that the MG G has a dual representation as a Markov Team Game which admits a
representation as an MDP.

PROOF OF PART I

Our first result proves that the operator T is a contraction operator. First let us recall that the switching
time τk is defined recursively τk = inf{t > τk−1|st ∈ A, τk ∈ Ft} where A = {s ∈ S,m ∈
M |gc(m|st) > 0}. To this end, we show that the following bounds holds:

Lemma 3 The Bellman operator T is a contraction, that is the following bound holds:

‖Tψ − Tψ′‖ ≤ γ ‖ψ − ψ′‖ .

Proof: Recall we define the Bellman operator Tψ of G acting on a function Λ : S × N→ R by

TψΛ(sτk , I(τk)) := max

{
Mπ,gΛ(sτk , I(τk)),

[
ψ(sτk ,a) + γmax

a∈A

∑
s′∈S

P (s′;a, sτk)Λ(s′, I(τk))

]}
(27)

In what follows and for the remainder of the script, we employ the following shorthands:

Pass′ =:
∑
s′∈S

P (s′;a, s), Pπss′ =:
∑
a∈A

π(a|s)Pass′ , Rπ(zt) :=
∑
at∈A

π(at|s)R̂(zt,at, θt, θt−1)

To prove that T is a contraction, we consider the three cases produced by (27), that is to say we prove
the following statements:

i)
∣∣∣∣Θ(zt,a, θ

c
t , θ

c
t−1) + γmax

a∈A
Pas′stψ(s′, ·)−

(
Θ(zt,a, θ

c
t , θ

c
t−1) + γmax

a∈A
Pas′stψ

′(s′, ·)
)∣∣∣∣ ≤

γ ‖ψ − ψ′‖
ii) ‖Mπ,gψ −Mπ,gψ′‖ ≤ γ ‖ψ − ψ′‖ , (and henceM is a contraction).

iii)
∥∥∥∥Mπ,gψ −

[
Θ(·,a) + γmax

a∈A
Paψ′

]∥∥∥∥ ≤ γ ‖ψ − ψ′‖ . where zt ≡ (st, It) ∈ S ×

{0, 1}.
We begin by proving i).

Indeed, for any a ∈ A and ∀zt ∈ S × {0, 1},∀θt, θt−1 ∈ Θ,∀s′ ∈ S we have that∣∣∣∣Θ(zt,a, θ
c
t , θ

c
t−1) + γPπs′stψ(s′, ·)−

[
Θ(zt,a, θ

c
t , θ

c
t−1) + γmax

a∈A
Pas′stψ

′(s′, ·)
]∣∣∣∣

≤ max
a∈A

∣∣γPas′stψ(s′, ·)− γPas′stψ
′(s′, ·)

∣∣
≤ γ ‖Pψ − Pψ′‖
≤ γ ‖ψ − ψ′‖ ,

again using the fact that P is non-expansive and Lemma 1.

We now prove ii).

5This property is analogous to the condition in Markov potential games (Macua et al., 2018; Mguni et al.,
2021)

25



Published as a conference paper at ICLR 2022

For any τ ∈ F , define by τ ′ = inf{t > τ |st ∈ A, τ ∈ Ft}. Now using the definition ofM we have
that for any sτ ∈ S

|(Mπ,gψ −Mπ,gψ′)(sτ , I(τ))|

≤ max
aτ ,θcτ ,θ

c
τ−1∈A×Θ2

∣∣∣∣∣Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1)− δτt + γPπs′sτP

aψ(sτ , I(τ ′))

−
(
Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1)− δτt + γPπs′sτP

aψ′(sτ , I(τ ′))
) ∣∣∣∣∣

= γ
∣∣Pπs′sτPaψ(sτ , I(τ ′))− Pπs′sτP

aψ′(sτ , I(τ ′))
∣∣

≤ γ ‖Pψ − Pψ′‖
≤ γ ‖ψ − ψ′‖ ,

using the fact that P is non-expansive. The result can then be deduced easily by applying max on
both sides.

We now prove iii). We split the proof of the statement into two cases:

Case 1:

Mπ,gψ(sτ , I(τ))−
(

Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

)
< 0. (28)

We now observe the following:
Mπ,gψ(sτ , I(τ))−Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

≤ max
{

Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1) + γPπs′sτP

aψ(s′, I(τ)),Mπ,gψ(sτ , I(τ))
}

−Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

≤

∣∣∣∣∣max
{

Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1) + γPπs′sτP

aψ(s′, I(τ)),Mπ,gψ(sτ , I(τ))
}

−max

{
Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ)),Mπ,gψ(sτ , I(τ))

}
+ max

{
Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ)),Mπ,gψ(sτ , I(τ))

}
−Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

∣∣∣∣∣
≤

∣∣∣∣∣max

{
Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ(s′, I(τ)),Mπ,gψ(sτ , I(τ))

}

−max

{
Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ)),Mπ,gψ(sτ , I(τ))

} ∣∣∣∣∣
+

∣∣∣∣∣max

{
Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ)),Mπ,gψ(sτ , I(τ))

}

−Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

∣∣∣∣∣
≤ γmax

a∈A

∣∣Pπs′sτPaψ(s′, I(τ))− Pπs′sτP
aψ′(s′, I(τ))

∣∣
+

∣∣∣∣max

{
0,Mπ,gψ(sτ , I(τ))−

(
Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

)}∣∣∣∣
≤ γ ‖Pψ − Pψ′‖
≤ γ‖ψ − ψ′‖,
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where we have used the fact that for any scalars a, b, c we have that |max{a, b} −max{b, c}| ≤
|a− c| and the non-expansiveness of P .

Case 2:

Mπ,gψ(sτ , I(τ))−
(

Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

)
≥ 0.

Mπ,gψ(sτ , I(τ))−
(

Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

)
≤Mπ,gψ(sτ , I(τ))−

(
Θ(zτ ,aτ , θ

c
τ , θ

c
τ−1) + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

)
+ δτt

≤ Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1)− δτt + γPπs′sτP

aψ(s′, I(τ ′))

−
(

Θ(zτ ,aτ , θ
c
τ , θ

c
τ−1)− δτt + γmax

a∈A
Pas′sτψ

′(s′, I(τ))

)
≤ γmax

a∈A

∣∣Pπs′sτPa (ψ(s′, I(τ ′))− ψ′(s′, I(τ)))
∣∣

≤ γ |ψ(s′, I(τ ′))− ψ′(s′, I(τ))|
≤ γ ‖ψ − ψ′‖ ,

again using the fact that P is non-expansive. Hence we have succeeded in showing that for any
Λ ∈ L2 we have that ∥∥∥∥Mπ,gΛ−max

a∈A
[ψ(·, a) + γPaΛ′]

∥∥∥∥ ≤ γ ‖Λ− Λ′‖ . (29)

Gathering the results of the three cases gives the desired result. �

PROOF OF PART II

To prove Part II, we prove the following result:

Proposition 3 For any π ∈ Π and for any Generator policy g, there exists a function Bπ,g :
S × {0, 1} → R such that

vπ,gi − vπ
′,g

i = Bπ,g(z)−Bπ
′,g(z), ∀z ≡ (s, I0) ∈ S × {0, 1} (30)

where in particular the function B is given by:

Bπ,g(s0, I0) = Eπ,g

[ ∞∑
t=0

γtR

]
, (31)

for any (s0, I0) ∈ S × {0, 1}.

Proof: Note that by the deduction of (ii) in Prop 1, we may consider the following quantity for the
Generator expected return:

v̂π,gc (s0, I0) = Eπ,g

 ∞∑
t=0

γt

R−∑
k≥1

δtτ2k−1

 . (32)

Therefore, we immediately observe that
v̂π,gc (s0, I0) = Bπ,g(s0, I0)−K, ∀(s0, I0) ∈ S × {0, 1}. (33)

We therefore immediately deduce that for any two Generator policies g and g′ the following expres-
sion holds ∀(s0, I0) ∈ S × {0, 1}:

v̂π,gc (s0, I0)− v̂π,g
′

c (s0, I0) = Bπ,g(s0, I0)−Bπ,g
′
(s0, I0). (34)

Our aim now is to show that the following expression holds ∀(s0, I0) ∈ S × {0, 1}:
v̂π,gc (I0, s0)− v̂π

′,g
c (I0, s0) = Bπ,g(I0, s0)−Bπ

′,g(I0, s0),

This is manifest from the construction of B. �
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PROOF OF PART III

To prove Part III, we firstly define precisely the notion of a stable point of the MG, G:

Definition 3 A policy profile σ? = (g?, π?i , π
?
−i) ∈ Π is a Markov perfect equilibrium (MPE) in

Markov strategies if the following condition holds for any i ∈ N × {0}:

v
(g?,π?i ,π

?
−i)

i (z) ≥ vg
?,(π′i,π

?
−i)

i (z), ∀z ≡ (s0, I0) ∈ S × {0, 1}, ∀π′i ∈ Πi. (35)

v
(g?,π?i ,π

?
−i)

c (z) ≥ vg
′,(πi,π

?
−i)

c (z), ∀z ≡ (s0, I0) ∈ S × {0, 1}, ∀g′. (36)

The condition characterises strategic configurations which are stable points of the MG, G. In particular,
an MPE is achieved when at any state no agent can improve their expected cumulative rewards by
unilaterally deviating from their current policy. We denote by NE{G} the set of MPE strategies for
the MG, G.

Next we prove that the set of maxima of the function B are the MPE of the MG G:

Proposition 4 The following implication holds:

σ ∈ arg sup
g′,π′∈Π

Bg
′,π′

(s) =⇒ σ ∈ NE{G}. (37)

where B is the function in Prop. 3.

Prop. 4 indicates that the game has an equivalent representation in which all agents maximise the
same function and thus play a team game.

Proof: We do the proof by contradiction. Let σ = (π1, . . . , πN , g) ∈ arg sup
π′∈Π,g′

Bπ
′,g′(s) for any

s ∈ S. Let us now therefore assume that σ /∈ NE{G}, hence there exists some other policy profile
σ̃ = (π1, . . . , π̃i, . . . , πN , g) which contains at least one profitable deviation by one of the agents
i ∈ N × {0, }. For now let us consider the case in which the profitable deviation is for a agent
i ∈ N so that π′i 6= πi for i ∈ N i.e. v(π′i,π−i),g

i (s) > v
(πi,π−i),g
i (s) (using the preservation of

signs of integration). Prop. 3 however implies that B(π′i,π−i),g(s)−B(πi,π−i),g(s) > 0 which is a
contradiction since σ = (πi, π−i, g) is a maximum of B. The proof can be straightforwardly adapted
to cover the case in which the deviating agent is the Generator after which we deduce the desired
result. � The last result completes the proof of Theorem 1. �

PROOF OF PROPOSITION 2

Proof: The proof is given by establishing a contradiction. Therefore suppose that
Mπ,gψ(sτk , I(τk)) ≤ ψ(sτk , I(τk)) and suppose that the switching time τ ′1 > τ1 is an optimal
switching time. Construct the Generator g′ and g̃ policy switching times by (τ ′0, τ

′
1, . . . , ) and g′2

policy by (τ ′0, τ1, . . .) respectively. Define by l = inf{t > 0;Mπ,gψ(st, I0) = ψ(st, I0)} and
m = sup{t; t < τ ′1}. By construction we have that

vπ,g
′

c (s, I0)

= E
[
R(s0,a0) + E

[
. . .+ γl−1E

[
R(sτ1−1,aτ1−1) + . . .+ γm−l−1E

[
R(sτ ′1−1,aτ ′1−1) + γMπ,gvπ,g

′

c (s′, I(τ ′1))
]]]]

< E
[
R(s0,a0) + E

[
. . .+ γl−1E

[
R(sτ1−1,aτ1−1) + γMπ,g̃vπ,g

′

c (sτ1 , I(τ1))
]]]

We now use the following observation E
[
R(sτ1−1,aτ1−1) + γMπ,g̃vπ,g

′

c (sτ1 , I(τ1))
]

≤ max

{
Mπ,g̃vπ,g

′

c (sτ1 , I(τ1)), max
aτ1∈A

[
R(sτk ,aτk) + γ

∑
s′∈S P (s′;aτ1 , sτ1)vπ,gc (s′, I(τ1))

]}
.
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Using this we deduce that

vπ,g
′

2 (s, I0) ≤ E

[
R(s0,a0) + E

[
. . .

+ γl−1E

[
R(sτ1−1,aτ1−1) + γmax

{
Mπ,g̃vπ,g

′

c (sτ1 , I(τ1)), max
aτ1∈A

[
R(sτk ,aτk) + γ

∑
s′∈S

P (s′;aτ1 , sτ1)vπ,gc (s′, I(τ1))

]}]]]
= E

[
R(s0,a0) + E

[
. . .+ γl−1E

[
R(sτ1−1,aτ1−1) + γ

[
Tvπ,g̃c

]
(sτ1 , I(τ1))

]]]
= vπ,g̃c (s, I0))

where the first inequality is true by assumption onM. This is a contradiction since g′ is an optimal
policy for the Generator. Using analogous reasoning, we deduce the same result for τ ′k < τk after
which deduce the result. Moreover, by invoking the same reasoning, we can conclude that it must be
the case that (τ0, τ1, . . . , τk−1, τk, τk+1, . . . , ) are the optimal switching times.

�

PROOF OF THEOREM 2

Proof: The proof which is done by contradiction follows from the definition of vc. Denote by
vπ,g≡0
i value function an agent i ∈ N excluding the Generator and its intrinsic-reward function.

Indeed, let (π̂, ĝ) be the policy profile induced by the Nash equilibrium policy profile and assume
that the intrinsic-reward F leads to a decrease in payoff for agent i. Then by construction vπ,g(s) <
vπ,g≡0(s) which is a contradiction since (π̂, ĝ) is an MPE profile. �

PROOF OF THEOREM 3

To prove the theorem, we make use of the following result:

Theorem 4 (Theorem 1, pg 4 in Jaakkola et al. (1994)) Let Ξt(s) be a random process that takes
values in Rn and given by the following:

Ξt+1(s) = (1− αt(s)) Ξt(s)αt(s)Lt(s), (38)

then Ξt(s) converges to 0 with probability 1 under the following conditions:

i) 0 ≤ αt ≤ 1,
∑
t αt =∞ and

∑
t αt <∞

ii) ‖E[Lt|Ft]‖ ≤ γ‖Ξt‖, with γ < 1;

iii) Var [Lt|Ft] ≤ c(1 + ‖Ξt‖2) for some c > 0.

Proof: To prove the result, we show (i) - (iii) hold. Condition (i) holds by choice of learning rate.
It therefore remains to prove (ii) - (iii). We first prove (ii). For this, we consider our variant of the
Q-learning update rule:

Qt+1(st, It,at) = Qt(st, It,at)

+ αt(st, It,at)

[
max

{
Mπ,gQ(sτk , Iτk ,a), φ(sτk ,a) + γmax

a′∈A
Q(s′, Iτk ,a

′)

}
−Qt(st, It,at)

]
.

After subtracting Q?(st, It,at) from both sides and some manipulation we obtain that:

Ξt+1(st, It,at)

= (1− αt(st, It,at))Ξt(st, It,at)

+ αt(st, It,at))

[
max

{
Mπ,gQ(sτk , Iτk ,a), φ(sτk ,a) + γmax

a′∈A
Q(s′, Iτk ,a

′)

}
−Q?(st, It,at)

]
,

where Ξt(st, It,at) := Qt(st, It,at)−Q?(st, It,at).
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Let us now define by

Lt(sτk , Iτk ,a) := max

{
Mπ,gQ(sτk , Iτk ,a), φ(sτk ,a) + γmax

a′∈A
Q(s′, Iτk ,a

′)

}
−Q?(st, It, a).

Then
Ξt+1(st, It,at) = (1− αt(st, It,at))Ξt(st, It,at) + αt(st, It,at)) [Lt(sτk , a)] . (39)

We now observe that

E [Lt(sτk , Iτk ,a)|Ft] =
∑
s′∈S

P (s′; a, sτk) max

{
Mπ,gQ(sτk , Iτk ,a), φ(sτk ,a) + γmax

a′∈A
Q(s′, Iτk ,a

′)

}
−Q?(sτk , a)

= TφQt(s, Iτk ,a)−Q?(s, Iτk ,a). (40)
Now, using the fixed point property that implies Q? = TφQ

?, we find that
E [Lt(sτk , Iτk ,a)|Ft] = TφQt(s, Iτk ,a)− TφQ?(s, Iτk ,a)

≤ ‖TφQt − TφQ?‖
≤ γ ‖Qt −Q?‖∞ = γ ‖Ξt‖∞ . (41)

using the contraction property of T established in Lemma 3. This proves (ii).

We now prove iii), that is
Var [Lt|Ft] ≤ c(1 + ‖Ξt‖2). (42)

Now by (40) we have that

Var [Lt|Ft] = Var

[
max

{
Mπ,gQ(sτk , Iτk ,a), φ(sτk ,a) + γmax

a′∈A
Q(s′, Iτk ,a

′)

}
−Q?(st, It, a)

]
= E

[(
max

{
Mπ,gQ(sτk , Iτk ,a), φ(sτk ,a) + γmax

a′∈A
Q(s′, Iτk ,a

′)

}

−Q?(st, It, a)− (TΦQt(s, Iτk ,a)−Q?(s, Iτk ,a))

)2]

= E

[(
max

{
Mπ,gQ(sτk , Iτk ,a), φ(sτk ,a) + γmax

a′∈A
Q(s′, Iτk ,a

′)

}
− TΦQt(s, Iτk ,a)

)2
]

= Var

[
max

{
Mπ,gQ(sτk , Iτk ,a), φ(sτk ,a) + γmax

a′∈A
Q(s′, Iτk ,a

′)

}
− TΦQt(s, Iτk ,a))2

]
≤ c(1 + ‖Ξt‖2),

for some c > 0 where the last line follows due to the boundedness of Q (which follows from
Assumptions 2 and 4). This concludes the proof of the Theorem. �

PROOF OF CONVERGENCE WITH FUNCTION APPROXIMATION

First let us recall the statement of the theorem:

Theorem 3 LIGS converges to a limit point r? which is the unique solution to the equation:
ΠF(Φr?) = Φr?, a.e. (43)

where we recall that for any test function Λ ∈ V , the operator F is defined by FΛ := Θ +
γP max{MΛ,Λ}.
Moreover, r? satisfies the following:

‖Φr? −Q?‖ ≤ c ‖ΠQ? −Q?‖ . (44)

The theorem is proven using a set of results that we now establish. To this end, we first wish to prove
the following bound:

Lemma 4 For any Q ∈ V we have that
‖FQ−Q′‖ ≤ γ ‖Q−Q′‖ , (45)

so that the operator F is a contraction.
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Proof: Recall, for any test function ψ , a projection operator Π acting Λ is defined by the following

ΠΛ := arg min
Λ̄∈{Φr|r∈Rp}

∥∥Λ̄− Λ
∥∥ .

Now, we first note that in the proof of Lemma 3, we deduced that for any Λ ∈ L2 we have that∥∥∥∥MΛ−
[
ψ(·, a) + γmax

a∈A
PaΛ′

]∥∥∥∥ ≤ γ ‖Λ− Λ′‖ ,

(c.f. Lemma 3).

Setting Λ = Q and ψ = Θ, it can be straightforwardly deduced that for any Q, Q̂ ∈ L2:∥∥∥MQ− Q̂
∥∥∥ ≤ γ

∥∥∥Q− Q̂∥∥∥. Hence, using the contraction property of M, we readily deduce
the following bound:

max
{∥∥∥MQ− Q̂

∥∥∥ ,∥∥∥MQ−MQ̂
∥∥∥} ≤ γ ∥∥∥Q− Q̂∥∥∥ , (46)

We now observe that F is a contraction. Indeed, since for any Q,Q′ ∈ L2 we have that:

‖FQ− FQ′‖ = ‖Θ + γP max{MQ,Q} − (Θ + γP max{MQ′, Q′})‖
= γ ‖P max{MQ,Q} − P max{MQ′, Q′}‖
≤ γ ‖max{MQ,Q} −max{MQ′, Q′}‖
≤ γ ‖max{MQ−MQ′, Q−MQ′,MQ−Q′, Q−Q′}‖
≤ γmax{‖MQ−MQ′‖ , ‖Q−MQ′‖ , ‖MQ−Q′‖ , ‖Q−Q′‖}
= γ ‖Q−Q′‖ ,

using (46) and again using the non-expansiveness of P . � We next show that the following two
bounds hold:

Lemma 5 For any Q ∈ V we have that

i)
∥∥ΠFQ−ΠFQ̄

∥∥ ≤ γ ∥∥Q− Q̄∥∥,

ii) ‖Φr? −Q?‖ ≤ 1√
1−γ2

‖ΠQ? −Q?‖.

Proof: The first result is straightforward since as Π is a projection it is non-expansive and hence:∥∥ΠFQ−ΠFQ̄
∥∥ ≤ ∥∥FQ− FQ̄

∥∥ ≤ γ ∥∥Q− Q̄∥∥ ,
using the contraction property of F. This proves i). For ii), we note that by the orthogonality property
of projections we have that 〈Φr? −ΠQ?,Φr? −ΠQ?〉, hence we observe that:

‖Φr? −Q?‖2 = ‖Φr? −ΠQ?‖2 + ‖Φr? −ΠQ?‖2

= ‖ΠFΦr? −ΠQ?‖2 + ‖Φr? −ΠQ?‖2

≤ ‖FΦr? −Q?‖2 + ‖Φr? −ΠQ?‖2

= ‖FΦr? − FQ?‖2 + ‖Φr? −ΠQ?‖2

≤ γ2 ‖Φr? −Q?‖2 + ‖Φr? −ΠQ?‖2 ,
after which we readily deduce the desired result. �

Lemma 6 Define the operator H by the following: HQ(z) =

{
MQ(z), ifMQ(z) > Φr?,

Q(z), otherwise,
and F̃ by: F̃Q := Θ + γPHQ.

For any Q, Q̄ ∈ L2 we have that ∥∥∥F̃Q− F̃Q̄
∥∥∥ ≤ γ ∥∥Q− Q̄∥∥ (47)

and hence F̃ is a contraction mapping.
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Proof: Using (46), we now observe that∥∥∥F̃Q− F̃Q̄
∥∥∥ =

∥∥Θ + γPHQ−
(
Θ + γPHQ̄

)∥∥
≤ γ

∥∥HQ−HQ̄∥∥
≤ γ

∥∥max
{
MQ−MQ̄,Q− Q̄,MQ− Q̄,MQ̄−Q

}∥∥
≤ γmax

{∥∥MQ−MQ̄
∥∥ ,∥∥Q− Q̄∥∥ ,∥∥MQ− Q̄

∥∥ ,∥∥MQ̄−Q
∥∥}

≤ γmax
{
γ
∥∥Q− Q̄∥∥ ,∥∥Q− Q̄∥∥ ,∥∥MQ− Q̄

∥∥ ,∥∥MQ̄−Q
∥∥}

= γ
∥∥Q− Q̄∥∥ ,

again using the non-expansive property of P . �

Lemma 7 Define by Q̃ := Θ + γPvπ̃ where

vπ̃(z) := Θ(sτk , a) + γmax
a∈A

∑
s′∈S

P (s′; a, sτk)Φr?(s′, I(τk)), (48)

then Q̃ is a fixed point of F̃Q̃, that is F̃Q̃ = Q̃.

Proof: We begin by observing that

HQ̃(z) = H
(
Θ(z) + γPvπ̃

)
=

{
MQ(z), ifMQ(z) > Φr?,

Q(z), otherwise,

=

{
MQ(z), ifMQ(z) > Φr?,

Θ(z) + γPvπ̃, otherwise,

= vπ̃(z).

Hence,

F̃Q̃ = Θ + γPHQ̃ = Θ + γPvπ̃ = Q̃. (49)

which proves the result. �

Lemma 8 The following bound holds:

E
[
vπ̂(z0)

]
− E

[
vπ̃(z0)

]
≤ 2

[
(1− γ)

√
(1− γ2)

]−1

‖ΠQ? −Q?‖ . (50)

Proof: By definitions of vπ̂ and vπ̃ (c.f (48)) and using Jensen’s inequality and the stationarity
property we have that,

E
[
vπ̂(z0)

]
− E

[
vπ̃(z0)

]
= E

[
Pvπ̂(z0)

]
− E

[
Pvπ̃(z0)

]
≤
∣∣E [Pvπ̂(z0)

]
− E

[
Pvπ̃(z0)

]∣∣
≤
∥∥Pvπ̂ − Pvπ̃∥∥ . (51)

Now recall that Q̃ := Θ + γPvπ̃ and Q? := Θ + γPvπ
?

, using these expressions in (51) we find
that

E
[
vπ̂(z0)

]
− E

[
vπ̃(z0)

]
≤ 1

γ

∥∥∥Q̃−Q?∥∥∥ .
Moreover, by the triangle inequality and using the fact that F(Φr?) = F̃(Φr?) and that FQ? = Q?

and FQ̃ = Q̃ (c.f. (50)) we have that∥∥∥Q̃−Q?∥∥∥ ≤ ∥∥∥Q̃− F(Φr?)
∥∥∥+

∥∥∥Q? − F̃(Φr?)
∥∥∥

≤ γ
∥∥∥Q̃− Φr?

∥∥∥+ γ ‖Q? − Φr?‖

≤ 2γ
∥∥∥Q̃− Φr?

∥∥∥+ γ
∥∥∥Q? − Q̃∥∥∥ ,

32



Published as a conference paper at ICLR 2022

which gives the following bound:∥∥∥Q̃−Q?∥∥∥ ≤ 2 (1− γ)
−1
∥∥∥Q̃− Φr?

∥∥∥ ,
from which, using Lemma 5, we deduce that

∥∥∥Q̃−Q?∥∥∥ ≤ 2
[
(1− γ)

√
(1− γ2)

]−1 ∥∥∥Q̃− Φr?
∥∥∥,

after which by (52), we finally obtain

E
[
vπ̂(z0)

]
− E

[
vπ̃(z0)

]
≤ 2

[
(1− γ)

√
(1− γ2)

]−1 ∥∥∥Q̃− Φr?
∥∥∥ ,

as required. �

Let us rewrite the update in the following way:
rt+1 = rt + γtΞ(wt, rt),

where the function Ξ : R2d × Rp → Rp is given by:
Ξ(w, r) := φ(z) (Θ(z) + γmax {(Φr)(z′),M(Φr)(z′)} − (Φr)(z)) ,

for any w ≡ (z, z′) ∈ (N× S)
2 where z = (t, s) ∈ N × S and z′ = (t, s′) ∈ N × S and for any

r ∈ Rp. Let us also define the function Ξ : Rp → Rp by the following:
Ξ(r) := Ew0∼(P,P) [Ξ(w0, r)] ;w0 := (z0, z1).

Lemma 9 The following statements hold for all z ∈ {0, 1} × S:

i) (r − r?)Ξk(r) < 0, ∀r 6= r?,

ii) Ξk(r?) = 0.

Proof: To prove the statement, we first note that each component of Ξk(r) admits a representation
as an inner product, indeed:

Ξk(r) = E [φk(z0)(Θ(z0) + γmax {Φr(z1),MΦ(z1)} − (Φr)(z0)]

= E [φk(z0)(Θ(z0) + γE [max {Φr(z1),MΦ(z1)} |z0]− (Φr)(z0)]

= E [φk(z0)(Θ(z0) + γP max {(Φr,MΦ)} (z0)− (Φr)(z0)]

= 〈φk,FΦr − Φr〉 ,
using the iterated law of expectations and the definitions of P and F.

We now are in position to prove i). Indeed, we now observe the following:

(r − r?) Ξk(r) =
∑
l=1

(r(l)− r?(l)) 〈φl,FΦr − Φr〉

= 〈Φr − Φr?,FΦr − Φr〉
= 〈Φr − Φr?, (1−Π)FΦr + ΠFΦr − Φr〉
= 〈Φr − Φr?,ΠFΦr − Φr〉 ,

where in the last step we used the orthogonality of (1 − Π). We now recall that ΠFΦr? = Φr?

since Φr? is a fixed point of ΠF. Additionally, using Lemma 5 we observe that ‖ΠFΦr − Φr?‖ ≤
γ‖Φr − Φr?‖. With this we now find that

〈Φr − Φr?,ΠFΦr − Φr〉
= 〈Φr − Φr?, (ΠFΦr − Φr?) + Φr? − Φr〉
≤ ‖Φr − Φr?‖ ‖ΠFΦr − Φr?‖ − ‖Φr? − Φr‖2

≤ (γ − 1) ‖Φr? − Φr‖2 ,
which is negative since γ < 1 which completes the proof of part i).

The proof of part ii) is straightforward since we readily observe that
Ξk(r?) = 〈φl,FΦr? − Φr〉 = 〈φl,ΠFΦr? − Φr〉 = 0,

as required and from which we deduce the result. � To prove the theorem, we make use of a special
case of the following result:
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Theorem 5 (Th. 17, p. 239 in Benveniste et al. (2012)) Consider a stochastic process rt : R ×
{∞} × Ω→ Rk which takes an initial value r0 and evolves according to the following:

rt+1 = rt + αΞ(st, rt), (52)

for some function s : R2d × Rk → Rk and where the following statements hold:

1. {st|t = 0, 1, . . .} is a stationary, ergodic Markov process taking values in R2d

2. For any positive scalar q, there exists a scalar µq such that E [1 + ‖st‖q|s ≡ s0] ≤
µq (1 + ‖s‖q)

3. The step size sequence satisfies the Robbins-Monro conditions, that is
∑∞
t=0 αt =∞ and∑∞

t=0 α
2
t <∞

4. There exists scalars c and q such that ‖Ξ(w, r)‖ ≤ c (1 + ‖w‖q) (1 + ‖r‖)

5. There exists scalars c and q such that
∑∞
t=0 ‖E [Ξ(wt, r)|z0 ≡ z]− E [Ξ(w0, r)]‖ ≤

c (1 + ‖w‖q) (1 + ‖r‖)

6. There exists a scalar c > 0 such that ‖E[Ξ(w0, r)]− E[Ξ(w0, r̄)]‖ ≤ c‖r − r̄‖

7. There exists scalars c > 0 and q > 0 such that∑∞
t=0 ‖E [Ξ(wt, r)|w0 ≡ w]− E [Ξ(w0, r̄)]‖ ≤ c‖r − r̄‖ (1 + ‖w‖q)

8. There exists some r? ∈ Rk such that Ξ(r)(r − r?) < 0 for all r 6= r? and s̄(r?) = 0.

Then rt converges to r? almost surely.

In order to apply the Theorem 5, we show that conditions 1 - 7 are satisfied.

Proof: Conditions 1-2 are true by assumption while condition 3 can be made true by choice of the
learning rates. Therefore it remains to verify conditions 4-7 are met.

To prove 4, we observe that

‖Ξ(w, r)‖ = ‖φ(z) (Θ(z) + γmax {(Φr)(z′),MΦ(z′)} − (Φr)(z))‖
≤ ‖φ(z)‖ ‖Θ(z) + γ (‖φ(z′)‖ ‖r‖+MΦ(z′))‖+ ‖φ(z)‖ ‖r‖
≤ ‖φ(z)‖ (‖Θ(z)‖+ γ‖MΦ(z′)‖) + ‖φ(z)‖ (γ ‖φ(z′)‖+ ‖φ(z)‖) ‖r‖.

Now using the definition ofM, we readily observe that ‖MΦ(z′)‖ ≤ ‖Θ‖+ γ‖Pπs′stΦ‖ ≤ ‖Θ‖+
γ‖Φ‖ using the non-expansiveness of P .

Hence, we lastly deduce that

‖Ξ(w, r)‖ ≤ ‖φ(z)‖ (‖Θ(z)‖+ γ‖MΦ(z′)‖) + ‖φ(z)‖ (γ ‖φ(z′)‖+ ‖φ(z)‖) ‖r‖
≤ ‖φ(z)‖ (‖Θ(z)‖+ γ‖Θ‖+ γ‖ψ‖) + ‖φ(z)‖ (γ ‖φ(z′)‖+ ‖φ(z)‖) ‖r‖,

we then easily deduce the result using the boundedness of φ,Θ and ψ.

Now we observe the following Lipschitz condition on Ξ:

‖Ξ(w, r)− Ξ(w, r̄)‖
= ‖φ(z) (γmax {(Φr)(z′),MΦ(z′)} − γmax {(Φr̄)(z′),MΦ(z′)})− ((Φr)(z)− Φr̄(z))‖
≤ γ ‖φ(z)‖ ‖max {φ′(z′)r,MΦ′(z′)} −max {(φ′(z′)r̄),MΦ′(z′)}‖+ ‖φ(z)‖ ‖φ′(z)r − φ(z)r̄‖
≤ γ ‖φ(z)‖ ‖φ′(z′)r − φ′(z′)r̄‖+ ‖φ(z)‖ ‖φ′(z)r − φ′(z)r̄‖
≤ ‖φ(z)‖ (‖φ(z)‖+ γ ‖φ(z)‖ ‖φ′(z′)− φ′(z′)‖) ‖r − r̄‖
≤ c ‖r − r̄‖ ,

using Cauchy-Schwarz inequality and that for any scalars a, b, c we have that
|max{a, b} −max{b, c}| ≤ |a− c|.
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Using Assumptions 3 and 4, we therefore deduce that
∞∑
t=0

‖E [Ξ(w, r)− Ξ(w, r̄)|w0 = w]− E [Ξ(w0, r)− Ξ(w0, r̄)‖] ≤ c ‖r − r̄‖ (1 + ‖w‖l). (53)

Part 2 is assured by Lemma 5 while Part 4 is assured by Lemma 8 and lastly Part 8 is assured by
Lemma 9. �
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