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A. Hardware Configuration of Acoustic Robot Hand1

Our hardware is built by 3D printing with Polylactic Acid (PLA) filament. We use the LX-2242

servo motor to actuate the finger which provides 20kg·cm torque and accurate position and voltage3

feedback. The contact microphones we used are commercially available on Amazon and the two4

counter weights on each fingertip is 40g. We place the controller of the motors as well as the audio5

jack inside the palm. The cost split of building our acoustic robot hand is shown in Tab. 1.6

Part Amount Price in total ($)
Lx224 motor 4 75.96
TTL/USB Debugging Board 1 12.99
4pcs piezo contact microphone 1 28.58
Audio cable 4 59.96
Counterweight 8 27.44
PLA 3D printing material (689.11g) 1 10.33

Total: 215.26

Table 1: Cost of the acoustic robot hand.

Figure 1: CAD model and coordinate system of the robot hand.

Contact Position Calculation7

We will introduce the calculation of the approximated contact point location in this section. We8

set the fingertip position at the center of the fingerprint. Once the binary contact event is detected,9

we will record the angle of each finger joint. Based on our CAD model, we can also obtain other10

kinematic parameters of the hand such as the length of each link. Fig. 1 shows the sketch of our11

hardware design and its coordinate system. We use the center of the palm as the origin of the hand.12

The y-axis is parallel to the four finger joints and the z-axis is perpendicular to the palm, facing13

towards the finger. The coordinate system of the finger joints has the same orientation as the above14

central coordinate system of the hand. The center of the finger joint coordinate is located at the15

Submitted to the 8th Conference on Robot Learning (CoRL 2024). Do not distribute.



center of each motor. We denote the position of joint 1 as p1 =

[
x1

y1
z1

]
, where x1 = 7.845cm,16

y1 = 3.429cm, z1 = 13.691cm. Considering that the four fingers are symmetrical, the positions of17

the rest of the fingers can be represented as18

p2 =

[
x1

−y1
z1

]
, p3 =

[−x1

y1
z1

]
, p4 =

[−x1

−y1
z1

]
(1)

We use Pei to represent the fingertip position under its joint coordinate. Since the length between19

the origin of joint coordinate and the fingertip is l = 7.6cm, the fingertip position of finger i under20

the robot hand coordinate, denoted as HPei, can be calculated by21

HPei = pi +RPei (2)

Here, Pei =

[
l
0
0

]
. For finger 1 and finger 2, R can be represented as:22

R = Ry(−θi + 4.5°) (3)

The θi here represents the joint angle of finger i. For finger 3 and finger 4, R can be represented as:23

R = Ry(θi − 4.5°)Rz(180
°) (4)

We attach the robot palm on the end effector of the Franka Emika Panda arm and align the end effec-24

tor coordinate with the robot hand coordinate to ensure HPei =
EPei. Having the transformation25

matrix of the end effector coordinate to the robot arm R
ET , we can then calculate the contact position26

under the robot arm coordinate, represented as RPei, by:27

RPei =
R
E TEPei (5)

B. Interaction Policy for Data Collection28

We will introduce the interaction policy for the robot to conduct real-world data collection in this29

section. Since vision is not used, the dimension of the object is unknown. Therefore, the first30

challenge of the interaction policy is to estimate the dimension of the object.31

We fix the object at the center of a black base on top of a wooden board as shown in Fig. 2A. The32

robot will first perform two tapping motions from the side with two different heights (Fig. 2B and33

2C) and save the valid contact points. The tapping motion is able to make contact with objects since34

the objects’ body is across the centerline of the black base. Based on the highest detected contact35

point location, the robot will have a rough estimation of the height of the object.36

Figure 2: Initial estimation stage of the interaction policy. (A)The black base and its centerline.
(B)The first side tapping in a lower position. (C)The second side tapping in a higher position.
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Figure 3: Exploration of highest edge. (A)The third finger gets to a position higher than the roughly
estimated height and moves toward the centerline of the black base. (B)The third finger reaches the
centerline and no contact happens. (C) The third finger goes back to the previous initial position as
shown in (A), moves down a little bit, and moves toward the centerline again. (D)The third finger
makes contact with the object. A contact event is detected and the contact position is saved.

Figure 4: Two scales of left side and back side tapping. (A) The lower starting position of these
two tapping motions on a smaller object. (B)The higher starting position of these two tapping
motions on a larger object.

To obtain a more accurate estimation of height and radius of the object, the robot will reset to its37

initial home position to lift its two fingers in front, and use its third finger to explore the highest38

edge on top of the object. Specifically, starting from a suitable height away from the objects, the39

third finger of the hand moves towards the centerline of the black base (Fig. 3A) and reaches another40

side of the centerline (Fig. 3B). The robot keeps monitoring the acoustic signal from the third finger41

during this process. Once a contact event is detected, the robot will record the contact position42

through the kinematic model and stop exploring. If the third finger does not make contact with the43

object and there is no contact event being detected, the robot hand will move back to the initial44

position, and move down a little bit as shown in Fig. 3C and keep executing the same edge exploring45

motion until a contact sound is detected as shown in Fig. 3D. We use the distance between the46

contact point and the centerline as the estimated radius of the object and the distance between the47

contact point and the black base plane as the final estimated height of the object.48

3



Figure 5: Visualizations of contact events through tapping motion. We show the sequence of
tapping interactions on a smaller object in the first row and a larger object in the second row. The
x-axis shows the step progression. The estimated contact fingertip positions are shown as points
overlaid on top of the ground-truth 3D shapes.

Following the estimation, the robot will interact with the object through tapping motions on three49

sides of the object in sequences including the top side, the left side, and the backside of the object.50

During each tapping sequence, the robot hand will approach and tap the object step by step, ensuring51

continuous tapping while gradually transitioning from top to bottom (or left to right for top tapping)52

to cover the entire surface of the object. A detailed illustration of the tapping motion is provided in53

Fig. 5. The robot relies on the estimated radius to determine whether to collect tapping data on top54

of the object since the useful information is limited when the surface area on top of the object is too55

small. We set the radius threshold to be 2cm in this case. Additionally, depending on the estimated56

height of the objects, the robot decides to start from a higher position or a lower position for two57

different scales of data collection during the left-side tapping and back-side tapping as illustrated in58

Fig. 4. We set the height threshold to be 20cm. For a more comprehensive visual demonstration,59

please refer to our Supplementary Movies. When our robot hand taps objects, we can determine60

such contact events from the voltage feedback from the motor in each finger. We put a 10Ω resistor61

in series with the servo motor power. When the motor encounters external force, it receives an62

increase of current supply and, as a result, a decrease of voltage from the motor voltage sensor63

readings. Though we also experimented with detecting salient acoustic signals to detect the binary64

contact event, we found that the natural motor voltage feedback embedded by the motors provides65

more reliable and accurate signals. This is because the voltage feedback can reflect subtle resistance66

encountered by the robot finger, where acoustic vibrations from the contact microphone also include67

motor noises. After the contact event is detected, we can localize the contact points in 3D space with68

respect to the robot with the forward kinematics of our robot hand and arm.69

We conducted this real-world data collection on the 83 real-world objects mentioned in our main70

texts and used the tapping data only with valid contact events for our material classification, shape71

reconstruction, and object re-recognition tasks. The tapping data are saved in txt file format, includ-72

ing position in the x-axis (x), position in the y-axis (y), position in the z-axis (z), binary tapping73

detection from acoustic vibration signal (a), binary tapping detection from voltage signal (v), finger74

index (f), and index of tapping (i):75

{x, y, z, a, v, f, i} (6)
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Each tapping data is also accompanied by a five-second audio recording, which is guaranteed to76

cover the acoustic signals of the impact sound. We will present the audio processing procedure in77

the next section.78

C. Acoustic Vibration Recording and Processing79

To obtain more useful information, we first extracted the striking vibration signal from the 5-second80

recording. Typically, the anticipated tapping vibration signal exhibits a noticeable characteristic,81

often resembling a peak-shaped pattern. However, real-world acoustic vibration signals may contain82

random noises, so simply extracting the signal around maximum amplitude will not work. To extract83

informative acoustic vibration signals, we used a window of 1000 units of acoustic waveform to84

monitor the average absolute amplitude of the acoustic signals. If the average amplitude in the85

current window is larger than both the average amplitude in the previous window and the next86

window, 20000 units of the acoustic signals (20000/44100Hz = 0.45351474s = 453.5147ms)87

will be extracted around the beginning timestamp of the current window. We applied the same88

extracting mechanism to the recording with no obvious striking signal, for example, foam objects.89

For those objects, most extracted signals are motor noises. However, we consider this as a feature90

of the soft materials perceived by our robot hand. Finally, we followed previous work to convert the91

raw audio signals to Mel spectrogram representations with a dimension of 64 × 64 resolution. The92

length of the Fast Fourier transform (FFT) window is set to 2048 and the number of the Mel bands93

is set to 64. The highest frequency is restricted to 8192Hz. To ensure the correct dimension of the94

Mel spectrogram along the temporal dimension, the number of samples between consecutive frames95

is rounded to the nearest value obtained by dividing the total number of audio samples by 64.96

D. Implementation Details for Material Classification97

Dataset Construction98

In this section, we explain how we obtained the material label for each of the contact positions99

around the object. During tapping data collection, we used two depth cameras to capture two point100

clouds of the object after fixing the object on the platform. We fuse those two point clouds and use101

the annotated point cloud model to align with the object. We then searched the nearest point of the102

annotated point cloud for each of the contact points and assigned the annotated material label to that103

contact point based on the label of the nearest point. The material label serves as the ground truth104

for training our material classification model.105

Tapping data from 82 objects is used for the material classification task. We removed the acoustic106

data collected from a disinfecting wipe because the paper material is too soft and there is a thin107

plastic film attached to the paper, so the signal is too unique and out of distribution from all other108

paper materials. We conducted separate training on three different random splits of the dataset to109

evaluate our method. Note that our splits are based on objects to avoid strong overlapping between110

training, validation, and testing data. We have 60 objects for training, 11 objects for validation, and111

11 objects for testing. We balanced the number of acoustic data in each of the material classes for112

training and validation by duplicating them from random choice. Therefore, due to different objects113

coming with different sizes and different numbers of tapping data, the number of data points for114

each split will be different under the same number of objects. The resulting number of data points115

in each split is shown in Tab. 2.116

Material Classification Model Architecture117

We show the detailed architecture design of our material classification network in Tab. 3.118
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Dataset splits Training Validation Testing
Split 1 8829 1521 948
Split 2 7767 2142 1293
Split 3 8433 1278 1195

Table 2: Material classification data statistics.

Layer name Input Channel Output Channel Kernal Size Stride Size Padding
Conv1 1 16 6 2 0
Batch norm + Relu N/A N/A N/A N/A N/A
Maxpool1 16 16 2 2 0
Conv2 16 32 5 1 0
Batch norm + Dropout+ Relu N/A N/A N/A N/A N/A
Maxpool2 32 32 2 2 0
Conv3 32 150 5 1 0
Batch norm + relu+dropout N/A N/A N/A N/A N/A
Fc1 150 70 N/A N/A N/A
Dropout N/A N/A N/A N/A N/A
Fc2 70 9 N/A N/A N/A

Table 3: Neural network architecture of the material classification model.

Material Classification Hyperparameters and Results119

We list all the hyperparameter selections and experimental results across different random data splits120

in Tab. 4. We select the model based on the best validation accuracy. Due to the testing dataset being121

unbalanced, we use the average F1 score as our evaluation metric. The confusion matrix of the first122

experiment is shown in Fig. 6.123

Split 1 Split 2 Split 3
Max epoch 300 300 300
Learning rate 0.00903 0.00935 0.00903
Dropout 0.52105 0.40947 0.30927
Batch size 36 32 32
Optimizer SGD
LR schedule Decays the Learning rate by 0.1 every 200 steps
Best train accuracy 0.9891 0.9876 0.9826
Best validation accuracy 0.6141 0.5691 0.5696
Refinement parameters (M,K,N) (8,3,25) (8,8,25) (6,1,30)
Testing F1 score 0.5711 0.5035 0.4939
Testing F1 score after refinement 0.8786 0.6924 0.718

Table 4: Material classification hyperparameters and results on three random data splits.

E. Implementation Details for Shape Reconstruction124

Dataset Construction125

We leverage the contact positions collected from the 83 objects for our shape reconstruction task.126

The tapping interaction results in highly sparse contact points. The maximum number of contact127

points is 300 for each object. We divided the dataset based on 15 shape categories(i.e., bottle, can128

cup, hammer, mug, wine glass, cube, cube(concave), cylinder, cylinder(concave), cone, quadrangu-129

lar pyramid, triangular pyramid, prism, irregular) and split the dataset for training, validation, and130

testing according to these categories. To balance the training dataset for learning, we randomly du-131

plicated the data up to 100 for each category. We then randomly sampled 80% to 90% points and132

augmented the dataset to 1500 for each shape to augment the training dataset.133

To further boost the training dataset, we leveraged the PyBullet simulator to collect synthetic tapping134

points. We collected 629 synthetic 3D models under the same categories of real-world objects. In135
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Figure 6: Confusion matrix of material classification task on one testing dataset The results of
the initial prediction(left) and the results of the prediction after refinement(right).

the simulation, We implemented the same interaction policy and data augmentation techniques as in136

our real-world data construction. The ground truth model consists of a point cloud model comprising137

5000 points for both the real-world objects and the synthetic objects. Our experiments include three138

different splits of data with different random seeds where both the validation objects and testing139

objects only include real-world objects. For real-world objects, we split them into 61, 11, and 11140

objects for training, validation, and testing. In order to leverage the simulation data to improve our141

model on our real-world objects, initially, we use all the synthetic datasets to pre-train our model.142

Gradually, we blended in more real-world data and reduced the percentage of synthetic data in our143

training set. We show the blending schedule in Tab. 5.144

Epoch Synthetic dataset Real dataset
0-100 100% 0%
100-200 90% 10%
200-300 80% 20%
300-400 60% 40%
400-500 40% 60%
500-600 20% 80%
600-700 10% 90%
700-800 5% 95%
800-1000 0% 100%

Table 5: The blending schedule of synthetic dataset and real dataset during shape reconstruc-
tion training.

Shape Reconstruction Model Architecture145

We show the detailed architecture design of our shape reconstruction network in Tab. 6.146

Shape Reconstruction Hyperparameters and Results147

We list all the hyperparameter selections and experimental results across different random data splits148

in Tab. 7.149

F. Implementation Details for Object Re-recognition150

Dataset Construction151

We utilize both the tapping vibration signal and contact points from all 82 objects for our object re-152

recognition task. For each of the objects, we first randomly split 20% of the tapping data for testing,153
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Layer name Input Channel Output Channel Kernal Size Stride Size Padding
Conv1d 3 128 1 1 0
Batch norm + Relu N/A N/A N/A N/A N/A
Conv1d 128 256 1 1 0
Conv1d 512 512 1 1 0
Batch norm + Relu N/A N/A N/A N/A N/A
Conv1d 512 1024 1 1 0
Fc1 1024 1024 N/A N/A N/A
Relu N/A N/A N/A N/A N/A
Fc2 1024 1024 N/A N/A N/A
Relu N/A N/A N/A N/A N/A
Fc3 1024 3×2000 N/A N/A N/A

Table 6: Neural network architecture of the shape reconstruction model.
Split 1 Split 2 Split 3

Max epoch 1000
Learning rate 0.000005
Batch size 500
Optimizer Adam
LR schedule Decays the Learning rate by 0.7 every 500 steps
Lowest validation loss(CD-L2) 3.6634e-05 5.6421e-05 5.4612e-05
Lowest testing loss(CD-L2) 6.7536e-05 5.6938e-05 6.0342e-05
Lowest testing loss(CD-L1) 0.009184 0.0085316 0.0085615

Table 7: Shape reconstruction hyperparameters and results on three random data splits.

20% of the tapping data for validation, and 60 % of the tapping data for training. To augment the154

dataset, 15 tapping data are randomly sampled 500 times for each object in the training dataset, and155

50 times for each object in the validation and testing dataset. Therefore, there are 410,000 data156

points for training, 4,100 data points for validation, and 4,100 data points for testing. As in the157

previous two tasks, we have three different random splits of the dataset for evaluation.158

Object Re-recognition Model Architecture159

We show the detailed architecture design of our object re-recognition network in Tab. 8.160

Object Re-recognition Hyperparameters and Results161

We list all the hyperparameter selections and experimental results across different random data splits162

in Tab. 9.163

G. Implementation Details for Resistance Test Against Ambient Noise164

We placed a Saramonic LavMicro U1A air microphone next to the fourth finger. We utilized the Na-165

tional Institute for Occupational Safety and Health (NIOSH) Sound Level Meter App on an iPhone166

to monitor the noise level. This App has been shown to effectively capture accurate noise levels [1].167

We stretched the finger so that we can place the iPhone microphone, the fingertip surface, and the168

air microphone in the same plane. We then set up a speaker facing toward the middle of the robot169

hand to play Gaussian white noise.170

H. Parameters of Acoustic Vibration Signal Processing in Characterization171

Experiments172

We list all the parameters used to process the acoustic vibration signals for our sensing characteri-173

zation experiments in Tab. 10. The parameters are used to convert the waveform representation into174

spectrogram representation as well as the twelve descriptor extraction methods. For liquid object175
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Layer name Input Channel Output Channel Kernal Size Stride Padding
Audio encoder:
Conv1 15 16 6 2 0
Batch norm + Relu N/A N/A N/A N/A N/A
Maxpool1 16 16 2 2 0
Conv2 16 32 5 1 0
Batch norm + Dropout+ Relu N/A N/A N/A N/A N/A
Maxpool2 32 32 2 2 0
Conv3 32 150 5 1 0
Batch norm + relu N/A N/A N/A N/A N/A

Contact point encoder:
Conv1d 3 64 1 1 0
Batch norm + Relu N/A N/A N/A N/A N/A
Conv1d 64 64 1 1 0
Conv1d 128 128 1 1 0
Batch norm + Relu N/A N/A N/A N/A N/A
Conv1d 128 150 1 1 0

MLP layers:
dropout N/A N/A N/A N/A N/A
fc1 300 170 N/A N/A N/A
dropout N/A N/A N/A N/A N/A
fc2 170 170 N/A N/A N/A
dropout N/A N/A N/A N/A N/A
fc3 170 82 N/A N/A N/A

Table 8: Object re-recognition model

Split 1 Split 2 Split 3
Max epoch 500 500 500
Learning rate 3.6515e-05 8.8224e-05 7.8910e-05
Dropout 0.2348 0.2240 0.3253
Batch size 200 200 400

Results with different input: A+C A C A+C A C A+C A C
Best validation accuracy 0.9707 0.8744 0.5295 0.9383 0.8756 0.5105 0.9200 0.8137 0.5456
Best test accuracy 0.9241 0.8034 0.4599 0.9183 0.8281 0.5276 0.9332 0.8920 0.4793

Table 9: Object re-recognition hyperparameters and results on three random data splits. In the
table, ”A” refers to the acoustic vibration signal input modality, and ”C” refers to the contact point
location input modality.

experiments (i.e., shaking and pouring), the duration of the acoustic clip is long, so we chose a larger176

hop length. We have observed that there are no obvious acoustic signals above the frequency 8192177

for this experiment, we chose the smaller highest frequency to show more details of the spectro-178

grams. For rigid object experiments (i.e., dice shape and dice inventory), the duration of collision179

vibration is very short. To perceive more details of the collision signal, we chose a smaller hop180

length. Since the collision vibration signal of solid objects includes a higher frequency, we set the181

highest frequency to be larger.182

I. Quantitative Results in Characterization Experiments183

We derived twelve interpretable signal descriptors to quantitatively measure the features of the184

acoustic vibration signals. These feature descriptors are key statistical summaries of certain aspects185

of the signals, which provide an interpretable understanding of the signal-capturing capabilities and186

sensitivity characterization of our robot hand. Specifically, we denote them as (1) D1: average root187

mean square of the signal, (2) D2: average spectral centroid, (3) D3: average bandwidth, (4) D4:188

average contrast, (5) D5: average flatness, (6) D6: average roll-off, (7) D7: average zero crossing189
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parameters pouring shaking dice shape dice inventory
Length of FFT window 2048 2048 2048 2048
Hop length 2048 1024 512 512
Number of Mel band 64 64 64 64
Highest frequency(Hz) 8192 8192 16384 16384
Color limits [-10,-80] [-10,-80] [-10,-80] [-10,-80]
Duration s 13.00s 2.38s 3.89s 3.89s
Poly features order 3 3 3 3
Roll-off percentage 0.9 0.9 0.9 0.9

Table 10: Parameters of acoustic vibration signal processing in characterization experiments.

rate, (8) D8: average tempogram, (9) D9: average poly features, (10) D10: average MFCCs, (11)190

D11: average chroma, and (12) D12: average tonnetz.191

We repeated 30 trials for each subtask in the container experiment. In each trial, we extracted the192

twelve descriptor features by averaging the feature of the acoustic signals from four fingers. We193

then rescaled all the descriptor values to the range between 0 and 1. With these feature descriptors,194

we performed unsupervised dimensionality reduction of the high-dimensional signals into 2D space195

to test whether we can distinguish between various events triggered by different object states. The196

quantitative results of the mean value and standard error of the mean (SEM) of the twelve acoustic197

vibration signal descriptors from the 30 trials are shown in Tab. 11.198

D1 D2 D3 D4 D5 D6
Dice(quantity:1) 0.093±0.010 0.249±0.013 0.514±0.032 0.464±0.036 0.182±0.013 0.430±0.023
Dice(quantity:3) 0.590±0.011 0.825±0.016 0.827±0.019 0.3386±0.024 0.782±0.022 0.848±0.015
Dice(quantity:5) 0.803±0.013 0.779±0.023 0.728±0.034 0.306±0.039 0.684±0.034 0.798±0.026
Dice(6 edges) 0.106±0.009 0.839±0.020 0.886±0.009 0.482±0.027 0.613±0.022 0.823±0.016
Dice(12 edges) 0.559±0.011 0.682±0.015 0.655±0.011 0.517±0.035 0.717±0.027 0.615±0.010
Dice(30 edges) 0.802±0.014 0.415±0.027 0.299±0.023 0.695±0.029 0.469±0.036 0.388±0.024
Pouring(1st 100ml) 0.507±0.022 0.386±0.024 0.311±0.025 0.684±0.033 0.360±0.037 0.335±0.024
Pouring(2nd 100ml) 0.821±0.019 0.135±0.0137 0.154±0.015 0.796±0.018 0.326±0.033 0.114±0.010
Pouring(3rd 100ml) 0.751±0.016 0.163±0.0164 0.220±0.16 0.508±0.021 0.400±0.038 0.130±0.011
Shaking(100ml) 0.032±0.004 0.825±0.020 0.853±0.011 0.573±0.052 0.597±0.033 0.919±0.011
Shaking(200ml) 0.219±0.017 0.736±0.018 0.657±0.012 0.582±0.023 0.566±0.023 0.713±0.011
Shaking(300ml) 0.480±0.039 0.318±0.031 0.297±0.026 0.565±0.029 0.231±0.026 0.302±0.027

D7 D8 D9 D10 D11 D12
Dice(quantity:1) 0.123±0.019 0.161±0.019 0.135±0.012 0.284±0.031 0.298±0.025 0.464±0.048
Dice(quantity:3) 0.739±0.022 0.524±0.021 0.576±0.018 0.281±0.023 0.716±0.020 0.553±0.042
Dice(quantity:5) 0.767±0.025 0.716±0.026 0.782±0.022 0.566±0.027 0.742±0.028 0.587±0.035
Dice(6 edges) 0.524±0.036 0.576±0.031 0.062±0.006 0.188±0.018 0.435±0.033 0.743±0.027
Dice(12 edges) 0.593±0.031 0.203±0.014 0.470±0.008 0.547±0.020 0.486±0.028 0.515±0.025
Dice(30 edges) 0.490±0.038 0.319±0.019 0.820±0.014 0.860±0.016 0.694±0.024 0.359±0.028
Pouring(1st 100ml) 0.441±0.027 0.365±0.045 0.488±0.019 0.624±0.028 0.585±0.040 0.622±0.034
Pouring(2nd 100ml) 0.162±0.016 0.543±0.044 0.818± 0.019 0.810±0.018 0.491±0.038 0.567±0.024
Pouring(3rd 100ml) 0.232±0.020 0.469±0.040 0.717±0.017 0.438.016 0.441±0.041 0.235±0.025
Shaking(100ml) 0.630±0.031 0.911±0.013 0.0576±0.006 0.534±0.038 0.532±0.039 0.592±0.047
Shaking(200ml) 0.706±0.031 0.260±0.013 0.236±0.011 0.642±0.011 0.678±0.032 0.345±0.032
Shaking(300ml) 0.295±0.034 0.112±0.009 0.606±0.032 0.842±0.012 0.478±0.027 0.568±0.04

Table 11: Quantitative results of the mean value and standard error of the mean (SEM) of the
twelve acoustic vibration signal descriptors in characterization experiments.
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