Multidimensional Persistence Module Classification Hans Riess and Jakob Hansen via Lattice-Theoretic Convolutions

Persistent homology is indexed by a poset/lattice. Does using this poset structure in a CNN make sense?

$$\begin{split} \text{MeetConv}(f)(x,y)^{j} &= \sum_{i} (f_{i} *_{\wedge} g_{j}^{i})(x,y) = \sum_{i} \sum_{(a,b) \in [m] \times [n]} f_{i}(x \wedge a, y \wedge b) g_{j}^{i}(a,b) \\ \text{JoinConv}(f)(x,y)^{j} &= \sum_{i} (f_{i} *_{\vee} g_{j}^{i})(x,y) = \sum_{i} \sum_{(a,b) \in [m] \times [n]} f_{i}(x \vee a, y \vee b) g_{j}^{i}(a,b) \end{split}$$

Lattice convolutions might capture structure which is preserved over meets and joins: quasi-persistence?

Receptive fields for a neuron are strangely shaped: make sure to choose convolution kernels g supported in appropriate regions (the neutral element of the operation).

Architecture

Compare classification accuracy for two networks, one with standard CNN and one with Lattice CNN layers.

Point cloud data from ModelNet-10, processed with RIVET to produce Hilbert function and multigraded Betti numbers.

Lattice Neural Networks

