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Learning Geometry Consistent Neural Radiance Fields from
Sparse and Unposed Views

Anonymous Author(s)

ABSTRACT
The recent progress in novel view synthesis is attributed to the Neu-
ral Radiance Field (NeRF), which requires plenty of images with
precise camera poses. However, collecting available dense input
images with accurate camera poses is a formidable challenge in
real-world scenarios. In this paper, we propose Learning Geometry
Consistent Neural Radiance Field (GC-NeRF), to tackle this chal-
lenge by jointly optimizing a NeRF and camera poses under sparse
(as low as 2) and unposed images. First, GC-NeRF establishes the
geometric consistencies in the image-level, which produce photo-
metric constraints from inter- and intra-views for updating NeRF
and camera poses in a fine-grained manner. Second, we adopt ge-
ometry projection with camera extrinsic parameters to present
the region-level consistency supervisions, which construct pseudo-
pixel labels for capturing critical matching correlations. Moreover,
GC-NeRF presents an adaptive high-frequency mapping function
to augment the geometry and texture information of the 3D scene.
We evaluate the effectiveness of GC-NeRF, which sets a new state-
of-the-art in the sparse view jointly optimized regime on multiple
challenge real-world datasets.

CCS CONCEPTS
• Computing methodologies→ Image-based rendering;

KEYWORDS
Neural Radiance Fields, Volume Rendering, Sparse and Unposed
Views, Geometric Consistency
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1 INTRODUCTION
Novel view synthesis in real-world scenes is a crucial task in com-
puter vision, requiring accurate 3D geometric reconstruction and
realistic modeling of appearance textures. The recent advancements
in Neural Radiance Field (NeRF), leveraging its powerful implicit
scene representation capabilities, have showcased its immense po-
tential in the field of novel view synthesis [21].
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Nevertheless, the remarkable performance of NeRF is heavily
contingent on two critical requirements: dense input views and
precise camera poses. These requirements impose significant limita-
tions on the practical applicability of NeRF in real-world scenarios.
In many cases, such as VR/XR applications, the availability of in-
put images becomes sparse, often leaving only a few RGB images
captured from specific viewpoints [39]. Consequently, NeRF may
suffer from overfitting and produce unsatisfactory or even erro-
neous synthesized images [14, 23]. Additionally, although mature
and convenient community repositories like COLMAP [30] exist to
assist with camera pose estimation, which is an essential preprocess-
ing step before NeRF training, the non-differentiable nature of these
methods presents challenges when integrating them with NeRF.
This limitation hinders the seamless integration between pose es-
timation and NeRF, impeding the joint optimization of NeRF and
camera poses for improved performance. Furthermore, it increases
NeRF’s reliance on third-party libraries, consequently hindering re-
search progress and practical deployment, particularly in scenarios
with sparse views where accurate camera pose estimation using
COLMAP becomes challenging [50].

Numerous researchers have made efforts to reduce NeRF’s de-
pendence on accurate camera poses. These efforts can be broadly
classified into two approaches: deep network-updated pose opti-
mization and estimator-based pose prediction. The former treats
camera poses as learnable parameters, formulating novel view
synthesis as a joint optimization problem of NeRF and camera
poses [1, 13, 17, 42]. The latter approach involves incorporating
a separate pose estimator to predict camera poses corresponding
to the input images before feeding them into NeRF [3, 10, 29, 48].
While both approaches have shown promising potential, they heav-
ily rely on having a sufficient number of input views, and their
performance significantly deteriorates when dealing with sparse
view images. Because the under-constrained nature of the 3D space
limits the convergence of the deep network module to an optimal
state due to insufficient training data coverage.

Recently, a growing number of researches dedicated to enhanc-
ing the performance of NeRF under sparse view settings. Some
methods focus on training conditional neural field models on large-
scale datasets [2, 47]. Additionally, various regularization tech-
niques have been proposed to address the challenges posed by
sparse views in terms of the color and geometry for the scene [6,
14, 23]. Although these researches show impressive performances,
they have not completely gotten rid of the precise camera poses. It
is worth noting the closest to our work is SPARF [39], which is also
under sparse view conditions. However, the latter excessively relies
on the initialization of camera poses, training NeRF under noisy
pose settings. It does not fundamentally alleviate the dependence
on camera poses to achieve joint optimization of NeRF and poses.

In this paper, we propose the Learning Geometry Consistent Neu-
ral Radiance Field (GC-NeRF), to optimize NeRF and camera poses

1
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jointly from sparse input views. We illustrate the framework of the
GC-NeRF in Figure 1, where the whole pipeline consists of the Im-
age Level Consistency, Region Level Consistency, and Adaptive High
Frequency Positional Encoding. For the Image Level Consistency, we
establish correlations from intra- and inter-view images for con-
structing different color labels. Specifically, we first supervise the
quality of image synthesis with the standard photometric render-
ing. Till here, we establish the projection geometric relationship
between the source and target viewpoints, and provide pseudo-
labels from the source (target) view to the rendered image of the
target (source) view. This approach constructs an adjacent photo-
metric supervision to enhance the learning capability of camera
poses in the joint optimization problem. For the Region Level Consis-
tency, GC-NeRF localizes key regions of the source and target views
by the correspondences between matching points across image
pairs. Then we re-project the matching points to capture the pixel
position labels and 3D coordinates labels. Consequently, GC-NeRF
establishes a novel photometric rendering loss, matching projected
supervision, between the projected pixels and the labeled pixels
in the rendered images. This effectively augments the joint opti-
mization performance. For the Adaptive High Frequency Positional
Encoding, the proposed adaptive fusion random Fourier features
(AdaRFF) strategy can map the coordinates to a high-dimensional
space. It will adaptively filter high-frequency features into MLP
network so that benefiting the NeRF model to render high-quality
novel view images even with sparse input views.

We evaluate GC-NeRF and the state-of-the-art baselines, which
effectively outperform various methods to achieve the SOTA per-
formance on the Tanks and Temples [15], LLFF [33], and NeRF Real
360 [21] datasets for sparse and unposed images NeRF optimization.
The main contributions are summarized as follows:

• We advocate the idea of GC-NeRF to optimize NeRF model
from sparse and unposed images.

• We propose effective supervisions of GC-NeRF, the image-
and region-level consistencies, for establishing geometric
correspondences for input views and augmenting the joint
optimization capabilities of NeRF model and camera poses.

• We present a novel position encoding method, adaptive fu-
sion random Fourier features, for passing input coordinates
to a higher dimension space and performing satisfactorily
at representing high-frequency variation in the scene.

• We conduct comprehensive analyses on GC-NeRF, which
achieves the state-of-the-art results in several real-world
scenarios, demonstrating the effectiveness of our method.

2 RELATEDWORK
We mainly introduce two different aspects of researches for NeRF,
i.e., the novel view images synthesis and the camera and extrinsic
parameters estimation, which are relevant to our method.

Novel View Synthesis for NeRF. In recent years, Neural Ra-
diance Field (NeRF) [21] has become the favored image rendering
because of its remarkable implicit scene representation. Numer-
ous methods [2, 31, 32, 40, 45, 47] are presented to improve the
performance of NeRF. Typically, a number of researchers have inte-
grated depth or point cloud to supervise the training and rendering

stage [7, 26]. Moreover, an additional regularisation is another ef-
fective strategy to augment the photometric quality [14, 43, 49].
Recently, many innovative constructs have accelerated training
and rendering [9, 11, 22]. All of these models achieve fantastic re-
sults. However, most of them rely on sufficient images, which are
indispensable to pre-computed camera extrinsic parameters.

Different from the above approaches, we exploit the geometric
consistency relations between input views, which enables the novel
view synthesis for implicit scene representation with only two
unposed images.

Pose Estimation for NeRF. Weaning NeRF off camera param-
eter preprocessing is a significant attempt for optimizing NeRF
nowadays [20, 44, 46]. Based on the SLAM technique, some re-
searchers employ RGB-D data or exploit SLAM’s tracking capabil-
ities to pre-calculate the camera poses [27, 36, 53]. Moreover, the
other methods focus on learning NeRF model and camera poses
jointly [1, 42]. iNeRF [18] sets camera poses as learnable parame-
ters, which can be optimized by minimizing the residual between
the predicted and ground truth pixels. BARF [17] combines bundle-
adjustment strategy and NeRF to solve the joint problem of pose
estimation and NeRF model. SCNeRF [13] jointly learns the scene
and the camera parameters by self-calibration algorithms. GARF [4]
employs Gaussian activation to improve the joint optimization of
pose and scene. A mount of works [3, 10, 29, 48] adopt the gener-
ative network or pose/depth estimators to predict camera poses
before learning the camera and NeRF model.

Although these solutions show infusive performance, they still
suffer from indispensable pose initialization or sufficient images.
Toward the end, We jointly optimize camera parameters and NeRF
by image- and region-level supervision in sparse views settings.

3 PRELIMINARIES
Neural radiance field (NeRF) [21] represents continuous scenes as
regressing from a single 5D coordinate to view-dependent RGB
color, which can be optimized by minimizing photometric supervi-
sion as follows:

Θ̂ = argmin
Θ

L𝑟𝑔𝑏 (𝐼 | 𝐼 , [R|t],K), (1)

where Θ is a basic MLP network. 𝐼 is the predicted image. [R|t] =
Γ ∈ SE(3), R ∈ SO(3), t ∈ R3, and K ∈ R3×3 represented camera
extrinsic and intrinsic parameters, respectively. Particularly, we can
synthesize the color 𝐶 of pixel p in 𝐼 along the ray from 𝑡𝑛 to 𝑡𝑓 as
follows:

𝐶 (rp) =
∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (rp (𝑡))c(rp (𝑡), dp)𝑑𝑡, (2)

where 𝜎 (rp (𝑡)) ∈ R and c(rp (𝑡), dp) ∈ R3 denote volume density
and RGB color of 3D location x = rp (𝑡), respectively. dp ∈ S2 is the
ray direction, which is calculated by camera parameters [R|t] and K,
and pixel p.𝑇 (𝑡) = exp(−

∫ 𝑡

𝑡𝑛
𝜎 (rp (𝑠))𝑑𝑠) indicates the accumulated

transmittance. Notably, we can predict a view-invariant volume
density 𝜎 and a view-dependent color c according to 3D location x
and view direction d by an MLP neural network 𝑓Θ such that:

[𝜎, c] = 𝑓Θ (𝛾 (x), 𝛾 (d)), (3)
2
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where 𝛾 (·) : R3 → R2𝐿 denotes the positional encoding function
under 𝐿 harmonics. Finally, a photometric rendering loss could
optimize Θ by Eq. (1).

4 METHOD
In this section, we first elucidate the motivation and method over-
view in Section 4.1. Then we report the framework of GC-NeRF in
Section 4.2 – 4.6.

4.1 Motivation and Overview
This work aims to improve novel view synthesis by NeRF from
sparse and unposed camera images. Specifically, we address on
the challenging task of synthesizing novel views using only sparse
input images (as low as 2 views), without requiring accurate or
specific initial camera poses.

This results in two critical challenges. Firstly, only a few input
images for NeRF [21] in training will overfit instantly, which leads
to terrible rendering quality of meaningful 3D geometry, even with
ground-truth camera parameters [39]. Secondly, current jointly
optimizing for pose and NeRF approaches focus on dense views
of 3D scenes [1], along with relying on proper pose initialization.
Especially, the above challenges will restrain each other, such as the
existing photometric supervision is weak to perceive 3D geometric
scenes from sparse views. Thus failure to get rid of poses under
sparse input views.

Towards this end, we propose a novel Learning Geometry Con-
sistent Neural Radiance Field method, dubbed GC-NeRF, which
combines image- and region-level consistencies to overcome the
joint optimization problem. And an adaptive positional encoding
strategy is designed for augmenting high-frequency perception.

Specifically, given a pair of images 𝐼𝑆 and 𝐼𝑇 , along with the cor-
respondences between matching points in two views, we establish
geometric consistency at both the image- and region-level.

For the image-level consistencies, we propose an adjacent pho-
tometric supervision that leverages photometric rendering in stan-
dard NeRF. Specifically, we employ epipolar geometry to provide
pseudo color labels p𝑆→𝑇 and p𝑇→𝑆 for the rendered images 𝐼𝑇 and
𝐼𝑆 , respectively, from the corresponding target and source views.
The adjacent photometric supervision enables to optimize NeRF
model and camera poses simultaneously.

For the region-level consistencies, we consider the matching
points relations of the input image pair 𝐼𝑆 and 𝐼𝑇 as re-projection
labels for key pixels. As the Lambertian model, we aim to ensure
that the re-projection of a pixel p𝑆 onto the target image p̃𝑆→𝑇

ideally corresponds to the matched pixel with the same color. We
establish this geometric relationship on the rendered images 𝐼𝑆 and
𝐼𝑇 of the image pair, facilitating the joint optimization of the NeRF
model and camera poses.

Finally, we introduce the adaptive fusion random Fourier fea-
tures (AdaRFF) positional encoding module based on the random
Fourier features (RFF) transformation, which adaptively augments
high-frequency variations of the scene when mapping coordinates
to a higher-dimensional space. This framework overcomes the lim-
itations of previous sparse view setting approaches, improving not
only the global geometry but also the high-frequency details and
appearance of the rendered images.

In the following, we elaborate the pipeline of GC-NeRF, including
the Image Level Consistency, Region Level Consistency,Adaptive High
Frequency Positional Encoding.

4.2 Poses Initialization
To solve the joint optimization problem of NeRF model and camera
poses, we first initialize camera pose parameters R ∈ SO(3) as the
quaternions q(w, x, y, z) to represent a 3D rotation. Different from
the previous works to initialize with the axis-angle [42], the 6-vector
representations [13, 39] or the Euler angles [1], the quaternions
strategy only has 4 parameters rather than 6 without Gimbal lock
problem [34], which alleviates the gradients backward to update the
three degrees of freedom rotation effectively. The transformation
from a quaternion q(w, x, y, z) to a rotation matrix R ∈ R3×3 is as
follows:

R =


1 − 2(𝑦2 + 𝑧2) 2(𝑥𝑦 − 𝑧𝑤) 2(𝑥𝑧 + 𝑦𝑤)
2(𝑥𝑦 + 𝑧𝑤) 1 − 2(𝑥2 + 𝑧2) 2(𝑦𝑧 − 𝑥𝑤)
2(𝑥𝑧 − 𝑦𝑤) 2(𝑦𝑧 + 𝑥𝑤) 1 − 2(𝑥2 + 𝑦2)

 . (4)

4.3 Image Level Consistency
The image-level consistency consists of two aspects: the intra-view
relations between rendering images and ground truth (GT) images
at the same poses, as well as the inter-view consistency associations
between rendered images and the GT from adjacent images.

Image Photometric Supervision. The image photometric loss
is a critically acclaimed strategy to bridge the gap between the
rendered and the GT images at the same viewpoint, which adopts
the squared error of intra-view pixel color to supervise NeRF model
convergence [1]. The details are as follows:

L𝑖𝑝𝑠 =
∑︁
p∈R

∥𝐶 (p) −𝐶 (p)∥22, (5)

where R is the set of rays in each batch. 𝐶 (p) and 𝐶 (p) denote the
ground truth and predicted RGB colors of pixel p for ray r by Eq. (2),
respectively.

Adjacent Photometric Supervision.Directly employing sparse
or unposed image settings will lead to corrupted NeRF [21] col-
lapsing with overfitting. Because only the image photometric loss
(Eq. (5)) is impossible to support the harsh demands with the limited
ground-truth from the intra-view pixel color. We present a training
supervision upon inter-view images, adjacent photometric loss, to
borrow enough constrains from the adjacent view for augment
perceiving multi-view consistency for 3D scenes.

We get the inspiration from epipolar geometry to augment the
geometric correspondences of input views. Given two images 𝐼𝑆
and 𝐼𝑇 and their rendered images 𝐼𝑆 and 𝐼𝑇 with source and target
viewpoints Γ𝑆 and Γ𝑇 , respectively. We can warp 𝐼𝑆 to pose [R𝑇 |t𝑇 ]
by the transformation as follows:

𝑄𝑆 =
[
R𝑆 t𝑆

]−1
(𝐷𝑆K−1

𝑆
p𝑆 ),

𝑄𝑆→𝑇 =
[
R𝑇 t𝑇

]
𝑄𝑆 ,

p𝑆→𝑇 = Norm(K𝑇𝑄𝑆→𝑇 ),

(6)

where p𝑆 ∈ R2×1 is the pixel of image 𝐼𝑆 . Norm(·) denotes the
scale normalization. (·) depicts the homogeneous representation.
𝐷𝑆 is the depth of p𝑆 . p𝑆→𝑇 denotes the warped pixel in target

3
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Figure 1: Our approach GC-NeRF for joint camera pose and NeRF model training from only sparse and unposed input views.
We first establish geometric relations between the image pair to construct photometric supervisions from intra- and inter-view
in the image-level (Eq. (7)). For region-level consistencies, we present a novel photometric rendering loss (matching projected
loss) between the projected pixels and the matching pixels in the rendered images (Eq. (8)). We also bridge the gap of 3D points
for matching pixels to supervise the optimization of camera extrinsic parameters and the density field (Eq. (9)).

viewpoint Γ𝑇 . After that, we can obtain the warped image 𝐼𝑆→𝑇 . To
optimize pose and NeRF model jointly, we then assess the squared
error between 𝐶 (p𝑆→𝑇 ) in 𝐼𝑆→𝑇 and the pseudo color label 𝐶 (p𝑇 )
in 𝐼𝑇 as follows:

L𝑎𝑝𝑠 =𝑚 ⊙
∑︁
p∈R

∥𝐶 (p𝑆→𝑇 ) −𝐶 (p𝑇 )∥22, (7)

where𝑚 is themask to filtrate the projected pixels out-of-bounds [5].
We also calculate the errors between 𝐶 (p𝑇→𝑆 ) in 𝐼𝑇→𝑆 and the
pseudo color label 𝐶 (p𝑆 ) in 𝐼𝑆 . The Eq. (6) is differentiable during
the training stage. Thus the adjacent photometric supervision can
pass the gradients to camera parameters [R|t] of image pairs, while
refining rendering quality by the backward for NeRF model.

Of utmost importance, the occlusion problem of multi-view im-
ages will transform distorted or wrong semantics images 𝐼𝑆→𝑇 and
𝐼𝑇→𝑆 , which affect the accuracy of pseudo color labels sincerely.
We present a technique to compare the projected depth 𝑑𝑟 from
p𝑆 to p𝑆→𝑇 and the rendered depth 𝑑𝑝 of p𝑆→𝑇 in 𝐼𝑇 . Then we
reserve the pixels with a threshold 𝛽 <

𝑑𝑟
𝑑𝑝

< 1
𝛽
(𝛽 ≤ 1). Till here,

the unambiguous gradients that are calculated from the adjacent
view by Eq. (7) can further facilitate the joint optimization task.

4.4 Region Level Consistency
The image-level consistency favors the global supervision for 3D
scenario perception across input views. However, we assume that
access to only sparse views (i.e., 2 views) with unposed camera pose
predicts (i.e., initialized with identity). Thus the above consistency
losses are not sufficient to fulfill the joint optimization completely.
We present additional supervisions from the other aspect, region-
level consistencies, to augment 3D geometric analysis robustly and
consistently.

Matching Association. The region-level consistency depicts
the geometric affiliation of key pixels among multi-view images.
We adopt the key points matching strategy, a pre-trained correspon-
dence regression method (LoFTR [37]), to extract a matching point
p𝑇 for each pixel p𝑆 . Empirically, any learned based [8, 12] or clas-
sical [19, 28] matching solver can be qualified to establish matching
associations of input views. Logically, the greater the number of
matching points with high accuracy, the greater the facilitation.
However, for augmenting NeRF joint optimization significantly, we
only need 1% - 2% of the total pixel count as matching points to be
converged, rather than 10% or even more matching points, which
will be illustrated in Section 5.4.

Matching Projected Supervision. The core idea is to calculate
whether the color of the re-projected pixel p̃𝑆 is consistent with the
color of the matching point p𝑇 in 𝐼𝑇 . We sample an image pair 𝐼𝑆
and 𝐼𝑇 . Then we can obtain the matching sequenceM. Specifically,
for pixel p𝑆 in the viewpoint Γ𝑆 , we will get the corresponding
projected pixel p̃𝑆 following Eq. (6) in the viewpoint Γ𝑇 . In the ren-
dering image 𝐼𝑇 , the matching pixels p𝑇 and p̃𝑆 manifest the same
color while camera pose parameters and NeRF model are conver-
gence. Therefore, we narrow the pose discrepancy by supervising
the matching pixel colors’ consistency. We formulate our matching
projected loss as follows:

L𝑚𝑝𝑠 =
∑︁

p∈M
𝑐p∥𝐶 (p̃𝑆 ) −𝐶 (p𝑇 )∥22, (8)

where p̃𝑆 is the re-projected pixel of p𝑆 in viewpoint Γ𝑇 . p𝑇 denotes
the matching pixel of p𝑆 in viewpoint Γ𝑇 , and 𝑐 is the confidence
of the matching points.

For the multi-view occlusion problem, previous work [5] could
alleviate it properly by the mask strategy. However, under the
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sparse and unposed images settings, the mentioned scheme can not
distinguish the occlusion phenomenon such two aspects: firstly, it
is a real occlusion circumstance in the real world scenario. Secondly,
it is most likely that the pose is inaccurate because the NeRF model
and camera parameters have not converged, thereby calculating
"pseudo-occlusion". This greatly hinders NeRF’s ability to perceive
scene 3D geometric information. Specifically, GC-NeRF establishes
matching projected consistency supervision by matching points
can effectively alleviate this problem.

Moreover, compared with the re-projected error [39], the match-
ing projected supervision has ability to update the fully connected
layers for the density 𝜎 and color c of 3D locations, and camera
parameters Γ simultaneously. However, the former only learned the
density and camera parameters, which enjoys a weaken capacity
for NeRF and pose joint optimization. We therefore present this
matching projected supervision for region consistency.

Space Similarity Supervision. Different from the matching
projected supervision in Eq. (8), we also build the consistency loss
function directly based on projected 3D coordinates to enhance
NeRF for perceiving the region’s geometric information. Benefiting
from the matching sequence M, the 3D coordinates �̂�𝑆 and �̂�𝑇

can be predicted from the corresponding matching points under Γ𝑆
and Γ𝑇 . Before the model converges, there will be a spatial position
deviation in the 3D coordinates calculated for the same pair of
matching points p𝑆 and q𝑇 from two viewpoints. We present the
3D space similarity supervision to reduce this bias. The specific
calculation is as follows:

L𝑠𝑠𝑠 =
1

|M|
∑︁

p∈M
𝑐p∥�̂�𝑆 − �̂�𝑇 ∥22, (9)

where �̂� ∈ R3×1 is calculated by Eq. (6), which omits subscript
index. Due to the space similarity supervision, We can make the
two point clouds infinitely close until they are almost identical, that
is the camera pose is fitted as accurately as possible.

4.5 Adaptive High Frequency Positional
Encoding

NeRF heavily relies on a positional encoding module to map the
inputs into a high-dimensional space. However, recent work by
Rahaman [24] has revealed that deep networks exhibit a bias toward
learning lower-frequency functions. Thus a simple Fourier feature
transformation that is commonly used in the standard NeRF [21],
which fails to capture high-frequency information effectively [38].

The failure of the positional encoding module drastically reduces
the ability to represent the details of geometry and texture of the
scene (e.g. the rendered appearance becomes over-smoothed). This
limitation is particularly severe for GC-NeRF, because it stems
from the photometric and geometric constraints of the quality of
rendered pixels’ color. This phenomenon hinders the effectiveness
of the image- and region-level geometric consistency supervisions.

Drawing inspiration from [25], we propose a novel approach
called adaptive fusion random Fourier features (AdaRFF), by com-
bining RFF with the conventional Fourier feature (FF) mapping.
The presented adaptive fusion RFF component aims to enhance
the capacity to learn high-frequency geometry and texture, thus
enhancing the quality of scene perception and rendering. The RFF

mapping function is calculated as follows:

𝛽 (x) = [𝑠𝑖𝑛(20𝜋 l0x), cos(20𝜋 l0x), · · · ,

𝑠𝑖𝑛(2𝐿−1𝜋 lL−1x), cos(2L−1𝜋 lL−1x)],
(10)

where l ∈ R3 denotes the probability space, which is equipped with
the Gaussian measure and non-zero standard deviation. We follow
[21] to set 𝐿 = 10. Then we combine the conventional Fourier
feature with RFF to introduce adaptive fusion weight coefficients
g, which can dynamically filtrate the desired frequency bands for
optimal scene representation. The details are as follows:

g = 𝜎 (W1𝛽 (x) + W2𝛾 (x)), (11)

𝜓 (x) = g · 𝛽 (x) + (1 − g) · 𝛾 (x), (12)
where g ∈ R2L denotes the adaptive coefficients. 𝜎 (·) is the sigma
function. W1,W2 ∈ R2L×2L depict learnable parameters. · is the
Hadamard product. And 𝛽 (·) and 𝛾 (·) denote RFF and the con-
ventional Fourier feature mapping functions. Thus, GC-NeRF can
choose the proper frequency bands and scale adaptively to recon-
struct a high-fidelity neural scene in novel view synthesis.

4.6 Training Framework
Objective Function.Assembling all loss terms, our overall training
objective loss function is formulated as follows:

L = L𝑖𝑝𝑠 + 𝜆1L𝑎𝑝𝑠 + 𝜆2L𝑚𝑝𝑠 + 𝜆3L𝑠𝑠𝑠 (13)

where 𝜆1, 𝜆2, and 𝜆3 are predefined weighting coefficients for each
loss terms. By minimising the Eq. (13), our approach returns opti-
mised camera poses Γ and NeRF’s MLP network Θ.

Training Pipeline. For GC-NeRF, there is only one MLP net-
work rather than a coarse and a fine networks. The training is
split into two stages. First, we only use the image photometric
supervision Eq. (5) to assist camera pose parameters representing
discrepancies between each other. Then Eq. (5) - Eq. (9) supervise to-
gether to establish multi-view geometry consistency for optimizing
pose and NeRF parameters jointly. Second, we freeze camera pose
parameters and finetune the NeRF model with four supervisions
until rendering high quality novel view images. Simultaneously
analyzing image pairs does not result in excessive computation for
the training pipeline, as there are shared operations in color and
depth rendering.

5 EXPERIMENTAL RESULTS
5.1 Experimental Settings
Datasets.We evaluate all baselines and our presented GC-NeRF on
the Tanks and Temples [15], LLFF [33], and NeRF real 360 [21]
real-world scene datasets, where we report the results of unknown
and known pose methods, respectively. Tanks and Temples in-
cludes both outdoor scenes and indoor environments. Following [1],
we use 8 scenes to evaluate all methods. We chose scenes captured
at both indoor and outdoor scenarios, and 1/8 of the images in each
sequence are used for novel view synthesis. LLFF contains 8 sets
of different real-life scenes, which are primarily captured in the
forward-facing direction. Consistent with [21], we evenly select
the test set by extracting every 8th image from the video list. NeRF
Real 360 is composed of 2 different complex object-level scenes,
which are captured by a set of inward-facing views. Each scene has
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been taken from 99 and 116 positions, corresponding to the number
of RGB images. We follow the protocol of [21] and evaluate 1/8 of
the views for novel view synthesis.

Metrics. We report the performances of Novel View Synthesis,
Camera Pose Estimation, and Depth Estimation in three bench-
marks. For Novel View Synthesis, following [1, 13, 17], we select
Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index Mea-
sure (SSIM) [41], and Learned Perceptual Image Patch Similarity
(LPIPS) [51] standard evaluation metrics. For Camera Pose Estima-
tion, we employ Relative Pose Error (RPE) to calculate the relative
pose errors between image pairs, which includes rotation and trans-
lation errors [16, 35, 52]. Notably, rotation errors are in degree, and
translation errors are multiplied by 100. For Depth Estimation, we
follow [39] to adopt the Mean Depth Absolute Error (MDAE) for
comparing the rendered and the ground-truth depth values.

Implementation Details. We implement our framework based
on previous work [1, 21]. For GC-NeRF, 1024 rays will be calculated
in every batch. And we sample 128 coordinates along each ray with
a single MLP network. We initialize camera extrinsic parameters
by: the rotation matrix R ∈ R3×3 as E + Δ𝑟 , the translation vector
t ∈ R3 as 0+Δ𝑡 . Moreover, we follow [1] to align test camera poses
before the evaluation. As for baselines, we defer to the paper and
source codes to conduct experiments with the same settings, which
are under 2 input views and 20K iterations with about 4-5 hours on
a single RTX 3090 GPU.

5.2 Comparing to SOTA with Unknown Pose
NeRF

We evaluate GC-NeRF and the SOTA unknown pose methods with
2 input views in different metrics. Moreover, more details results
are reported in the supplementary.

Baselines. We compare to four SOTA unknown pose baselines.
BARF [17], an effective method with a simple strategy for train-
ing NeRF from imperfect camera poses. SCNeRF [13] is a self-
calibration algorithm, which learns the scene and camera parame-
ters jointly. NoPeNeRF [1] integrates depth additionally to estab-
lish relations between adjacent views for unposedNeRF. SPARF [39]
jointly optimizes camera poses and scenes with three input views,
which rely on noised rather than initializing poses with identity.
For a fair comparison, we eliminate the GT depth in NoPeNeRF [1].

Results of Novel View Synthesis. As illustrated in Table 1,
for the quantitative results, GC-NeRF outperforms all baselines in
three datasets with different metrics by a large margin. Specifically,
compared with SPARF in the Tanks and Temples dataset, GC-NeRF
has increased by 2.05, 0.10, and 0.07 with respect to PSNR, SSIM, and
LPIPS. This phenomenon demonstrates that the presented various
consistency strategies can augment the ability of NeRF model from
sparse and unposed images. For the qualitative analysis of the
image rendering, GC-NeRF outperforms the SOTA unposed NeRFs
significantly under two input views, which are shown in Fig. 2.
This further illustrates the superiority of the geometric consistency
framework to augment NeRF model and pose joint optimization.

Results of Camera Pose Estimation. The performances of
pose estimation on three datasets are illustrated in Table 2. Com-
pared with the SOTA approaches, our method achieves the best
performance consistently. Specifically, in the Tanks and Temples
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Figure 2: The visualization of baselines and GC-NeRF with
unknown pose images (2 views) about novel view rendering.

scene, the accuracy of camera pose metrics for GC-NeRF is an order
of magnitude higher than SPARF.

Results of Depth Estimation.We evaluate the rendered depth
on Tanks and Temples, LLFF, and NeRF Real 360 datasets, respec-
tively. As shown in the MDAEmetric of Table 2, GC-NeRF performs
superior accuracy for depth rendering, which precedes other base-
lines markedly. In addition, the qualitative visualization results on
three datasets are exhibited in Fig. 2.

5.3 Comparing to SOTA with Known Pose NeRF
We report the performance of GC-NeRF and the SOTA known pose
methods with 2 input views in novel view synthesis quality under
fixed ground-truth camera parameters.

Baselines. We compare to four designed for tackling sparse
image rendering methods, which are DSNeRF [6], RegNeRF [23],
SPARF [39], along with the standard NeRF [21]. Especially, all
baselines employ ground-truth camera poses.

Results of Novel View Synthesis.We exhibit the performance
on three datasets in Table 3 and Fig. 3. Consequently, our approach
GC-NeRF achieves the best performance compared to other base-
lines on all datasets and three rendering quality metrics. This phe-
nomenon demonstrates that: Firstly, adopting image-level consis-
tency covers the shortage of the traditional rendering losses, which
enhances novel view synthesis performance. Secondly, the incor-
poration of region-level consistency significantly promotes NeRF’s
ability for depth estimation, thereby directly advancing the per-
ception of complex scenes. Lastly, the AdaRFF positional encoding
boosts high-frequency information within the images, maximizing
the benefits of region consistency supervision. As a result, GC-NeRF
achieves SOTA results even in the absence of GT poses.
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Table 1: The performance (2 views) of unknown pose methods about novel view synthesis in Tanks and Temples, LLFF, and
NeRF Real 360 datasets.

Methods Tanks and Temples LLFF NeRF Real 360
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

BARF 22.23 0.59 0.48 18.24 0.42 0.53 16.23 0.34 0.47
SCNeRF 19.39 0.56 0.43 18.60 0.41 0.44 15.05 0.31 0.52
NoPeNeRF 22.91 0.60 0.54 18.15 0.44 0.47 18.34 0.40 0.57
SPARF 22.45 0.59 0.47 19.75 0.46 0.54 20.06 0.44 0.43
GC-NeRF 24.50 0.69 0.40 23.00 0.64 0.29 21.07 0.52 0.39

Table 2: The performance (2 views) of unknown pose methods about camera pose and depth estimation in Tanks and Temples,
LLFF, and NeRF Real 360 datasets.

Methods Tanks and Temples LLFF NeRF Real 360
RPE𝑅↓ RPE𝑡↓ MDAE↓ RPE𝑅↓ RPE𝑡↓ MDAE↓ RPE𝑅↓ RPE𝑡↓ MDAE↓

BARF 0.506 5.958 1.570 2.980 9.882 1.218 2.941 9.219 1.590
SCNeRF 0.526 1.822 0.893 3.412 3.244 0.907 2.140 2.840 0.890
NoPeNeRF 0.875 0.819 0.549 3.682 5.801 0.880 1.892 1.580 0.621
SPARF 0.406 0.603 0.365 0.611 2.217 0.514 0.387 0.811 0.213
GC-NeRF 0.115 0.215 0.358 0.412 0.334 0.233 0.233 0.476 0.171

Table 3: The performance (2 views) of known pose methods about novel view synthesis in Tanks and Temples, LLFF, and NeRF
Real 360 datasets.

Methods Tanks and Temples LLFF NeRF Real 360
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

NeRF 15.78 0.42 0.65 16.29 0.31 0.58 15.77 0.22 0.70
DSNeRF 20.93 0.60 0.57 20.69 0.53 0.51 16.69 0.32 0.66
RegNeRF 20.20 0.65 0.58 21.39 0.64 0.58 19.22 0.50 0.61
SPARF 21.38 0.58 0.45 22.32 0.58 0.38 20.77 0.51 0.33
GC-NeRF 23.62 0.68 0.40 23.39 0.66 0.30 20.95 0.53 0.30

Table 4: The ablation study for image and region-level con-
sistency on LLFF dataset.

Variants NVS PE
PSNR↑ SSIM↑ LPIPS↓ RPE𝑅↓ RPE𝑡↓

GC-NeRF 23.00 0.64 0.29 0.412 0.334
w/o L𝑎𝑝𝑠 19.42 0.50 0.39 1.032 0.875
w/o L𝑚𝑝𝑠 18.28 0.43 0.41 1.831 1.389
w/o L𝑠𝑠𝑠 16.96 0.36 0.46 2.574 1.490
w/ ReProE 17.64 0.39 0.43 2.390 1.411

5.4 Method Analysis
In this section, we conduct a comprehensive analysis of the compo-
nents and hyper-parameters that are essential to our approach. All
methods are evaluated on the LLFF [33] dataset.

Effect of Image and Region Level Consistency. We ablate
the key supervisions of our approach with novel view synthesis
(NVS) and pose estimation (PE), here eliminating image- and region-
level consistencies from GC-NeRF, respectively. We also replace the
region-level supervisions with the re-projection error (w/ ReProE)
to test the performance. The results are illustrated in Table 4. We
observe that the first row achieves the best performance. Because

Table 5: The ablation study for positional encoding strategy
on LLFF dataset.

Variants NVS PE
PSNR↑ SSIM↑ LPIPS↓ RPE𝑅↓ RPE𝑡↓

w/ AdaRFF 23.00 0.64 0.29 0.412 0.334
w/ SPARF 19.89 0.48 0.32 0.486 0.399
w/ NoPeNeRF 19.70 0.46 0.34 0.550 0.730
w/ NeRF 18.96 0.44 0.48 0.959 1.599
w/o HiMF 18.45 0.44 0.74 1.384 1.859

GC-NeRF establishes robustness correspondence among multi-view
images, which render higher quality images and accurate camera
poses simultaneously. Comparing the rest the rows with the stan-
dard NeRF [21] in Table 3, the formers achieve better results, which
demonstrates that the image- and region-level geometric supervi-
sions are effective for NeRF and pose joint optimization.

Impact of Positional Encoding Strategy. We examine the im-
pact of the adaptive random Fourier feature (w/ AdaRFF) positional
encoding on the image rendering and PE performances by removing
or changing it to other alternatives. The results are listed in Table 5.
Without AdaRFF, the alternative strategies are the coarse-to-fine
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Figure 3: The visualization of baselines and GC-NeRF with
known pose images about novel view rendering. The inputs
only contain 2 images.

positional encoding strategy in SPARF [39] (w/ SPARF), the aperi-
odic trigonometric function in NoPeNeRF [1] (w/ NoPeNeRF), the
standard Fourier transformation in NeRF [21] (w/ NeRF), and with-
out any high-frequency mapping functions (w/o HiMF). Comparing
the results of w/o AdaRFF, although three alternative mapping func-
tions for the same backbone achieve better performance than w/o
HiMF in representing texture and pose estimation. Nevertheless,
GC-NeRF outperforms all above strategies because of aggregating
richer high-frequency information adaptively according to different
positions and viewing direction. Notably, compared the variants
with Table 1 and Table 2, all variants achieve better performance. It
verifies the superiority of the image- and region-level geometric
consistency supervisions for NeRF and poses joint optimization.

Amount of Training Data. In Table 1, we evaluate our pre-
sented approach GC-NeRF for joint NeRF-pose optimization, when
considering only 2 input views. For completeness, we here report
results on LLFF data when 5 and 8 input views are available. The
experimental settings are the same as 2-view settings, except for the
number of training views. As illustrated in Table 6, the trend is sim-
ilar for 2, 5, and 8 input images. Although SPARF [39] yields better
performance as the images increase, it still struggles with camera
poses. GC-NeRF outperforms SPARF consistently in three groups,
and both the rendering quality and camera parameters are more sat-
isfactory. Because the image- and region-level supervisions provide
sufficient multi-view geometry consistencies, which facilitate the
optimization of NeRF model and pose parameters simultaneously.

Amount of Matching Points. The matching points are the ba-
sis of GC-NeRF to construct region-level consistency. We evaluate
the effectiveness of matching points with different quantities on the

Table 6: The performance of GC-NeRF and SPARF with dif-
ferent numbers of training data on LLFF dataset.

Methods NVS PE
PSNR↑ SSIM↑ LPIPS↓ RPE𝑅↓ RPE𝑡↓

Ours-2 23.00 0.64 0.29 0.412 0.334
SPARF-2 19.75 0.46 0.54 0.611 2.217
Ours-5 23.15 0.69 0.32 0.186 0.254
SPARF-5 21.38 0.52 0.47 0.194 0.365
Ours-8 23.82 0.73 0.28 0.088 0.242
SPARF-8 21.81 0.54 0.46 0.193 0.320

17.00
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20.00
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23.00

1k 10k 20k 30k

Ours PSNR SPARF PSNR

0.25

0.35

0.45

0.55

0.65
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Ours SSIM Ours LPIPS
SPARF SSIM SPARF LPIPS

Figure 4: The performance of GC-NeRF and SPARF with dif-
ferent numbers of matching points on LLFF dataset.

LLFF scene. In Fig. 4, all metrics get better as the number of match-
ing points gets bigger. The phenomenon depicts that both methods
can improve the rendering quality as the matching gets denser.
However, GC-NeRF will oscillate at a high level after reaching the
threshold (i.e. 5k), because of calculating gradients for both pose
and NeRF model. Yet SPARF need more than 35k to converge just
for density field. Notably, the number of reliable matching points
is extremely limited with viewpoint variations in the real-world
scenario. It illustrates the availability and robustness of GC-NeRF.

6 CONCLUSION
Current methods for novel view synthesis struggle to render high-
quality images and preserve high-frequency details, when trained
from sparse and unposed images by the joint optimization of NeRF
models and camera poses. This paper proposes learning geometry
consistent neural radiance field from sparse and unposed views (GC-
NeRF) for novel view synthesis. The presented GC-NeRF establishes
the consistency relations from image- and region-level. The former
adopts the epipolar geometry for generating pseudo-color labels to
construct adjacent photometric supervision, which integrates intra-
and inter-views photometric constraints to augment the gradients
for both NeRF and camera poses. The latter employs matching
points to capture the re-projected color labels for facilitating the
joint optimization of the NeRF and poses. The proposed adaptive
fusion random Fourier features positional encoding module maps
the input coordinates to a high dimension space adaptively, which
effectively fits the high frequency variation of the 3D scene. We
evaluate GC-NeRF and several state-of-the-art methods in three
challenging real-world scenarios. The experimental results verify
the effectiveness and robustness of the GC-NeRF. We also plan
to extend our strategy to other NeRF’s hotspot applications (e.g.
relighting with NeRF from sparse and unposed views).

8



929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Learning Geometry Consistent Neural Radiance Fields from Sparse and Unposed Views ACM MM ’24, 28 October – 01 November, 2024, Melbourne, AU

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Wenjing Bian, Zirui Wang, Kejie Li, and Jia-Wang Bian. 2023. NoPe-NeRF:

Optimising Neural Radiance Field with No Pose Prior. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4160–4169.

[2] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang, Fanbo Xiang, Jingyi
Yu, and Hao Su. 2021. MVSNeRF: Fast Generalizable Radiance Field Reconstruc-
tion from Multi-View Stereo. In Proceedings of the 2021 IEEE/CVF International
Conference on Computer Vision. 14104–14113.

[3] Zezhou Cheng, Carlos Esteves, Varun Jampani, Abhishek Kar, Subhransu Maji,
and Ameesh Makadia. 2023. LU-NeRF: Scene and Pose Estimation by Synchro-
nizing Local Unposed NeRFs. In Proceedings of the 2023 IEEE/CVF International
Conference on Computer Vision. 18312–18321.

[4] Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and Simon Lucey. 2022.
Gaussian Activated Neural Radiance Fields for High Fidelity Reconstruction and
Pose Estimation. In Proceedings of the 17th European Conference on Computer
Vision. 264–280.

[5] François Darmon, Bénédicte Bascle, Jean-Clément Devaux, Pascal Monasse, and
Mathieu Aubry. 2022. Improving neural implicit surfaces geometry with patch
warping. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 6250–6259.

[6] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. 2022. Depth-
supervised NeRF: Fewer Views and Faster Training for Free. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12872–12881.

[7] Kangle Deng, Andrew Liu, Jun-Yan Zhu, and Deva Ramanan. 2022. Depth-
supervised nerf: Fewer views and faster training for free. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12872–12881.

[8] Mihai Dusmanu, Ignacio Rocco, Tomás Pajdla,Marc Pollefeys, Josef Sivic, Akihiko
Torii, and Torsten Sattler. 2019. D2-Net: A Trainable CNN for Joint Description
and Detection of Local Features. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 8092–8101.

[9] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong Chen, Benjamin Recht,
and Angjoo Kanazawa. 2022. Plenoxels: Radiance Fields without Neural Net-
works. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 5491–5500.

[10] Yang Fu, Ishan Misra, and Xiaolong Wang. 2023. MonoNeRF: Learning General-
izable NeRFs from Monocular Videos without Camera Poses. In Proceedings of
the 40th International Conference on Machine Learning. 10392–10404.

[11] Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien
P. C. Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. In
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision.
14326–14335.

[12] Stephen Hausler, Sourav Garg, Ming Xu, Michael Milford, and Tobias Fischer.
2021. Patch-NetVLAD: Multi-Scale Fusion of Locally-Global Descriptors for
Place Recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 14141–14152.

[13] Yoonwoo Jeong, Seokjun Ahn, Christopher B. Choy, Animashree Anandkumar,
Minsu Cho, and Jaesik Park. 2021. Self-Calibrating Neural Radiance Fields. In
Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision.
5826–5834.

[14] Mijeong Kim, Seonguk Seo, and Bohyung Han. 2022. InfoNeRF: Ray Entropy
Minimization for Few-Shot Neural Volume Rendering. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 12902–12911.

[15] Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. 2017. Tanks
and temples: benchmarking large-scale scene reconstruction. ACM Transactions
on Graphics 36, 4 (2017), 78:1–78:13.

[16] Johannes Kopf, Xuejian Rong, and Jia-Bin Huang. 2021. Robust Consistent Video
Depth Estimation. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 1611–1621.

[17] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Simon Lucey. 2021. BARF:
Bundle-Adjusting Neural Radiance Fields. In Proceedings of the 2021 IEEE/CVF
International Conference on Computer Vision. 5721–5731.

[18] Yen-Chen Lin, Pete Florence, Jonathan T. Barron, Alberto Rodriguez, Phillip
Isola, and Tsung-Yi Lin. 2021. iNeRF: Inverting Neural Radiance Fields for Pose
Estimation. In Proceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems. 3437–3444.

[19] David G. Lowe. 2004. Distinctive Image Features from Scale-Invariant Keypoints.
International Journal of Computer Vision 60, 2 (2004), 91–110.

[20] Quan Meng, Anpei Chen, Haimin Luo, Minye Wu, Hao Su, Lan Xu, Xuming
He, and Jingyi Yu. 2021. GNeRF: GAN-based Neural Radiance Field without
Posed Camera. In Proceedings of the 2021 IEEE/CVF International Conference on
Computer Vision. 6331–6341.

[21] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi
Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. In Proceedings of the 16th European Conference on
Computer Vision. 405–421.

[22] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Kelle. 2022. In-
stant neural graphics primitives with a multiresolution hash encoding. ACM

Transactions on Graphics 41, 4 (2022), 102:1–102:15.
[23] Michael Niemeyer, Jonathan T. Barron, Ben Mildenhall, Mehdi S. M. Sajjadi,

Andreas Geiger, andNoha Radwan. 2022. RegNeRF: RegularizingNeural Radiance
Fields for View Synthesis from Sparse Inputs. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 5470–5480.

[24] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix Draxler, Min Lin, Fred A.
Hamprecht, Yoshua Bengio, and Aaron C. Courville. 2019. On the spectral bias
of neural networks. In Proceedings of the International Conference on Machine
Learning. 5301–5310.

[25] Ali Rahimi and Benjamin Recht. 2007. Random Features for Large-Scale Kernel
Machines. In Proceedings of the Conference on Neural Information Processing
Systems. 1–8.

[26] Barbara Roessle, Jonathan T. Barron, Ben Mildenhall, Pratul P. Srinivasan, and
Matthias Nießner. 2022. Dense Depth Priors for Neural Radiance Fields from
Sparse Input Views. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 12882–12891.

[27] Antoni Rosinol, John J. Leonard, and Luca Carlone. 2023. NeRF-SLAM: Real-
Time Dense Monocular SLAM with Neural Radiance Fields. In Proceedings of the
IEEE/RSJ International Conference on Intelligent Robots and Systems. 3437–3444.

[28] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary R. Bradski. 2011. ORB:
An efficient alternative to SIFT or SURF. In Proceedings of the 2011 IEEE/CVF
International Conference on Computer Vision. 2564–2571.

[29] Mehdi S. M. Sajjadi, Aravindh Mahendran, Thomas Kipf, Etienne Pot, Daniel
Duckworth, Mario Lucic, and Klaus Greff. 2023. RUST: Latent Neural Scene Rep-
resentations from Unposed Imagery. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 17297–17306.

[30] Johannes L. Schönberger and Jan-Michael Frahm. 2016. Structure-from-Motion
Revisited. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 4104–4113.

[31] Seunghyeon Seo, Yeonjin Chang, and Nojun Kwak. 2023. FlipNeRF: Flipped
Reflection Rays for Few-shot Novel View Synthesis. In Proceedings of the 2023
IEEE/CVF International Conference on Computer Vision. 22883–22893.

[32] Seunghyeon Seo, Donghoon Han, Yeonjin Chang, and Nojun Kwak. 2023. MixN-
eRF: Modeling a Ray with Mixture Density for Novel View Synthesis from Sparse
Inputs. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 20659–20668.

[33] Mohammad Shafiei, Sai Bi, Zhengqin Li, Aidas Liaudanskas, Rodrigo Ortiz Cayon,
and Ravi Ramamoorthi. 2021. Learning Neural Transmittance for Efficient
Rendering of Reflectance Fields. In Proceedings of the 32nd British Machine Vision
Conference 2021. 45–45.

[34] Ken Shoemake. 1985. Animating rotation with quaternion curves. In Proceedings
of the International Conference on Computer Graphics and Interactive Techniques.
245–254.

[35] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard, and Daniel
Cremers. 2012. A benchmark for the evaluation of RGB-D SLAM systems. In
Proceedings of the IEEE/RJS International Conference on Intelligent RObots and
Systems. 573–580.

[36] Edgar Sucar, Shikun Liu, Joseph Ortiz, and Andrew J. Davison. 2021. iMAP: Im-
plicit Mapping and Positioning in Real-Time. In Proceedings of the 2021 IEEE/CVF
International Conference on Computer Vision. 6209–6218.

[37] Jiaming Sun, Zehong Shen, Yuang Wang, Hujun Bao, and Xiaowei Zhou. 2021.
LoFTR: Detector-Free Local Feature Matching With Transformers. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 8922–
8931.

[38] Matthew Tancik, Pratul P. Srinivasan, BenMildenhall, Sara Fridovich-Keil, Nithin
Raghavan, Utkarsh Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng.
2020. Fourier Features Let Networks Learn High Frequency Functions in Low
Dimensional Domains. In Proceedings of the Conference on Neural Information
Processing Systems. 1–11.

[39] Prune Truong, Marie-Julie Rakotosaona, Fabian Manhardt, and Federico Tombari.
2023. SPARF: Neural Radiance Fields from Sparse and Noisy Poses. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4190–
4200.

[40] Peng Wang, Lingzhe Zhao, Ruijie Ma, and Peidong Liu. 2023. BAD-NeRF: Bun-
dle Adjusted Deblur Neural Radiance Fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4170–4179.

[41] ZhouWang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image
quality assessment: from error visibility to structural similarity. IEEE Transactions
on Image Processing 13, 4 (2004), 600–612.

[42] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen, and Victor Adrian Prisacariu.
2021. NeRF–: Neural Radiance Fields Without Known Camera Parameters. In
arXiv preprint arXiv:2102.07064. 1–17.

[43] Jamie Wynn and Daniyar Turmukhambetov. 2023. DiffusioNeRF: Regularizing
Neural Radiance Fields with Denoising Diffusion Models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 4180–4189.

[44] Yitong Xia, Hao Tang, Radu Timofte, and Luc Van Gool. 2022. SiNeRF: Sinusoidal
Neural Radiance Fields for Joint Pose Estimation and Scene Reconstruction. In
Proceedings of the 33rd British Machine Vision Conference 2022. 131–131.

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ACM MM ’24, 28 October – 01 November, 2024, Melbourne, AU Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

[45] Chen Yang, Peihao Li, Zanwei Zhou, Shanxin Yuan, Bingbing Liu, Xiaokang Yang,
Weichao Qiu, and Wei Shen. 2023. NeRFVS: Neural Radiance Fields for Free View
Synthesis via Geometry Scaffolds. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. 16549–16558.

[46] Weicai Ye, Shuo Chen, Chong Bao, Hujun Bao, Marc Pollefeys, Zhaopeng Cui,
and Guofeng Zhang. 2023. IntrinsicNeRF: Learning Intrinsic Neural Radiance
Fields for Editable Novel View Synthesis. In Proceedings of the 2023 IEEE/CVF
International Conference on Computer Vision. 339–351.

[47] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa. 2021. pixelNeRF:
Neural Radiance Fields From One or Few Images. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 4578–4587.

[48] Jiahui Zhang, Fangneng Zhan, Yingchen Yu, Kunhao Liu, Rongliang Wu, Xiaoqin
Zhang, Ling Shao, and Shijian Lu. 2023. Pose-Free Neural Radiance Fields via
Implicit Pose Regularization. In Proceedings of the 2023 IEEE/CVF International
Conference on Computer Vision. 3534–3543.

[49] Jian Zhang, Yuanqing Zhang, Huan Fu, Xiaowei Zhou, Bowen Cai, Jinchi Huang,
Rongfei Jia, Binqiang Zhao, and Xing Tang. 2022. Ray Priors through Repro-
jection: Improving Neural Radiance Fields for Novel View Extrapolation. In

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion. 18355–18365.

[50] Jason Y. Zhang, Deva Ramanan, and Shubham Tulsiani. 2022. RelPose: Predicting
Probabilistic Relative Rotation for Single Objects in the Wild. In Proceedings of
the European Conference on Computer Vision. 592–611.

[51] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang.
2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Met-
ric. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 586–595.

[52] Zichao Zhang and Davide Scaramuzza. 2018. A Tutorial on Quantitative Trajec-
tory Evaluation for Visual(-Inertial) Odometry. In Proceedings of the IEEE/RJS
International Conference on Intelligent RObots and Systems. 7244–7251.

[53] Zihan Zhu, Songyou Peng, Viktor Larsson,Weiwei Xu, Hujun Bao, Zhaopeng Cui,
Martin R. Oswald, andMarc Pollefeys. 2022. NICE-SLAM:Neural Implicit Scalable
Encoding for SLAM. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 12776–12786.

10


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Method
	4.1 Motivation and Overview
	4.2 Poses Initialization
	4.3 Image Level Consistency
	4.4 Region Level Consistency
	4.5 Adaptive High Frequency Positional Encoding
	4.6 Training Framework

	5 Experimental Results
	5.1 Experimental Settings
	5.2 Comparing to SOTA with Unknown Pose NeRF
	5.3 Comparing to SOTA with Known Pose NeRF
	5.4 Method Analysis

	6 Conclusion
	References

