
Under review as a conference paper at ICLR 2024

A EXPLANATION OF MODEL EVOLUTION

Figure 8: An illustration of the muta-

tion process in difference evolution.

In this section, we provide a more comprehensive expla-
nation of the principles underlying the Differential Evo-
lution algorithm, furthermore, we offer an in-depth eluci-
dation of the mutation process, providing a visual repre-
sentation in Figure 8 to enhance clarity and understand-
ing. Overall, the fundamental principle of the differen-
tial evolution algorithm involves randomly selecting three
distinct individuals, performing a mutation operation to
create a new candidate solution, using a crossover opera-
tion to refine the solution, and replacing the original solu-
tion if the new one performs better. This iterative process
continues until certain stopping criteria are met.

To better illustrate our model evolution method, we have
created a flowchart as shown in algorithm 1. The details
of combining our proposed method with other models are
provided in Step 3. The approach involves calculating an
overall score by using model merging on the mutated individuals along with the non-mutated indi-
viduals in the current evolution. In contrast, the simple evolver determines the success of mutation
based on the score of individual entities, while the combined approach assesses it based on the score
of the entire population after individual mutation.

Algorithm 1 Model Evolution
1: Step 1 - Initializing the Population

2: Initialize population ⇥ . A population of candidate solutions
3: generation 0 . Initialize generation counter
4: converged False . Convergence flag
5: while not converged do

6: Step 2 - Evolution Process: Mutation and Recombination

7: for each candidate solution ✓i in ⇥ do

8: Randomly select ✓r1 and ✓r2 . Select random solutions
9: F Random scaling factor . Control parameter for mutation

10: Cr Random crossover rate . Control parameter for recombination
11: Compute mutated solution ✓?i using ✓i, ✓r1, ✓r2, and F
12: Perform recombination of ✓?i based on Cr and ✓i
13: Step 3 - Model Inference

14: if not combined with other model merging methods then

15: Evaluate the performance of ✓?i on development data
16: else

17: Merging ✓?i with other models
18: Evaluate the performance of merged model on development data
19: end if

20: end for

21: Step 4 - Updating the Population

22: converged True . Assume convergence
23: for each candidate solution ✓i in ⇥ do

24: if ✓?i outperforms ✓i then . Comparing performance
25: Replace ✓i with ✓?i . Update population
26: converged False . Reset convergence flag
27: end if

28: end for

29: generation generation+ 1 . Increment generation counter
30: end while

13

Under review as a conference paper at ICLR 2024

B IMPACT OF DEVELOPMENT DATASET

The availability of development datasets directly impacts the effectiveness of our model evolution
approach. However, many publicly available datasets either do not provide development sets or
widely use them as test sets. In our case, the development set of the GLUE dataset is used as a test
set, so we utilize a small portion of the training dataset (approximately 5%) for model evolution.
For non-i.i.d. partition methods, we also use only a subset of the same training data samples. In
the case of the unified emotion dataset, we separately extract 10% of data from each of the five
high-resource datasets for model evolution, following the same partitioning method as employed in
Jin et al. (2022).

For our model evolution approach, the quality of the development dataset can significantly impact
performance, making the selection of a high-quality development dataset a crucial consideration.
To address this, we conducted experiments on the emotion dataset using different lengths of model
evolution methods. We performed experiments with both the simple evolver and regmean evolver,
evolving all five domain-specific models. The experimental results are shown in Table 5, indicating
that even with a short development dataset, model evolution can still be effective. However, as the
length of the development dataset increases, the performance of model evolution tends to improve.
Additionally, we included the test scores of simple methods as baselines for comparison.

Length None 1/4 1/2 1

Evolver 23.18 30.14 32.03 33.27

Regmean Evolver 38.74 39.43 39.57 39.87

Table 5: The performance of model evolution with different length of development dataset. None
means evolver is not conduct and the test score of simple averaging and regmean method is recorded.

C METRICS, DATASET AND TRAINING DETAILS

C.1 MERGING MODELS TRAINED ON NON-I.I.D. PARTITIONS.

Merging models initially trained on non-i.i.d. partitions of the same dataset is started, which is
achieved by simulating synthetic data splits across the 8 tasks within the GLUE benchmark. Each
task involves dividing the training data into two partitions, each containing 1,000 training examples
with distinct label distributions. Following this, we perform fine-tuning on these two partitions for
8 pairs of individual models and merge each pair of models. The evaluation of these merged models
takes place on the official validation sets, which portray a joint distribution of both partitions.

C.2 METRICS AND COMPARED METHODS

Train Dev Test

In-domain
DialyDialog 72,085 10,298 20,596
CrowdFlower 27,818 3,974 7,948
TEC 14,735 2,105 4,211
Tales-Emotion 10,339 1,477 2,955
ISEAR 5,366 766 1,534

Out-of-domain
Emoint 7,102
SSEC 4,868
ElectoralTweets 4,056
GroundedEmotions 2,585
AffectiveText 1,250

Table 6: Statistics of emotion classification datasets.

In evaluating merged models trained for non-
i.i.d. partitions of the same dataset, we assessed
their performance using a unified test set char-
acterized by a joint distribution of all partitions.
For merged models trained across different do-
mains or tasks, we measured their performance
across individual domains or tasks incorpo-
rated into the merger and derived their macro-
average. Similarly, when evaluating out-of-
domain performance, we computed the macro-
average of their performance across the out-of-
domain test set.

The performance of individual models involved
in merging are reported: (1) the average perfor-
mance of all individual models (Avg. f1..N);
(2) the performance of the best single individual model (Best. f1..N), as determined by using the

14

Under review as a conference paper at ICLR 2024

validation set; (3) the performance of the individual models corresponding to the training data set
for each test set (Domain-Specific).

C.3 EMOTION CLASSIFICATION

In order to investigate the performance of the sentiment classification task, we selected a diverse and
challenging set of datasets. Among them, DailyDialogs (Li et al., 2017), CrowdFlower, TEC (Mo-
hammad, 2012), Tales-Emotion (Alm et al., 2005), and ISEAR (Scherer & Wallbott, 1994) is utilized
to train domain-specific model. For acessing OOD generalization performance, we use Emoint (Mo-
hammad & Bravo-Marquez, 2017), SSEC (Schuff et al., 2017), ElectoralTweets (Mohammad et al.,
2015), GroundedEmotions (Liu et al., 2017), and AffectiveText (Strapparava & Mihalcea, 2007).
For OOD evaluation, we focus exclusively on the fundamental emotions: anger, disgust, fear, joy,
sadness, and surprise. A detailed overview of the datasets and statistics is provided in Table 6.

C.4 GLUE BENCHMARK

In the GLUE dataset experiments, we utilized multiple tasks, including CoLA (Warstadt et al.,
2019), SST-2 (Socher et al., 2013), MRPC (Dolan & Brockett, 2005), STS-B (Cer et al., 2017),
MNLI (Williams et al., 2018),QNLI (Rajpurkar et al., 2016), QQP, and RTE (Giampiccolo et al.,
2007). These tasks cover various natural language understanding problems such as text classifica-
tion, text similarity, and natural language inference. To assess our merged models, we tested them
on the official development sets. We performed experiments by training models on non-i.i.d. par-
titions, creating various partition scenarios through random sampling. Each partition is uniformly
sub-sampled to yield a total of 1,000 training examples per partition.

C.5 TIME COST

Initial Population for Evolving T5-base RoBERTa-base DistilBERT-base DeBERTa-large GPT2
All Domain Specifis Models on Emotion Datasets 24.5 19.2 18.7 21.3 20.1
Pairwise Models on Emotion Datasets 9.3 7.3 7.1 8.1 7.6
None-iid Pairwise Models on GLUE Benchmark 7.2 5.7 5.5 6.2 5.9
Cross Tasks Pairwise Models on GLUE Benchmark 8.7 7.1 6.8 7.8 7.5

Table 7: Time cost (in the unit of minutes) of RegMean Evolver on different experiments with 20 generations.
T5-base is tested on single A800 GPU and other models are tested on single A6000 GPU. The time cost is
mainly related to the size of model and the length of development dataset when conducting model evolution.

We report the time cost of the scheme of model evolution. T5-base is tested on single NVIDIA
A800 80G GPU and other models are tested on single RTX A6000 48G GPU. We find that all task
of model evolution can be completed within half an hour, which is very cost-efficient in improving
the model performance without further training.

D INTEGRATION WITH COEFFICIENT SEARCH

Model Simple
(coefficient search)

Evolver
(scale factor search)

Fisher
(coefficient search)

Fisher Evolver
(scale factor search)

RegMean
(coefficient search)

RegMean Evolver
(scale factor search)

RoBERTa-base 37.78 (38.83) 39.13 (39.98) 37.11 (38.96) 40.34 (41.23) 46.56 (46.82) 46.89 (47.03)
DistillBERT-base 36.76 (37.63) 38.85 (39.67) 34.52 (37.54) 40.37 (41.31) 43.09 (43.14) 43.22 (43.31)

T5-base 38.82 (39.91) 40.21 (41.11) 38.08 (39.22) 41.46 (42.55) 47.35 (47.84) 47.92 (48.06)

Table 8: Coefficient Search Result when merging pairwise emotion classification models. Simple, Fisher and
RegMean are model merging algorithms for comparison. All the results we reported are averages of 10 (C2

5)
runs after paring models from a set of 5.

The coefficient search is a promising scheme to improve the model merging performance, by search-
ing the optimal ↵. The proposed model evolution can also be integrated with the coefficient search
method by searching the optimal scale factor f . We have performed the grid search of ↵ and f with
intervals of 0.05 from 0.1 to 0.9. We present the result in Table 8. In the setting of Simple, Fisher
and RegMean, the results show that a default version of evolver (with scale factor f = 0.5, cr = 0.5)
outperforms the coefficient search results. Notably, the integration with scale factor search further

15

Under review as a conference paper at ICLR 2024

boosts the performance of the evolver, which is worth further investigation. Especially, the crossover
ratio Cr in model evolution could also be the subject of coefficient search. Many adaptive schemes
are also available in the realm of evolution algorithms, like SADE (Qin & Suganthan, 2005) and
SHADE (Tanabe & Fukunaga, 2013), providing a possibility of future algorithmic development.

16

	Introduction
	Related Works
	Knowledge Fusion
	Evolutionary algorithms
	Existing non-training-based knowledge merging methods

	Evolving Weights of Models for Knowledge Fusion
	Evolutionary Strategy
	Computation Efficiency

	Experimental Setup
	Evaluation Settings
	Compared Methods
	Experiment Details

	Results
	Model Evolving Across Data Domains
	Evolving All Domain-Specific Models.
	Evolving Pairwise Domain-Specific Models
	Evolving Models Trained on Non-i.i.d. Partitions.

	Evolving Models Across Different Tasks
	Model Evolving for Out-of-Domain Generalization
	Ablation Study
	Analysis

	Conclusions and Future Work
	Explanation of Model Evolution
	Impact of Development Dataset
	Metrics, Dataset and Training Details
	Merging Models Trained on Non-i.i.d. Partitions.
	Metrics and Compared Methods
	Emotion Classification
	GLUE Benchmark
	Time Cost

	Integration with Coefficient search

